Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 455 - 466, 01.03.2022
https://doi.org/10.2339/politeknik.881438

Öz

Bu araştırma, kaynak sebepli olabilecek distorsiyonları tahmin etmek için sayısal bir simülasyon ile bunun deneysel doğrulamasını sunmaktadır. 3mm, 5mm ve 8mm kalınlığındaki S355J2G3 yapı çeliğinden üç deneysel numune test edilmiştir. Simülasyon, SYSWELD programında yer alan gaz metal ark kaynağı (GMAW) ile tasarlanmış olup, ısı kaynağı Goldak’ın çift elipsoidal dağılımı ile modellenmiş ve hesaplamalarda doğrusal olmayan ısı transferi analizi kullanılmıştır. Sonuçları doğrulamak içinse tek köşe kaynaklı T-bağlantılarında meydana gelen bozulmaları analiz etmek üzere bir deney düzeneği kurulmuştur. Bu çalışmada, artık gerilmeleri ve açısal bozulmaları değerlendirmek için sonlu elemanlar (FE) yöntemi kullandı. Kesitlerdeki penetrasyon derinliğini, kaynak sonrası oluşan açısal bozulmaları, sıcaklık dağılımını ve artık gerilmeleri değerlendirmek için bir dizi FE simülasyonu ve ilgili deneyler gerçekleştirilmiştir. Deney sonuçları, kaynak işlemi henüz yapılmadan simülasyonlar yoluyla prosesin kontrol edilmesinin hem bozulmaları en aza indirmeye hem de maliyetli tasarım hatalarını azaltarak kaynak performansının artırılabileceğini göstermiştir.

