Araştırma Makalesi
BibTex RIS Kaynak Göster

A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light

Yıl 2017, Cilt: 20 Sayı: 1, 25 - 36, 01.03.2017

Öz

In this study the oxidation of Bisphenol-A (BPA) was investigated using heterogeneous photo-Fenton-like oxidation under visible light irradiation over iron containing TiO2 catalysts. The catalysts were prepared by the incipient wetness impregnation method with different iron contents (1 and 5 wt%) and characterized by XRD, SEM, FT-IR, nitrogen adsorption, UV-Vis DRS, and ICP-AES measurements. Among the prepared catalysts the 1 wt% iron containing the TiO2 catalyst showed better catalytic activity (with a chemical oxygen demand (COD) reduction of 65.4% at the end of 6h of oxidation) than the other catalysts. The effects of the parameters such as the initial BPA concentration, H2O2 amount, catalyst amount, the pH of the initial BPA solution, and reaction temperature were studied with that catalyst on the heterogeneous photo-Fenton-like oxidation of an aqueous BPA solution. The small amount of iron that leached to the solution and the reusability of the catalyst illustrates that the process is mainly the heterogeneous photo-Fenton-like process, instead of the homogeneous photo-Fenton-like process. The degradation of BPA was described by the first order kinetics with an activation energy of 22.5 kJ/Mol.

