Araştırma Makalesi
BibTex RIS Kaynak Göster

Modeling of Cross Flow Air-Gas Heat Exchanger Using Finite Difference Method

Yıl 2018, Cilt: 21 Sayı:1, 155 - 163, 31.03.2018
https://doi.org/10.2339/politeknik.389585

Öz

In this study, temperature distribution and total heat transfer were
calculated for two-dimensional cross flow heat exchanger using finite
difference method. A cross- flow heat exchanger consists of parallel sheets.
While the hot fluid flows from one plate, the cold fluid flows through the next
plate with cross geometry. This structure is repeated in many plates.  After the differential equation is converted
to the finite difference equation, it proceeds in a row by starting from the
corner where the two inlet temperatures are known, and thus the temperature
profile of the entire heat exchanger is easily reached. Throughout the study,
air was used as cold fluid in all analysis. Air and exhaust gases were taken as
hot fluid, thus the performance of the heat exchanger was examined. A
mathematical model was developed by using the finite difference equations in
Java programming language. For example, the temperature profile of a hot air
with an inlet temperature of 75 C and the temperature profile of a cold air
with an inlet temperature of 20 C were calculated  with the aid of the mathematical model and
the total heat transfer was determined approximately 45,5 KW.

Kaynakça

  • [1] Abraham, J.P., Sparrow, E.M. Tong, J.C.K., “Heat transfer in all pipe flow regimes: laminar, transitional/intermittent and turbulent”, International Journal of Heat and Mass Transfer, 52: 557–563, (2009).
  • [2] Cadavid Y., Amell A., Cadavid F., “ Heat transfer model in recuperative compact heat exchanger type:experimental and numerical analysis”, Applied Thermal Engineering, 50-56, (2013).
  • [3] Çengel, Y.A., “Isı ve Kütle Transferine Pratik Bir Yaklaşım”, 3.Basım, Güven Kitabevi, İzmir.(2011).
  • [4] Çoban, M.T., “İdeal gazların termodinamik ve termofiziksel özelliklerinin modellenmesi”, 17. Isı Bilimi ve Tekniği Kongresi, 24-27 Haziran (2009), Cumhuriyet Üniversitesi, Sivas.
  • [5] Çoban, M. T., “Sürekli kanatlı, zorlanmış taşınımlı hava su ısı değiştiricinin modellenmesi”, ULIBTK’ 13-19. Ulusal Isı Bilimi ve Tek. Kongresi, Samsun, (2013).
  • [6] Gnielinski V., “New equations for heat and mass transfer in turbulent pipe and channel flow”, Int. Chem. Eng. 16: 359–367, (1976).
  • [7] Goudar, C.T. and Sonnad, J.R., “Comparison of the iterative approximations of the Colebrook-White equation”, Hydrocabon Processing, pp 79-83, (2008).
  • [8] Hajabdollahi, H., Seifoori S., “Effect of flow maldistribution on the optimal design of a cross flow heat exchanger”, Int. J. Therm. Sci., 109: 242- 252, (2016).
  • [9] Incropera,F.P., Dewitt,D.P., “Isı ve Kütle Geçişinin Temelleri”,7. Basım, Palme Yayıncılık, Ankara, (2015).
  • [10] Liu, P., Nasr, M.R., Ge, G., Alonso, M.J., Mathisen, H.M., Fathieh, F., Simonson, C., “A theoretical model to predict frosting limits in cross-flow air-to-air flat plate heat/energy exchangers”, Energy and Buildings, 110: 404-414, (2016).
  • [11] Navarro H.A., Cabezas-Gomez L.C., “Effectiveness-NTU computation with a mathematical model for cross-flow heat exchangers”, Brazilian Journal of Chemical Engineering, Vol.:24, No:04, PP.:509-521, ISSN 0104-6632, (2007).
  • [12] Oğulata R.T., Doba F., Yılmaz T., “Irreversibility analysis of cross-flow heat exchangers”, Energy Conversion & Management, 1585-1599, (2000).
  • [13] Rogiers F., Stevens T., Baelmans M., “Optimal recuperator design for use in a micro gas turbine”, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Berkeley, U.S.A, (2006).
  • [14] Quadir,G.A., Badruddin, I.A., Ahmed, N.J.S., “Numerical investigation of the performance of a triple concentric pipe heat exchanger”, Int. J. Heat Mass Transf., 75:165-172, (2014).
  • [15] Saha, K.S., Baelmans, M., “A design method for rectangular microchannel counter flow heat exchangers”, Int. J. Heat Mass Transf., 74: 1-12, (2014).
  • [16] Strace, G., Fiorentino, M., Longo, M.P., Carluccio, E., “A hybrid method for the cross flow compact heat exchangers design”, Appl. Therm. Eng., 111: 1129-1142, (2017).
  • [17] Taler D., Trojan M., Taler J., “Numerical Modeling of Cross-Flow Tube Heat Exchangers with Complex Flow Arrangements”, Cracow University of Science and Technology, (AGH), Poland, (2011).
  • [18] Vafajoo, L., Moradifar, K., Hosseini, S.M., Salman, B.H., “Mathematical modelling of turbulent flow for flue gas-air Chevron type plate heat exchangers”, Int.J. Heat Mass Transf., 97:596-602, (2016).
  • [19] Vaitekunas D.A., “A generic dynamic model for cross flow heat exchangers with one fluid mixed, A thesis submitted to the faculty of graduate studies and research in partial fulfillment of the requirements for the degree of master of engineering”, McGill University, Montreal, Canada, (1990).
  • [20] Vali A., Simonson C.J., Besent R.W., Mahmood G., “ Numerical model and effitiveness correlations for a run-around heat recovery”, International Journal of Heat and Mass Transfer, 5827-5840, (2009).
  • [21] VDI Heat Atlas Second Edition., “VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen”, ISBN 978-3-540-77876-9 e-ISBN 978-3-540-77877-6 Springer Heidelberg Dordrecht London New York, (1993).
  • [22] Yang, J. Ma, L., Bock, J., Jacobi, A.M., Liu, W., “ A ,comparison of four numerical modeling approaches for enhanced shell-and-tube heat exchangers with experimental validation”, Appl. Therm. Eng., 65:369-383, (2014).

Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi

Yıl 2018, Cilt: 21 Sayı:1, 155 - 163, 31.03.2018
https://doi.org/10.2339/politeknik.389585

Öz

Bu çalışmada çapraz (dik) akışlı ısı
değiştiricileri üzerindeki sıcaklık dağılımı ve ısı transferi hesapları iki
boyutlu sonlu farklar modeli kullanılarak yapılmıştır. Çapraz akışlı ısı
değiştiricileri birbirine paralel levhalardan oluşur ve bir levhadan sıcak
akışkan akarken bir sonraki levhadan soğuk akışkan çapraz geometride akar. Bu
yapı birçok levha halinde tekrarlanır. Diferansiyel denklem sonlu farklar
denklemi haline getirildikten sonra iki giriş sıcaklığının bilindiği köşeden
başlamak suretiyle satırlar halinde çözülerek ilerlenir ve bu şekilde tüm ısı
değiştiricinin sıcaklık profiline kolaylıkla ulaşılır. Bu çalışma boyunca soğuk
akışkan olarak tüm analizlerde hava alınmıştır. Sıcak akışkan olarak ise hava
ve yanma gazları alınarak ısı değiştiricinin performansı incelenmiştir. Bu
çalışma için sonlu fark denklemleri kullanılarak Java programlama dilinde bir
matematiksel model geliştirilmiştir. Örnek olarak 750C giriş
sıcaklığına sahip sıcak akışkan ile 200C giriş sıcaklığına sahip
soğuk akışkanın sıcaklık profili geliştirilen matematiksel model yardımı ile
adım adım hesaplanmış ve toplam ısı transfer değeri de yaklaşık 45,5 KW olarak
belirlenmiştir.