Kaynakça

  • [1] R.W. O’Brien, "Predicting weld distortion in the design of automotive components," MSc thesis, School of Engineering, Durham University, Durham, United Kingdom, 2007, [Online]. Available: http://etheses.dur.ac.uk/2462 [Accessed: 10-Sep-2020].
  • [2] Y. Li, K. Wang, Y. Jin, M. Xu, and H. Lu, “Prediction of welding deformation in stiffened structure by introducing thermo-mechanical interface element,” Journal of Materials Processing Technology, 216:440–446, (2015).
  • [3] H. M. E. Ramos, S. M. O. Tavares, and P. M. S. T. de Castro, “Numerical modelling of welded T-joint configurations using SYSWELD,” Science and Technology of Materials, 30: 6–15, (2018).
  • [4] Y. H. P. Manurung et al., “Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment,” International Journal of Pressure Vessels and Piping, 111: 89–98, (2013).
  • [5] F. Folchi, “Weld Distortion Prediction With Virtual Analysis For Practical Weld Distortion Prediction With Virtual Analysis For Practical Applications Applications,” MSc thesis, Department of Mechanical, Automotive and Material Engineering, University of Windsor, Windsor, Ontario, Canada, 2014. [Online]. Available: https://scholar.uwindsor.ca/etd/5229 [Accessed: 3-Sep-2020].
  • [6] P. Michaleris and A. Debiccari, “Prediction of welding distortion,” Welding Journal (Miami, Fla), 76(12): 172-181, (1997).
  • [7] M. J. Attarha and I. Sattari-Far, “Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation,” Journal of Materials Processing Technology, 211(4): 688–694, (2011).
  • [8] D. F. Fu, C. Q. Zhou, C. Li, G. Wang, and L. X. Li, “Effect of welding sequence on residual stress in thin-walled octagonal pipe-plate structure,” Transactions of Nonferrous Metals Society of China (English Edition), 24(3): 657–664, (2014).
  • [9] D. Klobčar, J. Tušek, and B. Taljat, “Finite element modeling of GTA weld surfacing applied to hot-work tooling,” Computational Materials Science, 31(3): 368–378, (2004).
  • [10] D. Deng, “FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects,” Computational Materials Science, 30(2): 359–366, (2009).
  • [11] K. Venkateswarlu, P. N. Kumar, and P. S. Ravikumar, “Finite Element Simulation of Temperature Distribution , Distortion and Residual Stresses of Dissimilar Welded Joints,” Materials Today: Proceedings, 5(5):11933–11940, (2018).
  • [12] I. Sattari-Far and Y. Javadi, “Influence of welding sequence on welding distortions in pipes,” International Journal of Pressure Vessels and Piping, 85(4):265–274, (2008).
  • [13] J. Rahman, M. Vasudevan, S. Muthukumaran, and R. R. Kumar, “Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation,” Journal of Materials Processing Technology, 219: 48–59, (2015).
  • [14] C. Heinze, C. Schwenk, and M. Rethmeier, “Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion,” Simulation Modelling Practice and Theory, 19(9):1847–1859, (2011).
  • [15] T. Mert, C. L. Tsai, S. S. Babu, and Y. P. Yang, “Strain-based assessment and modeling for low-distortion welding procedure,” Materials and Manufacturing Processes, 27(9): 943–948, (2012).
  • [16] J. Sun, X. Liu, Y. Tong, and D. Deng, “A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding,” Materials and Design, 63: 519–530, (2014).
  • [17] M. Zain-ul-abdein, D. Nélias, J. F. Jullien, F. Boitout, L. Dischert, and X. Noe, “Finite element analysis of metallurgical phase transformations in AA 6056-T4 and their effects upon the residual stress and distortion states of a laser welded T-joint,” International Journal of Pressure Vessels and Piping, 88(1): 45–56, (2011).
  • [18] “Material Properties EN 1.0570 (S355J2G3) Non-Alloy Steel.” [Online]. Available: https://www.makeitfrom.com/material-properties/EN-1.0570-S355J2G3-Non-Alloy-Steel. [Accessed: 14-Jul-2020].
  • [19] V. Lazić et al., “Qualification of the welding technology of the structural steel S355J2G3,” IOP Conference Series: Materials Science and Engineering, Prague, 419:1-12, (2018).
  • [20] K. Weman, “MIG/MAG welding,” Welding Processes Handbook, 75–97, (2012).
  • [21] J. Bai, R. D. Goodridge, S. Yuan, K. Zhou, C. K. Chua, and J. Wei, “Thermal influence of CNT on the polyamide 12 nanocomposite for selective laser sintering,” Molecules, 20(10): 19041–19050, (2015).
  • [22] N. T. Nguyen, Y. W. Mai, and A. Ohta, “Analytical solution for a new hybrid double-ellipsoidal heat source in semi-infinite body,” Proceedings of International Conference on Advances in Composite Materials and Structures VII, Bologna, 207–217, (2000).
  • [23] M. Perić et al., “Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld,” Materials and Design, 53:1052–1063, (2014).
  • [24] D. Deng and H. Murakawa, “FEM prediction of buckling distortion induced by welding in thin plate panel structures,” Computational Materials Science, 43(4): 591–607, (2008).
  • [25] D. Deng, H. Murakawa, and W. Liang, “Numerical simulation of welding distortion in large structures,” Computer Methods in Applied Mechanics and Engineering, 196: 4613–4627, (2007).
  • [26] H. . Murakawa, D. . Deng, S. Rashed, and S. . Shinji, “Prediction of Distortion Produced on Welded Structures during Assembly Using Inherent Deformation and Interface Element,” Transactions of Japan Welding Research Institute., 38(2): 63–69, (2009).
  • [27] T. L. Teng, C. P. Fung, P. H. Chang, and W. C. Yang, “Analysis of residual stresses and distortions in T-joint fillet welds,” International Journal of Pressure Vessels and Piping, 78(8): 523–538, (2001).
  • [28] “HEXAGON - Manufacturing Intelligence Division.” [Online]. Available: https://www.hexagonmi.com/. [Accessed: 16-Sep-2020].
  • [29] G. Fu, M. I. Lourenco, M. Duan, and S. F. Estefen, “Effect of boundary conditions on residual stress and distortion in T-joint welds,” Journal of Constructional Steel Research, 102:121–135, (2014).

Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-joints

Yıl 2022, , 455 - 466, 01.03.2022
https://doi.org/10.2339/politeknik.881438

Öz

This research presents a numerical simulation for predicting welding induced distortion with an experimental validation. Three experimental specimens of S355J2G3 structural steel with thicknesses of 3mm, 5mm and 8mm have been used as test cases. In order to validate the results an experiment was set up to gain detailed information about distortions occurring in single fillet welded T-joints. The non-linear heat transfer analysis is used and heat source is modeled with the Goldak’s double ellipsoidal distribution by using SYSWELD in the gas metal arc welding (GMAW) process. This study employs the finite element (FE) method to evaluate residual stresses and angular distortions. A series of FE simulations and corresponding experiments are performed to evaluate the depth of penetration in the cross sections, angular distortions that occur after welding, temperature distribution, and residual stresses. A coordinate measuring machine and a 3D non-contact scanning device are used to measure the angular distortions and displacement distributions, respectively. The results show that controlling welding process via simulations can significantly enhance the performance of process, and help to minimize distortions and decrease costly design errors.