Kaynakça

  • 1. Kang J.H., Kondo F. and Katayama Y., “Human exposure to Bisphenol-A”, Toxicology, 226: 79-89, (2006).
  • 2. Er B. and Sarımehmetoğlu B., “Evaluation of presence of Bisphenol-A in foods”, Vet. Hekim Der., 82: 69-74, (2011).
  • 3. Zhang K., Gao N., Deng Y., Lin T.F., Ma Y., Li L. and Sui M., “Degradation of Bisphnol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide”, J. Environ. Sci., 23: 31-36, (2011).
  • 4. Gültekin I. and İnce N.H., “Ultrasonic destruction of Bisphenol-A: The operating parameters”, Ultrason. Sonochem., 15: 524-529, (2008).
  • 5. Torres R.A., Petrier C., Combet E., Carrıer M. And Pulgarın C., “Ultrasonic cavitation applied to the treatment of Bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products”, Ultrason. Sonochem., 15: 605-611, (2008).
  • 6. Inoue M., Masuda Y., Okada F., Sakurai A., Takahashi I. and Sakakibara, M., “Degradation of Bisphenol A using sonochemical reactions”, Water Res., 42: 1379-1386, (2008).
  • 7. Guo Z. and Feng R., “Ultrasonic irradiation-induced degradation of low-concentration Bisphenol A in aqueous solution”, J. Hazard. Mater., 163: 855-860, (2009).
  • 8. Petrier C., Torres-Palma R., Combet E., Sarantakos G., Baup S. and Pulgarın, C., “Enhanced sonochemical degradation of Bisphenol-A by biocarbonate ions”, Ultrason. Sonochem., 17: 111-115, (2010).
  • 9. Son Y., Lım M., Khım J., Kım L.H. and Ashokkumar, M., “Comparison of calorimetric energy and cavitation energy for the removal of bisphenol-A: The effects of frequency and liquid height”, Chem. Eng. J., 183: 39-45 (2012).
  • 10. Torres R.A., Abdelmalek F., Combet E., Petrıer C. and Pulgarin, C., “A Comparative Study of Ultrasonic Cavitation and Fenton’s Reagent for Bisphenol A Degradation in Deionized and Natural Waters”, J. Hazard. Mater., 146: 546-551, (2007).
  • 11. Ioan I., Wılson S., Lundanes E. And Neculai, A., “Comparison of Fenton and sono-Fenton Bisphenol A degradation”, J. Hazard. Mater., 142: 559-563, (2007).
  • 12. Mohapatra D.P., Brar S.K., Tyagı, R.D. and Surampallı R.Y., “Concominant degradation of Bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge”, Ultrason. Sonochem., 18: 1018-1027, (2011).
  • 13. Huang R., Fang Z., Yan X. and Cheng, W., “Heterogeneous sono-Fenton catalytic degradation of Bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition”, Chem. Eng. J., 197: 242-249, (2012).
  • 14. Katsumata H., Kawabe S., Kaneco S., Suzuki T. and Ohta, K., “Degradation of Bisphenol A in water by the Photo-Fenton reaction”, J. Photoch. Photobio. A., 162: 297-305, (2004).
  • 15. Lin K., Ding J., Wang H., Huang X. and Gan J., “Goethite-Mediated transformation of Bisphenol A”, Chemosphere, 89: 789-795, (2012).
  • 16. Zhou D., Wu F., Deng N. and Xıang, W., “Photooxidation of Bisphenol A (BPA) in water in the presence of ferric and carboxylate salts”, Water Res., 38: 4107-4116, (2004).
  • 17. Neamtu M. and Frımmel F.H., “Degradation of endocrine disrupting Bisphenol A by 254 nm irradiation in different water matrices and effect on yeast celss”, Water Res., 40: 3745-3750, (2006).
  • 18. Ohko Y., Ando I., Chısa N., Tatsuma T., Yamamura T., Nakashıma T., Kubota Y. and Fujıshıma A., “Degradation of Bisphenol A in water by TiO2 photocatalyst”, Environ. Sci. Technol., 35: 2365-2368, (2001).
  • 19. Chiang K., Lım T.M., Tsen L. and Lee, C.C. “Photocatalytic degradation and mineralization of Bisphenol A by TiO2 and platinized TiO2”, Appl Catal A-Gen., 261: 225-237, (2004).
  • 20. Wang G., Wu F., Zhang X., Luo M. and Deng N., “Enhanced TiO2 photocatalytic degradation of Bisphenol A by β-cyclodextrin in suspended solutions”, J. Photoch. Photobio. A., 179: 49-56, (2006).
  • 21. Tsai W.T., Lee M.K. Su T.Y. and Chang Y.M., “Photodegradation of Bisphenol A in a batch TiO2 suspension reactor”. J. Hazard. Mater., 168: 269-275, (2009).
  • 22. Wang R., Ren D., Xıa S., Zhang Y. and Zhao, J., “Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR)”, J. Hazard. Mater., 169: 926-932, (2009).
  • 23. Gao B., Lim T.M., Subagio D.P. and Lim T., “Zr-doped TiO2 for enhanced photocatalytic degradation of Bisphenol A”., Appl Catal A-Gen., 375: 107-115, (2010).
  • 24. Kuo C., Wu C. and Lin H., “Photocatalytic degradation of Bisphenol A in a visible light/TiO2 system”, Desalination, 256: 37-42, (2010).
  • 25. Wan X. and Lim, T., “Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for Bisphenol A degradation using a visible-light irradiated LED photoreactor”, Appl. Catal. B-Environ., 100: 355-364, (2010).
  • 26. Qing Z., Jınhua L., Hongchong C., Quanpeng C., Baoxue Z., Shuchuan S. and Weımın, C., “Characterization and mechanism of the photoelectrocatalytic oxidation of organic pollutants in a thin-layer reactor”, Chinese J. Catal., 32: 1357-1363, (2011).
