Araştırma Makalesi
BibTex RIS Kaynak Göster

6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi ve Çalışma Uzayı Karşılaştırması

Yıl 2022, , 1621 - 1632, 16.12.2022
https://doi.org/10.2339/politeknik.931177

Öz

Bu çalışmada 6 serbestlik derecesine sahip 3D3A sınıfı paralel robot yapılarından 3-CCC tipi asimetrik paralel mekanizmanın ters kinematik analizleri yapılmış ve iki adet tasarım önerisinde bulunulmuştur. Önerilen tasarımların çalışma uzayları hesaplanmıştır. Tasarımlarda D_4 tipi kısıt ile sağlanan CPAC (P: Aktif prizmatik eklem) bacak yapısı ve A_1 tipi kısıt ile sağlanan CPAC (A: Aktif dönel eklem) bacak yapısı kullanılmıştır. Ayrıca tek bir bacakta iki aktif eklem kullanılarak elde edilen CPAC (A: Aktif dönel eklem, P: Aktif prizmatik eklem) bacak yapısı da tasarımlarda kullanılmıştır. Bu robot tipi literatürde 3-CCC mekanizma olarak da geçmektedir. İlk tasarım önerisinde sabit ve hareketli platformlar kenarları silindirik eklem olan eşkenar üçgenler olacak şekilde belirlenmişlerdir. Platformlar birbirine 3 adet CCC bacak tipiyle bağlanmıştır. İkinci tasarım önerisinde XY, XZ ve YZ düzlemlerine yerleştirilmiş olan sabit silindirik eklemler ile nokta uç işlevcisine sahip olan hareketli platform, 3 adet CCC bacak tipiyle bağlanmıştır. Sabit ve haraketli platformda kullanılan silindirik eklem uzunlukları iki tasarımda da aynı tutulmuştur. Çalışma uzayları hesaplanırken uç işlevcinin ulaşabileceği sınır noktaları belirlenerek içeride kalan bölge üzerinde 5 mm aralıklarla tarama yapılmış ve ulaşılabilirliği kontrol edilmiştir. Hareketli platform önce sabit 0o tutularak sonra -30o +30o açıları arasında döndürülerek çalışma uzayları hesaplanmıştır. Elde edilen sonuçlarla, farklı tasarımlar yapılarak çalışma uzayının genişletilebildiği görülmüştür. 

Kaynakça

  • [1] Tsai L.-W., "Robot Analysis: The Mechanics of Serial and Parallel Manipulators", A Wiley-lnterscience, Canada, (1999).
  • [2] Merlet J.-P.; Gosselin C.; and Huang T., "Robotics and the handbook", Springer, Würzburg, (2016).
  • [3] Stewart D. , "A Platform with Six Degrees of Freedom", Proceedings of the Institution of Mechanical Engineers, 180: 371–386, (1965).
  • [4] El-Badawy, A. and Youssef, K. In On modeling and simulation of 6 degrees of freedom Stewart platform mechanism using multibody dynamics approach", ECCOMAS Multibody Dynamics 2013, Zagreb, 751-760, (2013).
  • [5] Kim J. , Cho Y. M. , Park F. C. , and Lee J. M. , "Design of a parallel mechanism platform for simulating six degrees-of-freedom general motion including continuous 360-degree spin", CIRP Annals - Manufacturing Technology, 52: 347–350, (2003).
  • [6] Qiang H. , Wang L. , Ding J. , and Zhang L. , "Multiobjective Optimization of 6-DOF Parallel Manipulator for Desired Total Orientation Workspace", (2019).
  • [7] Inner B. and Kucuk S. , "A novel kinematic design, analysis and simulation tool for general Stewart platforms", Simulation, 89: 876–897, (2013).
  • [8] Dafaoui E. , Amirat Y. , Pontnau J. , and Fran C. , "Analysis and Design of a Six-DOF Parallel Manipulator, Modeling, Singular Configurations, and Workspace", IEEE Transactions on Robotics and Automation, 14: 78–92, (1998).
  • [9] Toz M. and Kucuk S. , "Development of derivation of inverse Jacobian matrices for 195 6-DOF GSP", Turkish Journal of Electrical Engineering & Computer Sciences, 24: 4142–4153, (2016).
  • [10] Toz M. and Kucuk S. , "Parallel manipulator software tool for design, analysis, and simulation of 195 GSP mechanisms", Computer Applications in Engineering Education, 23: 931–946, (2015).
  • [11] Nguyen C. C. , Antrazi S. C. , Zhou Z. L. , and Campbell C. E. , "Analysis and implementation of a 6 DOF Stewart Platform-based robotic wrist", Computers and Electrical Engineering, 17: 191–203, (1991).
  • [12] Yang C. and Han J. , "Dynamic coupling analysis of a spatial 6-DOF electro-hydraulic parallel manipulator using a modal decoupling method", International Journal of Advanced Robotic Systems, 10: (2013).
  • [13] Wei W. , Xin Z. , Li-li H. , Min W. , and You-bo Z. , "Inverse kinematics analysis of 6–DOF Stewart platform based on homogeneous coordinate transformation", Ferroelectrics, 522: 108–121, (2018).
  • [14] Toz M. and Kucuk S. , "Dexterous workspace optimization of an asymmetric six-degree of freedom Stewart – Gough platform type manipulator", Robotics and Autonomous Systems, 61: 1516–1528, (2013).
  • [15] Gao X. , Lei D. , Liao Q. , and Zhang G. , "Generalized Stewart – Gough Platforms", IEEE Transactions on Robotics, 21: 141–151, (2005).
  • [16] Gan D. , Liao Q. , and Wei S. , "Forward Kinematics Analysis of t he New 3-CCC Parallel Mechanism", (2015).
  • [17] Gan D. , Liao Q. , Dai J. S. , and Wei S. , "Design and kinematics analysis of a new 3CCC parallel mechanism", Robotica, 28: 1065–1072, (2010).
  • [18] Toz M. and Kucuk S. , "Dimensional optimization of 6-DOF 3-CCC type asymmetric parallel manipulator", Advanced Robotics, 1–13, (2014).
  • [19] Li W. and Angeles J. , "Full-mobility three-CCC parallel-kinematics machines: Kinematics and isotropic design", Journal of Mechanisms and Robotics, 10: (2018).
  • [20] Li W. and Angeles J. , "Full-mobility 3-CCC parallel-kinematics machines: Forward kinematics, singularity, workspace and dexterity analyses", Mechanism and Machine Theory, 126: 312–328, (2018).
  • [21] Toz M., "6 Serbestlik Dereceli Asimetrik Paralel Robotların Çalışma Uzayı Eniyilemesi Ve Benzetim Yazılımının Gerçekleştirilmesi", Doktora Tezi, Kocaeli Üniversitesi, (2013).