Kaynakça

  • [1] R.W. O’Brien, "Predicting weld distortion in the design of automotive components," MSc thesis, School of Engineering, Durham University, Durham, United Kingdom, 2007, [Online]. Available: http://etheses.dur.ac.uk/2462 [Accessed: 10-Sep-2020].
  • [2] Y. Li, K. Wang, Y. Jin, M. Xu, and H. Lu, “Prediction of welding deformation in stiffened structure by introducing thermo-mechanical interface element,” Journal of Materials Processing Technology, 216:440–446, (2015).
  • [3] H. M. E. Ramos, S. M. O. Tavares, and P. M. S. T. de Castro, “Numerical modelling of welded T-joint configurations using SYSWELD,” Science and Technology of Materials, 30: 6–15, (2018).
  • [4] Y. H. P. Manurung et al., “Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment,” International Journal of Pressure Vessels and Piping, 111: 89–98, (2013).
  • [5] F. Folchi, “Weld Distortion Prediction With Virtual Analysis For Practical Weld Distortion Prediction With Virtual Analysis For Practical Applications Applications,” MSc thesis, Department of Mechanical, Automotive and Material Engineering, University of Windsor, Windsor, Ontario, Canada, 2014. [Online]. Available: https://scholar.uwindsor.ca/etd/5229 [Accessed: 3-Sep-2020].
  • [6] P. Michaleris and A. Debiccari, “Prediction of welding distortion,” Welding Journal (Miami, Fla), 76(12): 172-181, (1997).
  • [7] M. J. Attarha and I. Sattari-Far, “Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation,” Journal of Materials Processing Technology, 211(4): 688–694, (2011).
  • [8] D. F. Fu, C. Q. Zhou, C. Li, G. Wang, and L. X. Li, “Effect of welding sequence on residual stress in thin-walled octagonal pipe-plate structure,” Transactions of Nonferrous Metals Society of China (English Edition), 24(3): 657–664, (2014).
  • [9] D. Klobčar, J. Tušek, and B. Taljat, “Finite element modeling of GTA weld surfacing applied to hot-work tooling,” Computational Materials Science, 31(3): 368–378, (2004).
  • [10] D. Deng, “FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects,” Computational Materials Science, 30(2): 359–366, (2009).
  • [11] K. Venkateswarlu, P. N. Kumar, and P. S. Ravikumar, “Finite Element Simulation of Temperature Distribution , Distortion and Residual Stresses of Dissimilar Welded Joints,” Materials Today: Proceedings, 5(5):11933–11940, (2018).
  • [12] I. Sattari-Far and Y. Javadi, “Influence of welding sequence on welding distortions in pipes,” International Journal of Pressure Vessels and Piping, 85(4):265–274, (2008).
  • [13] J. Rahman, M. Vasudevan, S. Muthukumaran, and R. R. Kumar, “Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation,” Journal of Materials Processing Technology, 219: 48–59, (2015).
  • [14] C. Heinze, C. Schwenk, and M. Rethmeier, “Influences of mesh density and transformation behavior on the result quality of numerical calculation of welding induced distortion,” Simulation Modelling Practice and Theory, 19(9):1847–1859, (2011).
  • [15] T. Mert, C. L. Tsai, S. S. Babu, and Y. P. Yang, “Strain-based assessment and modeling for low-distortion welding procedure,” Materials and Manufacturing Processes, 27(9): 943–948, (2012).
  • [16] J. Sun, X. Liu, Y. Tong, and D. Deng, “A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding,” Materials and Design, 63: 519–530, (2014).
  • [17] M. Zain-ul-abdein, D. Nélias, J. F. Jullien, F. Boitout, L. Dischert, and X. Noe, “Finite element analysis of metallurgical phase transformations in AA 6056-T4 and their effects upon the residual stress and distortion states of a laser welded T-joint,” International Journal of Pressure Vessels and Piping, 88(1): 45–56, (2011).
  • [18] “Material Properties EN 1.0570 (S355J2G3) Non-Alloy Steel.” [Online]. Available: https://www.makeitfrom.com/material-properties/EN-1.0570-S355J2G3-Non-Alloy-Steel. [Accessed: 14-Jul-2020].
  • [19] V. Lazić et al., “Qualification of the welding technology of the structural steel S355J2G3,” IOP Conference Series: Materials Science and Engineering, Prague, 419:1-12, (2018).
  • [20] K. Weman, “MIG/MAG welding,” Welding Processes Handbook, 75–97, (2012).
  • [21] J. Bai, R. D. Goodridge, S. Yuan, K. Zhou, C. K. Chua, and J. Wei, “Thermal influence of CNT on the polyamide 12 nanocomposite for selective laser sintering,” Molecules, 20(10): 19041–19050, (2015).
  • [22] N. T. Nguyen, Y. W. Mai, and A. Ohta, “Analytical solution for a new hybrid double-ellipsoidal heat source in semi-infinite body,” Proceedings of International Conference on Advances in Composite Materials and Structures VII, Bologna, 207–217, (2000).
  • [23] M. Perić et al., “Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld,” Materials and Design, 53:1052–1063, (2014).
  • [24] D. Deng and H. Murakawa, “FEM prediction of buckling distortion induced by welding in thin plate panel structures,” Computational Materials Science, 43(4): 591–607, (2008).
  • [25] D. Deng, H. Murakawa, and W. Liang, “Numerical simulation of welding distortion in large structures,” Computer Methods in Applied Mechanics and Engineering, 196: 4613–4627, (2007).
  • [26] H. . Murakawa, D. . Deng, S. Rashed, and S. . Shinji, “Prediction of Distortion Produced on Welded Structures during Assembly Using Inherent Deformation and Interface Element,” Transactions of Japan Welding Research Institute., 38(2): 63–69, (2009).
  • [27] T. L. Teng, C. P. Fung, P. H. Chang, and W. C. Yang, “Analysis of residual stresses and distortions in T-joint fillet welds,” International Journal of Pressure Vessels and Piping, 78(8): 523–538, (2001).
  • [28] “HEXAGON - Manufacturing Intelligence Division.” [Online]. Available: https://www.hexagonmi.com/. [Accessed: 16-Sep-2020].
  • [29] G. Fu, M. I. Lourenco, M. Duan, and S. F. Estefen, “Effect of boundary conditions on residual stress and distortion in T-joint welds,” Journal of Constructional Steel Research, 102:121–135, (2014).
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