  • 27.Yang J., Dai J. and Li, J., “Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity”, Appl. Surf. Sci., 257: 8965-8973, (2011).
  • 28. Li F.B., Lı X.Z., Lıu C.S. and Lıu, T.X., “Effect of alumina on photocatalytic activity of iron oxides for Bisphenol A degradation”, J. Hazard. Mater., 149: 199-207, (2007).
  • 29. Wang C., Zhu L., Song C., Shan G. and Chen P., “Characterization of photocatalyst Bi3.84W0.16O6.24 and its photodegradation on Bisphenol A under simulated solar light irradiation”, Appl. Catal. B-Environ., 105: 229-236, (2011).
  • 30. Wang C., Zhu L., Wei M., Chen P. and Shan, G., “Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of Bisphenol A by Bi2WO6 in water”, Water Res., 46: 845-853, (2012).
  • 31. Wang C., Zhu L., Chang C., Fu Y. and Chu X., “Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal methos and its photocatalytic degradation”, Catal. Commun., 37: 92-95, (2013).
  • 32. Katsumata H., Taniguchi M., Kaneco S. and Suzuki T., “Photocatalytic degradation of Bisphenol A by Ag3PO4 under visible light”, Catal. Commun., 34: 30-34, (2013).
  • 33. Yang X., Tian P., Zhang C., Deng Y., Xu J., Gong J. and Han Y., “Au/Carbon as Fenton-like catalysts for oxidative degradation of Bisphenol A”, Appl. Catal. B-Environ., 134-135: 145-152, (2013).
  • 34.Irmak S., Erbatur O. and Akgerman, A., “Degradation of 17 β-estradiol and Bisphenol A in aqueous medium by using ozone and ozone/UV techniques”, J. Hazard. Mater., B126: 54-62, (2005).
  • 35. Deborde M., Rabouan S., Mazellier P., Duguet J.P. and Legube, B., “ Oxidation of Bisphenol A by ozone in aqueous solution”, Water Res., 42: 4299-4308, (2008).
  • 36. Garoma T. and Matsumoto S., “Ozonation of aqueous solution containing Bisphenol A: Effect of operational parameters”, J. Hazard. Mater., 167: 1185-1191, (2009).
  • 37. Torres-Palma R.A., Nieto J.I., Combet E., Petrıer C. and Pulgarın C., “An innovative ultrasound, Fe2+ and TiO2 photoassisted process for Bisphenol A mineralization”, Water Res,. 44: 2245-2252, (2010).
  • 38. Lim M., Son Y., Na S. and Khim, J., “Effect of TiO2 concentration for sonophotocatalytic degradation of Bisphenol A”, Proceedings of Symposium on Ultrasonic Electronics, 31: 103-104, (2010).
  • 39. Poerschmann J.,Trommler, U. and Goreckı, T., “Aromatik intermadiate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction”, Chemosphere, 7: 975-986, (2010).
  • 40. Leiw M.Y., Guai G.H., Wang X., Tse M.S., Mang N.C. and Tan O.K., “Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3-x metal oxide”, J. Hazard. Mater., 260: 1-8, (2013).
  • 41. Xie Y.B. and Li X.Z., “Degradation of Bisphenol A in aqueous solution by H2O2- assisted photoelectrocatalytic oxidation”, J. Hazard. Mater., B38: 526-533, (2006).
  • 42. Wang X. and Lim T.T., “Effect of hexamethylenetetramine on the visible light photocatalytic activity of C-N codoped TiO2 for Bisphenol-A degradation: Eveluation of photocatalytic mechanism and solution toxicity”, Appl Catal A-Gen., 399: 233-241, (2011).
  • 43. Xing R., Wu L., Fei Z. and Wu, P., “Mesopolymer modified with palladium phthalocyaninesulfonate as a versatile photocatalyst for phenol and Bisphenol A degradation under visible light irradiation”, J. Environ. Sci., 25(8): 1687-1695, (2013).
  • 44. Zhang L., Wang W., Sun S., Sun Y., Gao E. and Zhang, Z., “Elimination of BPA endocrine disruptor by magnetic BiOBr@SiO2@Fe3O4 photocatalyst”, Appl. Catal. B-Environ., 148-149: 164-169, (2014).
  • 45. Wang C., Zhu J., Wu X., Xu H., Song Y., Yan J., Song Y., Ji H., Wang K. and Li, H., “Photocatalytic degradation of Bisphenol A and dye by graphene-oxide/Ag3PO4 composite under visible light irradiation”, Ceram. Int., 40: 8061-8070, (2014).
  • 46. Sun S., Ding J., Bao J., Gao C., Qi Z., Yang X., He B. and Li C., “Comparison of calorimetric energy and cavitation energy for the removal of Bisphenol-A: The effcets of frequency and liquid height”, Appl. Suf. Sci., 258: 5031-5037, (2012).
  • 47. Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P,. Kontos A.G,. Dunlop P.S.M., Hamolton J.W.J., Byrne J.A., O'Shea K., Entezari M.H. and Dionysiou D.D., “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Appl. Catal. B-Environ., 125: 331-349, (2012).
  • 48. Lezner M., Grabowska E. and Zaleska A., “Preparation and photocatalytic activity of iron- modified titanium dioxide photocatalyst”, Physicochem. Probl. Mi., 48: 193-200, (2012).
  • 49. Akın-Ünnü B., Gündüz G. and Dükkancı M., “Heterogeneous Fenton-like oxidation of Crystal Violet using an iron loaded ZSM-5 zeolite”. Desalin. Water Treat., 57: 11835-11849, (2016)