Two Design Proposals and Working Space Comparison for 3-CCC Type Robot with 6 Degrees of Freedom

Yıl 2022, , 1621 - 1632, 16.12.2022
https://doi.org/10.2339/politeknik.931177

Öz

In this study, inverse kinematic analysis of 3-CCC type asymmetric parallel mechanism, which is one of the 3D3A class parallel robot structures with 6 degrees of freedom, was made and two design proposals were performed. Working spaces of the proposed designs have been calculated. In the designs, CPAC (P: Active prismatic joint) leg structure provided with D4 type constraint and CPAC (A: Active rotational joint) leg structure provided with A1 type constraint were used. In addition, the CPAC (A: Active rotational joint, P: Active prismatic joint) leg structure obtained by using two active joints in a single leg was also used in the designs. This robot type is also referred to as a 3-CCC mechanism in the literature. In the first design proposal, the fixed and mobile platforms were determined to be equilateral triangles with cylindrical joints. Platforms are connected to each other by 3 CCC leg types. In the second design proposal, the movable platform with fixed cylindrical joints placed in XY, XZ and YZ planes and pointwise end-effector is connected with 3 CCC leg types. The lengths of the cylindrical joints used in the fixed and mobile platform were kept the same in both designs. While calculating the working spaces, the limit points that the end functionalist can reach were determined and the inside area was scanned at 5 mm intervals and its accessibility was checked. Working spaces are calculated by first holding the mobile platform fixed at 0o and then rotating it between -30o + 30o angles. With the results obtained, it has been seen that the working space can be expanded with different designs.