İlker Eren 0000-0003-4326-0294

Melike Sultan Karasu Asnaz 0000-0003-4145-2524

Yayımlanma Tarihi 1 Mart 2022
Gönderilme Tarihi 16 Şubat 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Eren, İ., & Karasu Asnaz, M. S. (2022). Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-joints. Politeknik Dergisi, 25(1), 455-466. https://doi.org/10.2339/politeknik.881438
AMA Eren İ, Karasu Asnaz MS. Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-joints. Politeknik Dergisi. Mart 2022;25(1):455-466. doi:10.2339/politeknik.881438
Chicago Eren, İlker, ve Melike Sultan Karasu Asnaz. “Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-Joints”. Politeknik Dergisi 25, sy. 1 (Mart 2022): 455-66. https://doi.org/10.2339/politeknik.881438.
EndNote Eren İ, Karasu Asnaz MS (01 Mart 2022) Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-joints. Politeknik Dergisi 25 1 455–466.
IEEE İ. Eren ve M. S. Karasu Asnaz, “Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-joints”, Politeknik Dergisi, c. 25, sy. 1, ss. 455–466, 2022, doi: 10.2339/politeknik.881438.
ISNAD Eren, İlker - Karasu Asnaz, Melike Sultan. “Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-Joints”. Politeknik Dergisi 25/1 (Mart 2022), 455-466. https://doi.org/10.2339/politeknik.881438.
JAMA Eren İ, Karasu Asnaz MS. Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-joints. Politeknik Dergisi. 2022;25:455–466.
MLA Eren, İlker ve Melike Sultan Karasu Asnaz. “Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-Joints”. Politeknik Dergisi, c. 25, sy. 1, 2022, ss. 455-66, doi:10.2339/politeknik.881438.
Vancouver Eren İ, Karasu Asnaz MS. Finite Element Simulation and Experimental Validation of Welding Distortion of Fillet Welded T-joints. Politeknik Dergisi. 2022;25(1):455-66.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.