  • 50. Arana J., Diaz G., Saracho M.M., Rodrigez J.M.D., Melian J.A.H. and Pena J.P., “Maleic acid photocatalytic degradation using Fe-TiO2 catalysts: Dependence of the degradation mechanism on the Fe catalysts content”, Appl. Catal. B-Environ., 36(2): 113-124, (2002).
  • 51. Demir N., Gündüz G. and Dükkancı, M., “Degradation of a textile dye, Rhodamine 6G (Rh6G), by heterogeneous sonophotoFenton process in the presence of Fe containing TiO2 catalysts”, Environ. Sci. Pollut. R., 22: 3193-3201, (2015).
  • 52. Khalid N.R., Ahmed E., Ikram M., Ahmed M., Phoenix D.A., Elhissi A., Ahmed W. and Jackson M.S., “Effects of Calcination on Structural Photocatalytic Properties of TiO2Nanopowders via TiCl4 Hydrolysis”, J Mater. Eng. Perform., 22: 371-375, (2013).
  • 53. Tayade R.J., Surolia P.K., Kulkami R.G. and Jasra, R.V., “Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2”,. Sci. Technol. Adv. Mat., 8: 455-462, (2007).
  • 54. Zhao B.X., Shi B.C., Zhang X.L., Cao X. and Zhang, Y.Z., “Catalytic wet hydrogen peroxide oxidation of H-acid in aqueous solution with TiO2–CeO2 and Fe/TiO2–CeO2 catalysts”, Desalination, 268: 55-59, (2011).
  • 55. Jamalluddin N.A. and Abdullah A.Z., “Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature”, Ultrason. Sonochem., 18: 669-678, (2011).
  • 56. Wang A.J., Cuan A., Salmanes J., Nava N., Castillo S., Moranpineda M. and Rojas, F., “Studies of sol-gel TiO2 and Pt/TiO2 catalysts for NO reduction by CO in an oxygen reach condition”, Appl. Surf. Sci., 230: 94-105, (2004).
  • 57. Seo D.K., Hoffmann R., “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials”, Theor Chem Acc., 102:23-32, (1999).
  • 58. Hörmann U., Kaiser U., Albrecht M., Geserick j., Hüsing N., “Structure and luminescence of sol-gel synthesized anatase nanoparticles”, 16th International Conference on Microscopy of Semiconducting Materials, J. Physics: Conference Series, 012039, 209:1-6, (2010).
  • 59. Mi J.L., Johnsen S., Clausen C., Hald P., Lock N. So L. and Iversen B.B., “Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis”, J. Mater. Res., 28: 333-339, (2013).
  • 60. Ganesh I., Kumar P.P., Gupta A.K., Sekhar P.C.S., Radha K., Padmanabham G. and Sundararajan G., “Preparation and characterization of Fe-doped TiO2 powders for solar light reponse and photocatalytic applications”, Proc. Appli. Cera., 6: 21-36, (2012).
  • 61. Akpan U.G. and Hameed B.H., “Parameters affecting the photocatalytic degradation of dyes using TiO2- based photocatalysts: A review”, J. Hazard. Mater., 170: 520-529, (2008).
  • 62. Lu N., Lu Y., Liu F., Zhao K., Yuan X., Zhao Y., Li Y., Qin H. and Zu, J., “H3PW12O40/TiO2 catalyst-induced photodegradation of Bisphenol A (BPA): Kinetics, toxicity and degradation pathways”, Chemosphere, 91: 1266-1272, (2013).
  • 63. Chen Y., Wang K. and Lou L., “Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation”, J. Photoch. Photobio. A., 163: 281-287, (2004).
  • 64. Chen A., Ma X. and Sun H., “Decolorzation of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites”, J. Hazard. Mater., 156: 568-575, (2008).
  • 65. Fogler H.S., “Elements of Chemical Reaction Engineering”, Prentice Hall PTR, Third Edition, 698 and 703, (1999).
  • 66. Olmez-Hanci T., Alaton I.A. and Genç B., “Bisphenol A treatment by the hot persulfate process: Oxidation products and acute toxicity”, J. Hazard. Mater., 261: 283-290, (2013).
  • 67. Zhang J., Sun B. and Guan X., “Oxidative removal of Bisphenol A permanganate: Kinetics, pathways and influences of co-existing chemicals”, Sep. Purif. Technol., 107: 48-53, (2013).
  • 68. Zhang X., Ding Y., Tang H., Han X., Zhu L.and Wang N., “Degradation of Bisphenol A by hydrogen peroxide activated with CuFeO2 micoparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism”, Chem. Eng. J., 236: 251-262, (2014).
  • 69. Huang Y.F. and Huang, Y.H., “Behavioral evidence of the dominant radicals and intermediates involved in bisphenol A degradtion using an efiicient Co2+/PMS oxidation process”, J. Hazard. Mater., 167: 418-426, (2009).
  • 70. Huang Y.F. and Huang Y.H., “Identification of produced powerful radials involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III)”, J. Hazard. Mater., 162: 1211-1216, (2009).
  • 71. Zhang P., Zhang G., Dong J., Fan M. and Zeng, G., “Bisphenol A oxidative removal by ferrate (Fe(IV)) under a weak acidic condition”, Sep. Purif. Technol., 84: 46-51, (2012).
  • 72. Han Q., Wang H., Dong W., Liu T., Yin Y. and Fan H., “Degradation of bisphenol A by ferrate (IV) oxidation: kinetics, products and toxicity assestment”, Chem. Eng. J., 262: 34-40, (2015)