Kaynakça

  • [1] Abraham, J.P., Sparrow, E.M. Tong, J.C.K., “Heat transfer in all pipe flow regimes: laminar, transitional/intermittent and turbulent”, International Journal of Heat and Mass Transfer, 52: 557–563, (2009).
  • [2] Cadavid Y., Amell A., Cadavid F., “ Heat transfer model in recuperative compact heat exchanger type:experimental and numerical analysis”, Applied Thermal Engineering, 50-56, (2013).
  • [3] Çengel, Y.A., “Isı ve Kütle Transferine Pratik Bir Yaklaşım”, 3.Basım, Güven Kitabevi, İzmir.(2011).
  • [4] Çoban, M.T., “İdeal gazların termodinamik ve termofiziksel özelliklerinin modellenmesi”, 17. Isı Bilimi ve Tekniği Kongresi, 24-27 Haziran (2009), Cumhuriyet Üniversitesi, Sivas.
  • [5] Çoban, M. T., “Sürekli kanatlı, zorlanmış taşınımlı hava su ısı değiştiricinin modellenmesi”, ULIBTK’ 13-19. Ulusal Isı Bilimi ve Tek. Kongresi, Samsun, (2013).
  • [6] Gnielinski V., “New equations for heat and mass transfer in turbulent pipe and channel flow”, Int. Chem. Eng. 16: 359–367, (1976).
  • [7] Goudar, C.T. and Sonnad, J.R., “Comparison of the iterative approximations of the Colebrook-White equation”, Hydrocabon Processing, pp 79-83, (2008).
  • [8] Hajabdollahi, H., Seifoori S., “Effect of flow maldistribution on the optimal design of a cross flow heat exchanger”, Int. J. Therm. Sci., 109: 242- 252, (2016).
  • [9] Incropera,F.P., Dewitt,D.P., “Isı ve Kütle Geçişinin Temelleri”,7. Basım, Palme Yayıncılık, Ankara, (2015).
  • [10] Liu, P., Nasr, M.R., Ge, G., Alonso, M.J., Mathisen, H.M., Fathieh, F., Simonson, C., “A theoretical model to predict frosting limits in cross-flow air-to-air flat plate heat/energy exchangers”, Energy and Buildings, 110: 404-414, (2016).
  • [11] Navarro H.A., Cabezas-Gomez L.C., “Effectiveness-NTU computation with a mathematical model for cross-flow heat exchangers”, Brazilian Journal of Chemical Engineering, Vol.:24, No:04, PP.:509-521, ISSN 0104-6632, (2007).
  • [12] Oğulata R.T., Doba F., Yılmaz T., “Irreversibility analysis of cross-flow heat exchangers”, Energy Conversion & Management, 1585-1599, (2000).
  • [13] Rogiers F., Stevens T., Baelmans M., “Optimal recuperator design for use in a micro gas turbine”, The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, Berkeley, U.S.A, (2006).
  • [14] Quadir,G.A., Badruddin, I.A., Ahmed, N.J.S., “Numerical investigation of the performance of a triple concentric pipe heat exchanger”, Int. J. Heat Mass Transf., 75:165-172, (2014).
  • [15] Saha, K.S., Baelmans, M., “A design method for rectangular microchannel counter flow heat exchangers”, Int. J. Heat Mass Transf., 74: 1-12, (2014).
  • [16] Strace, G., Fiorentino, M., Longo, M.P., Carluccio, E., “A hybrid method for the cross flow compact heat exchangers design”, Appl. Therm. Eng., 111: 1129-1142, (2017).
  • [17] Taler D., Trojan M., Taler J., “Numerical Modeling of Cross-Flow Tube Heat Exchangers with Complex Flow Arrangements”, Cracow University of Science and Technology, (AGH), Poland, (2011).
  • [18] Vafajoo, L., Moradifar, K., Hosseini, S.M., Salman, B.H., “Mathematical modelling of turbulent flow for flue gas-air Chevron type plate heat exchangers”, Int.J. Heat Mass Transf., 97:596-602, (2016).
  • [19] Vaitekunas D.A., “A generic dynamic model for cross flow heat exchangers with one fluid mixed, A thesis submitted to the faculty of graduate studies and research in partial fulfillment of the requirements for the degree of master of engineering”, McGill University, Montreal, Canada, (1990).
  • [20] Vali A., Simonson C.J., Besent R.W., Mahmood G., “ Numerical model and effitiveness correlations for a run-around heat recovery”, International Journal of Heat and Mass Transfer, 5827-5840, (2009).
  • [21] VDI Heat Atlas Second Edition., “VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen”, ISBN 978-3-540-77876-9 e-ISBN 978-3-540-77877-6 Springer Heidelberg Dordrecht London New York, (1993).
  • [22] Yang, J. Ma, L., Bock, J., Jacobi, A.M., Liu, W., “ A ,comparison of four numerical modeling approaches for enhanced shell-and-tube heat exchangers with experimental validation”, Appl. Therm. Eng., 65:369-383, (2014).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Halil Atalay

M. Turhan Çoban Bu kişi benim

Yayımlanma Tarihi 31 Mart 2018
Gönderilme Tarihi 24 Ocak 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 21 Sayı:1

Kaynak Göster

APA Atalay, H., & Çoban, M. T. (2018). Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi. Politeknik Dergisi, 21(1), 155-163. https://doi.org/10.2339/politeknik.389585
AMA Atalay H, Çoban MT. Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi. Politeknik Dergisi. Mart 2018;21(1):155-163. doi:10.2339/politeknik.389585
Chicago Atalay, Halil, ve M. Turhan Çoban. “Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi”. Politeknik Dergisi 21, sy. 1 (Mart 2018): 155-63. https://doi.org/10.2339/politeknik.389585.
EndNote Atalay H, Çoban MT (01 Mart 2018) Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi. Politeknik Dergisi 21 1 155–163.
IEEE H. Atalay ve M. T. Çoban, “Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi”, Politeknik Dergisi, c. 21, sy. 1, ss. 155–163, 2018, doi: 10.2339/politeknik.389585.
ISNAD Atalay, Halil - Çoban, M. Turhan. “Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi”. Politeknik Dergisi 21/1 (Mart 2018), 155-163. https://doi.org/10.2339/politeknik.389585.
JAMA Atalay H, Çoban MT. Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi. Politeknik Dergisi. 2018;21:155–163.
MLA Atalay, Halil ve M. Turhan Çoban. “Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi”. Politeknik Dergisi, c. 21, sy. 1, 2018, ss. 155-63, doi:10.2339/politeknik.389585.
Vancouver Atalay H, Çoban MT. Çapraz Akışlı Hava-Gaz Isı Değiştiricisinin Sonlu Farklar Metodu Kullanılarak Modellenmesi. Politeknik Dergisi. 2018;21(1):155-63.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.