Kaynakça

  • [1] Tsai L.-W., "Robot Analysis: The Mechanics of Serial and Parallel Manipulators", A Wiley-lnterscience, Canada, (1999).
  • [2] Merlet J.-P.; Gosselin C.; and Huang T., "Robotics and the handbook", Springer, Würzburg, (2016).
  • [3] Stewart D. , "A Platform with Six Degrees of Freedom", Proceedings of the Institution of Mechanical Engineers, 180: 371–386, (1965).
  • [4] El-Badawy, A. and Youssef, K. In On modeling and simulation of 6 degrees of freedom Stewart platform mechanism using multibody dynamics approach", ECCOMAS Multibody Dynamics 2013, Zagreb, 751-760, (2013).
  • [5] Kim J. , Cho Y. M. , Park F. C. , and Lee J. M. , "Design of a parallel mechanism platform for simulating six degrees-of-freedom general motion including continuous 360-degree spin", CIRP Annals - Manufacturing Technology, 52: 347–350, (2003).
  • [6] Qiang H. , Wang L. , Ding J. , and Zhang L. , "Multiobjective Optimization of 6-DOF Parallel Manipulator for Desired Total Orientation Workspace", (2019).
  • [7] Inner B. and Kucuk S. , "A novel kinematic design, analysis and simulation tool for general Stewart platforms", Simulation, 89: 876–897, (2013).
  • [8] Dafaoui E. , Amirat Y. , Pontnau J. , and Fran C. , "Analysis and Design of a Six-DOF Parallel Manipulator, Modeling, Singular Configurations, and Workspace", IEEE Transactions on Robotics and Automation, 14: 78–92, (1998).
  • [9] Toz M. and Kucuk S. , "Development of derivation of inverse Jacobian matrices for 195 6-DOF GSP", Turkish Journal of Electrical Engineering & Computer Sciences, 24: 4142–4153, (2016).
  • [10] Toz M. and Kucuk S. , "Parallel manipulator software tool for design, analysis, and simulation of 195 GSP mechanisms", Computer Applications in Engineering Education, 23: 931–946, (2015).
  • [11] Nguyen C. C. , Antrazi S. C. , Zhou Z. L. , and Campbell C. E. , "Analysis and implementation of a 6 DOF Stewart Platform-based robotic wrist", Computers and Electrical Engineering, 17: 191–203, (1991).
  • [12] Yang C. and Han J. , "Dynamic coupling analysis of a spatial 6-DOF electro-hydraulic parallel manipulator using a modal decoupling method", International Journal of Advanced Robotic Systems, 10: (2013).
  • [13] Wei W. , Xin Z. , Li-li H. , Min W. , and You-bo Z. , "Inverse kinematics analysis of 6–DOF Stewart platform based on homogeneous coordinate transformation", Ferroelectrics, 522: 108–121, (2018).
  • [14] Toz M. and Kucuk S. , "Dexterous workspace optimization of an asymmetric six-degree of freedom Stewart – Gough platform type manipulator", Robotics and Autonomous Systems, 61: 1516–1528, (2013).
  • [15] Gao X. , Lei D. , Liao Q. , and Zhang G. , "Generalized Stewart – Gough Platforms", IEEE Transactions on Robotics, 21: 141–151, (2005).
  • [16] Gan D. , Liao Q. , and Wei S. , "Forward Kinematics Analysis of t he New 3-CCC Parallel Mechanism", (2015).
  • [17] Gan D. , Liao Q. , Dai J. S. , and Wei S. , "Design and kinematics analysis of a new 3CCC parallel mechanism", Robotica, 28: 1065–1072, (2010).
  • [18] Toz M. and Kucuk S. , "Dimensional optimization of 6-DOF 3-CCC type asymmetric parallel manipulator", Advanced Robotics, 1–13, (2014).
  • [19] Li W. and Angeles J. , "Full-mobility three-CCC parallel-kinematics machines: Kinematics and isotropic design", Journal of Mechanisms and Robotics, 10: (2018).
  • [20] Li W. and Angeles J. , "Full-mobility 3-CCC parallel-kinematics machines: Forward kinematics, singularity, workspace and dexterity analyses", Mechanism and Machine Theory, 126: 312–328, (2018).
  • [21] Toz M., "6 Serbestlik Dereceli Asimetrik Paralel Robotların Çalışma Uzayı Eniyilemesi Ve Benzetim Yazılımının Gerçekleştirilmesi", Doktora Tezi, Kocaeli Üniversitesi, (2013).
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Savaş Yılmaz 0000-0003-3559-4198

Serdar Küçük 0000-0002-5543-7539

Metin Toz 0000-0001-9752-2718

Yayımlanma Tarihi 16 Aralık 2022
Gönderilme Tarihi 1 Mayıs 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yılmaz, S., Küçük, S., & Toz, M. (2022). 6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi ve Çalışma Uzayı Karşılaştırması. Politeknik Dergisi, 25(4), 1621-1632. https://doi.org/10.2339/politeknik.931177
AMA Yılmaz S, Küçük S, Toz M. 6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi ve Çalışma Uzayı Karşılaştırması. Politeknik Dergisi. Aralık 2022;25(4):1621-1632. doi:10.2339/politeknik.931177
Chicago Yılmaz, Savaş, Serdar Küçük, ve Metin Toz. “6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi Ve Çalışma Uzayı Karşılaştırması”. Politeknik Dergisi 25, sy. 4 (Aralık 2022): 1621-32. https://doi.org/10.2339/politeknik.931177.
EndNote Yılmaz S, Küçük S, Toz M (01 Aralık 2022) 6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi ve Çalışma Uzayı Karşılaştırması. Politeknik Dergisi 25 4 1621–1632.
IEEE S. Yılmaz, S. Küçük, ve M. Toz, “6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi ve Çalışma Uzayı Karşılaştırması”, Politeknik Dergisi, c. 25, sy. 4, ss. 1621–1632, 2022, doi: 10.2339/politeknik.931177.
ISNAD Yılmaz, Savaş vd. “6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi Ve Çalışma Uzayı Karşılaştırması”. Politeknik Dergisi 25/4 (Aralık 2022), 1621-1632. https://doi.org/10.2339/politeknik.931177.
JAMA Yılmaz S, Küçük S, Toz M. 6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi ve Çalışma Uzayı Karşılaştırması. Politeknik Dergisi. 2022;25:1621–1632.
MLA Yılmaz, Savaş vd. “6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi Ve Çalışma Uzayı Karşılaştırması”. Politeknik Dergisi, c. 25, sy. 4, 2022, ss. 1621-32, doi:10.2339/politeknik.931177.
Vancouver Yılmaz S, Küçük S, Toz M. 6 Serbestlik Derecesine Sahip 3-CCC Tipi Robot İçin İki Tasarım Önerisi ve Çalışma Uzayı Karşılaştırması. Politeknik Dergisi. 2022;25(4):1621-32.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.