A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light

Yıl 2017, Cilt: 20 Sayı: 1, 25 - 36, 01.03.2017

Öz

In this study the oxidation of Bisphenol-A (BPA) was investigated using heterogeneous photo-Fenton-like oxidation under visible light irradiation over iron containing TiO2 catalysts. The catalysts were prepared by the incipient wetness impregnation method with different iron contents (1 and 5 wt%) and characterized by XRD, SEM, FT-IR, nitrogen adsorption, UV-Vis DRS, and ICP-AES measurements. Among the prepared catalysts the 1 wt% iron containing the TiO2 catalyst showed better catalytic activity (with a chemical oxygen demand (COD) reduction of 65.4% at the end of 6h of oxidation) than the other catalysts. The effects of the parameters such as the initial BPA concentration, H2O2 amount, catalyst amount, the pH of the initial BPA solution, and reaction temperature were studied with that catalyst on the heterogeneous photo-Fenton-like oxidation of an aqueous BPA solution. The small amount of iron that leached to the solution and the reusability of the catalyst illustrates that the process is mainly the heterogeneous photo-Fenton-like process, instead of the homogeneous photo-Fenton-like process. The degradation of BPA was described by the first order kinetics with an activation energy of 22.5 kJ/Mol.

Kaynakça

  • 1. Kang J.H., Kondo F. and Katayama Y., “Human exposure to Bisphenol-A”, Toxicology, 226: 79-89, (2006).
  • 2. Er B. and Sarımehmetoğlu B., “Evaluation of presence of Bisphenol-A in foods”, Vet. Hekim Der., 82: 69-74, (2011).
  • 3. Zhang K., Gao N., Deng Y., Lin T.F., Ma Y., Li L. and Sui M., “Degradation of Bisphnol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide”, J. Environ. Sci., 23: 31-36, (2011).
  • 4. Gültekin I. and İnce N.H., “Ultrasonic destruction of Bisphenol-A: The operating parameters”, Ultrason. Sonochem., 15: 524-529, (2008).
  • 5. Torres R.A., Petrier C., Combet E., Carrıer M. And Pulgarın C., “Ultrasonic cavitation applied to the treatment of Bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products”, Ultrason. Sonochem., 15: 605-611, (2008).
  • 6. Inoue M., Masuda Y., Okada F., Sakurai A., Takahashi I. and Sakakibara, M., “Degradation of Bisphenol A using sonochemical reactions”, Water Res., 42: 1379-1386, (2008).
  • 7. Guo Z. and Feng R., “Ultrasonic irradiation-induced degradation of low-concentration Bisphenol A in aqueous solution”, J. Hazard. Mater., 163: 855-860, (2009).
  • 8. Petrier C., Torres-Palma R., Combet E., Sarantakos G., Baup S. and Pulgarın, C., “Enhanced sonochemical degradation of Bisphenol-A by biocarbonate ions”, Ultrason. Sonochem., 17: 111-115, (2010).
  • 9. Son Y., Lım M., Khım J., Kım L.H. and Ashokkumar, M., “Comparison of calorimetric energy and cavitation energy for the removal of bisphenol-A: The effects of frequency and liquid height”, Chem. Eng. J., 183: 39-45 (2012).
  • 10. Torres R.A., Abdelmalek F., Combet E., Petrıer C. and Pulgarin, C., “A Comparative Study of Ultrasonic Cavitation and Fenton’s Reagent for Bisphenol A Degradation in Deionized and Natural Waters”, J. Hazard. Mater., 146: 546-551, (2007).
  • 11. Ioan I., Wılson S., Lundanes E. And Neculai, A., “Comparison of Fenton and sono-Fenton Bisphenol A degradation”, J. Hazard. Mater., 142: 559-563, (2007).
  • 12. Mohapatra D.P., Brar S.K., Tyagı, R.D. and Surampallı R.Y., “Concominant degradation of Bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge”, Ultrason. Sonochem., 18: 1018-1027, (2011).
  • 13. Huang R., Fang Z., Yan X. and Cheng, W., “Heterogeneous sono-Fenton catalytic degradation of Bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition”, Chem. Eng. J., 197: 242-249, (2012).
  • 14. Katsumata H., Kawabe S., Kaneco S., Suzuki T. and Ohta, K., “Degradation of Bisphenol A in water by the Photo-Fenton reaction”, J. Photoch. Photobio. A., 162: 297-305, (2004).
  • 15. Lin K., Ding J., Wang H., Huang X. and Gan J., “Goethite-Mediated transformation of Bisphenol A”, Chemosphere, 89: 789-795, (2012).
  • 16. Zhou D., Wu F., Deng N. and Xıang, W., “Photooxidation of Bisphenol A (BPA) in water in the presence of ferric and carboxylate salts”, Water Res., 38: 4107-4116, (2004).
  • 17. Neamtu M. and Frımmel F.H., “Degradation of endocrine disrupting Bisphenol A by 254 nm irradiation in different water matrices and effect on yeast celss”, Water Res., 40: 3745-3750, (2006).
  • 18. Ohko Y., Ando I., Chısa N., Tatsuma T., Yamamura T., Nakashıma T., Kubota Y. and Fujıshıma A., “Degradation of Bisphenol A in water by TiO2 photocatalyst”, Environ. Sci. Technol., 35: 2365-2368, (2001).
  • 19. Chiang K., Lım T.M., Tsen L. and Lee, C.C. “Photocatalytic degradation and mineralization of Bisphenol A by TiO2 and platinized TiO2”, Appl Catal A-Gen., 261: 225-237, (2004).
  • 20. Wang G., Wu F., Zhang X., Luo M. and Deng N., “Enhanced TiO2 photocatalytic degradation of Bisphenol A by β-cyclodextrin in suspended solutions”, J. Photoch. Photobio. A., 179: 49-56, (2006).
  • 21. Tsai W.T., Lee M.K. Su T.Y. and Chang Y.M., “Photodegradation of Bisphenol A in a batch TiO2 suspension reactor”. J. Hazard. Mater., 168: 269-275, (2009).
  • 22. Wang R., Ren D., Xıa S., Zhang Y. and Zhao, J., “Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR)”, J. Hazard. Mater., 169: 926-932, (2009).
  • 23. Gao B., Lim T.M., Subagio D.P. and Lim T., “Zr-doped TiO2 for enhanced photocatalytic degradation of Bisphenol A”., Appl Catal A-Gen., 375: 107-115, (2010).
  • 24. Kuo C., Wu C. and Lin H., “Photocatalytic degradation of Bisphenol A in a visible light/TiO2 system”, Desalination, 256: 37-42, (2010).
  • 25. Wan X. and Lim, T., “Solvothermal synthesis of C-N codoped TiO2 and photocatalytic evaluation for Bisphenol A degradation using a visible-light irradiated LED photoreactor”, Appl. Catal. B-Environ., 100: 355-364, (2010).
  • 26. Qing Z., Jınhua L., Hongchong C., Quanpeng C., Baoxue Z., Shuchuan S. and Weımın, C., “Characterization and mechanism of the photoelectrocatalytic oxidation of organic pollutants in a thin-layer reactor”, Chinese J. Catal., 32: 1357-1363, (2011).
  • 27.Yang J., Dai J. and Li, J., “Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO2 with highly visible light activity”, Appl. Surf. Sci., 257: 8965-8973, (2011).
  • 28. Li F.B., Lı X.Z., Lıu C.S. and Lıu, T.X., “Effect of alumina on photocatalytic activity of iron oxides for Bisphenol A degradation”, J. Hazard. Mater., 149: 199-207, (2007).
  • 29. Wang C., Zhu L., Song C., Shan G. and Chen P., “Characterization of photocatalyst Bi3.84W0.16O6.24 and its photodegradation on Bisphenol A under simulated solar light irradiation”, Appl. Catal. B-Environ., 105: 229-236, (2011).
  • 30. Wang C., Zhu L., Wei M., Chen P. and Shan, G., “Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of Bisphenol A by Bi2WO6 in water”, Water Res., 46: 845-853, (2012).
  • 31. Wang C., Zhu L., Chang C., Fu Y. and Chu X., “Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal methos and its photocatalytic degradation”, Catal. Commun., 37: 92-95, (2013).
  • 32. Katsumata H., Taniguchi M., Kaneco S. and Suzuki T., “Photocatalytic degradation of Bisphenol A by Ag3PO4 under visible light”, Catal. Commun., 34: 30-34, (2013).
  • 33. Yang X., Tian P., Zhang C., Deng Y., Xu J., Gong J. and Han Y., “Au/Carbon as Fenton-like catalysts for oxidative degradation of Bisphenol A”, Appl. Catal. B-Environ., 134-135: 145-152, (2013).
  • 34.Irmak S., Erbatur O. and Akgerman, A., “Degradation of 17 β-estradiol and Bisphenol A in aqueous medium by using ozone and ozone/UV techniques”, J. Hazard. Mater., B126: 54-62, (2005).
  • 35. Deborde M., Rabouan S., Mazellier P., Duguet J.P. and Legube, B., “ Oxidation of Bisphenol A by ozone in aqueous solution”, Water Res., 42: 4299-4308, (2008).
  • 36. Garoma T. and Matsumoto S., “Ozonation of aqueous solution containing Bisphenol A: Effect of operational parameters”, J. Hazard. Mater., 167: 1185-1191, (2009).
  • 37. Torres-Palma R.A., Nieto J.I., Combet E., Petrıer C. and Pulgarın C., “An innovative ultrasound, Fe2+ and TiO2 photoassisted process for Bisphenol A mineralization”, Water Res,. 44: 2245-2252, (2010).
  • 38. Lim M., Son Y., Na S. and Khim, J., “Effect of TiO2 concentration for sonophotocatalytic degradation of Bisphenol A”, Proceedings of Symposium on Ultrasonic Electronics, 31: 103-104, (2010).
  • 39. Poerschmann J.,Trommler, U. and Goreckı, T., “Aromatik intermadiate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction”, Chemosphere, 7: 975-986, (2010).
  • 40. Leiw M.Y., Guai G.H., Wang X., Tse M.S., Mang N.C. and Tan O.K., “Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3-x metal oxide”, J. Hazard. Mater., 260: 1-8, (2013).
  • 41. Xie Y.B. and Li X.Z., “Degradation of Bisphenol A in aqueous solution by H2O2- assisted photoelectrocatalytic oxidation”, J. Hazard. Mater., B38: 526-533, (2006).
  • 42. Wang X. and Lim T.T., “Effect of hexamethylenetetramine on the visible light photocatalytic activity of C-N codoped TiO2 for Bisphenol-A degradation: Eveluation of photocatalytic mechanism and solution toxicity”, Appl Catal A-Gen., 399: 233-241, (2011).
  • 43. Xing R., Wu L., Fei Z. and Wu, P., “Mesopolymer modified with palladium phthalocyaninesulfonate as a versatile photocatalyst for phenol and Bisphenol A degradation under visible light irradiation”, J. Environ. Sci., 25(8): 1687-1695, (2013).
  • 44. Zhang L., Wang W., Sun S., Sun Y., Gao E. and Zhang, Z., “Elimination of BPA endocrine disruptor by magnetic BiOBr@SiO2@Fe3O4 photocatalyst”, Appl. Catal. B-Environ., 148-149: 164-169, (2014).
  • 45. Wang C., Zhu J., Wu X., Xu H., Song Y., Yan J., Song Y., Ji H., Wang K. and Li, H., “Photocatalytic degradation of Bisphenol A and dye by graphene-oxide/Ag3PO4 composite under visible light irradiation”, Ceram. Int., 40: 8061-8070, (2014).
  • 46. Sun S., Ding J., Bao J., Gao C., Qi Z., Yang X., He B. and Li C., “Comparison of calorimetric energy and cavitation energy for the removal of Bisphenol-A: The effcets of frequency and liquid height”, Appl. Suf. Sci., 258: 5031-5037, (2012).
  • 47. Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P,. Kontos A.G,. Dunlop P.S.M., Hamolton J.W.J., Byrne J.A., O'Shea K., Entezari M.H. and Dionysiou D.D., “A review on the visible light active titanium dioxide photocatalysts for environmental applications”, Appl. Catal. B-Environ., 125: 331-349, (2012).
  • 48. Lezner M., Grabowska E. and Zaleska A., “Preparation and photocatalytic activity of iron- modified titanium dioxide photocatalyst”, Physicochem. Probl. Mi., 48: 193-200, (2012).
  • 49. Akın-Ünnü B., Gündüz G. and Dükkancı M., “Heterogeneous Fenton-like oxidation of Crystal Violet using an iron loaded ZSM-5 zeolite”. Desalin. Water Treat., 57: 11835-11849, (2016)
  • 50. Arana J., Diaz G., Saracho M.M., Rodrigez J.M.D., Melian J.A.H. and Pena J.P., “Maleic acid photocatalytic degradation using Fe-TiO2 catalysts: Dependence of the degradation mechanism on the Fe catalysts content”, Appl. Catal. B-Environ., 36(2): 113-124, (2002).
  • 51. Demir N., Gündüz G. and Dükkancı, M., “Degradation of a textile dye, Rhodamine 6G (Rh6G), by heterogeneous sonophotoFenton process in the presence of Fe containing TiO2 catalysts”, Environ. Sci. Pollut. R., 22: 3193-3201, (2015).
  • 52. Khalid N.R., Ahmed E., Ikram M., Ahmed M., Phoenix D.A., Elhissi A., Ahmed W. and Jackson M.S., “Effects of Calcination on Structural Photocatalytic Properties of TiO2Nanopowders via TiCl4 Hydrolysis”, J Mater. Eng. Perform., 22: 371-375, (2013).
  • 53. Tayade R.J., Surolia P.K., Kulkami R.G. and Jasra, R.V., “Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2”,. Sci. Technol. Adv. Mat., 8: 455-462, (2007).
  • 54. Zhao B.X., Shi B.C., Zhang X.L., Cao X. and Zhang, Y.Z., “Catalytic wet hydrogen peroxide oxidation of H-acid in aqueous solution with TiO2–CeO2 and Fe/TiO2–CeO2 catalysts”, Desalination, 268: 55-59, (2011).
  • 55. Jamalluddin N.A. and Abdullah A.Z., “Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature”, Ultrason. Sonochem., 18: 669-678, (2011).
  • 56. Wang A.J., Cuan A., Salmanes J., Nava N., Castillo S., Moranpineda M. and Rojas, F., “Studies of sol-gel TiO2 and Pt/TiO2 catalysts for NO reduction by CO in an oxygen reach condition”, Appl. Surf. Sci., 230: 94-105, (2004).
  • 57. Seo D.K., Hoffmann R., “Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials”, Theor Chem Acc., 102:23-32, (1999).
  • 58. Hörmann U., Kaiser U., Albrecht M., Geserick j., Hüsing N., “Structure and luminescence of sol-gel synthesized anatase nanoparticles”, 16th International Conference on Microscopy of Semiconducting Materials, J. Physics: Conference Series, 012039, 209:1-6, (2010).
  • 59. Mi J.L., Johnsen S., Clausen C., Hald P., Lock N. So L. and Iversen B.B., “Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis”, J. Mater. Res., 28: 333-339, (2013).
  • 60. Ganesh I., Kumar P.P., Gupta A.K., Sekhar P.C.S., Radha K., Padmanabham G. and Sundararajan G., “Preparation and characterization of Fe-doped TiO2 powders for solar light reponse and photocatalytic applications”, Proc. Appli. Cera., 6: 21-36, (2012).
  • 61. Akpan U.G. and Hameed B.H., “Parameters affecting the photocatalytic degradation of dyes using TiO2- based photocatalysts: A review”, J. Hazard. Mater., 170: 520-529, (2008).
  • 62. Lu N., Lu Y., Liu F., Zhao K., Yuan X., Zhao Y., Li Y., Qin H. and Zu, J., “H3PW12O40/TiO2 catalyst-induced photodegradation of Bisphenol A (BPA): Kinetics, toxicity and degradation pathways”, Chemosphere, 91: 1266-1272, (2013).
  • 63. Chen Y., Wang K. and Lou L., “Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation”, J. Photoch. Photobio. A., 163: 281-287, (2004).
  • 64. Chen A., Ma X. and Sun H., “Decolorzation of KN-R catalyzed by Fe-containing Y and ZSM-5 zeolites”, J. Hazard. Mater., 156: 568-575, (2008).
  • 65. Fogler H.S., “Elements of Chemical Reaction Engineering”, Prentice Hall PTR, Third Edition, 698 and 703, (1999).
  • 66. Olmez-Hanci T., Alaton I.A. and Genç B., “Bisphenol A treatment by the hot persulfate process: Oxidation products and acute toxicity”, J. Hazard. Mater., 261: 283-290, (2013).
  • 67. Zhang J., Sun B. and Guan X., “Oxidative removal of Bisphenol A permanganate: Kinetics, pathways and influences of co-existing chemicals”, Sep. Purif. Technol., 107: 48-53, (2013).
  • 68. Zhang X., Ding Y., Tang H., Han X., Zhu L.and Wang N., “Degradation of Bisphenol A by hydrogen peroxide activated with CuFeO2 micoparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism”, Chem. Eng. J., 236: 251-262, (2014).
  • 69. Huang Y.F. and Huang, Y.H., “Behavioral evidence of the dominant radicals and intermediates involved in bisphenol A degradtion using an efiicient Co2+/PMS oxidation process”, J. Hazard. Mater., 167: 418-426, (2009).
  • 70. Huang Y.F. and Huang Y.H., “Identification of produced powerful radials involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III)”, J. Hazard. Mater., 162: 1211-1216, (2009).
  • 71. Zhang P., Zhang G., Dong J., Fan M. and Zeng, G., “Bisphenol A oxidative removal by ferrate (Fe(IV)) under a weak acidic condition”, Sep. Purif. Technol., 84: 46-51, (2012).
  • 72. Han Q., Wang H., Dong W., Liu T., Yin Y. and Fan H., “Degradation of bisphenol A by ferrate (IV) oxidation: kinetics, products and toxicity assestment”, Chem. Eng. J., 262: 34-40, (2015)
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Meral Dükkancı Bu kişi benim

Yayımlanma Tarihi 1 Mart 2017
Gönderilme Tarihi 18 Şubat 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 20 Sayı: 1

Kaynak Göster

APA Dükkancı, M. (2017). A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light. Politeknik Dergisi, 20(1), 25-36.
AMA Dükkancı M. A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light. Politeknik Dergisi. Mart 2017;20(1):25-36.
Chicago Dükkancı, Meral. “A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light”. Politeknik Dergisi 20, sy. 1 (Mart 2017): 25-36.
EndNote Dükkancı M (01 Mart 2017) A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light. Politeknik Dergisi 20 1 25–36.
IEEE M. Dükkancı, “A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light”, Politeknik Dergisi, c. 20, sy. 1, ss. 25–36, 2017.
ISNAD Dükkancı, Meral. “A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light”. Politeknik Dergisi 20/1 (Mart 2017), 25-36.
JAMA Dükkancı M. A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light. Politeknik Dergisi. 2017;20:25–36.
MLA Dükkancı, Meral. “A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light”. Politeknik Dergisi, c. 20, sy. 1, 2017, ss. 25-36.
Vancouver Dükkancı M. A Parametric Study on the Heterogeneous Photo-Fenton-Like Oxidation of Bisphenol-A over an Fe/TiO2 Catalyst under Visible Light. Politeknik Dergisi. 2017;20(1):25-36.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.