Araştırma Makalesi
BibTex RIS Kaynak Göster

Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites

Yıl 2018, Cilt: 21 Sayı: 4, 857 - 860, 01.12.2018
https://doi.org/10.2339/politeknik.385460

Öz

Martian meteorites from SNC group were studied with
synchrotron-based FTIR spectroscopy with ~1 µm spatial resolution in the
mid-infrared region (4000-850 cm-1). Silicate region in EET A79001, ALH 84001,
and Nakhla present three prominent bands, while Chassigny has a different
spectral profile. The infrared spectra reveal that some of the grains contain
aliphatic type organic molecules as well as OH. According to the spatially
resolved distribution maps, these molecules appear to be heterogeneously distributed
in the samples. This points to complex parent body processes.

Kaynakça

  • [1] Bridges J. C. & Warren P. H., “The SNC meteorites: basaltic igneous processes on Mars”, Journal of the Geological Society, 163:229–251, (2006).
  • [2] Fritzi J., Artemieva N., and Greshake A., “Ejection of Martian meteorites”, Meteoritics & Planetary Science, 40:1393–1411 (2005).
  • [3] Treiman A. H., Gleason J. D., and Bogard D. D., “The SNC meteorites are from Mars”, Planetary and Space Science, 48:1213–1230, (2000).
  • [4] McKay D. S., Gibson E. K., Jr., Thomas-Keprta K. L., Vali H., Romanek C. S., Clemett S. J., Chillier X. D. F., Maechling C. R., and Zare R. N., “Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH 84001”, Science, 273:924–930. (1996).
  • [5] Steele A., Fries M. D., Amundsen H. E. F., Mysen B. O., Fogel M. L., Schweizer M., Boctor N. Z., “Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard”, Meteoritics & Planetary Science, 42:1549–1566, (2007).
  • [6] Lane M. D., Dyar M. D., and Bishop J. L., “Spectroscopic evidence for hydrous iron sulfate in the Martian soil”, Geophysical Research Letters, 31:L19702, (2004).
  • [7] Altheide T. S., Chevrier V. F., Dobrea E. N., “Mineralogical characterization of acid weathered phyllosilicates with implications for secondary martian deposits”, Geochimica et Cosmochimica Acta, 74:6232–6248, (2010).
  • [8] Dyar M. D., Treiman A. H., Pieters C. M., Hiroi T., Lane M. D., and O’Connor V., “MIL03346, the most oxidized Martian meteorite: A first look at spectroscopy, petrography, and mineral chemistry”, Journal of Geophysical Research, 110:E09005, (2005).
  • [9] Ehlmann B. L. and Edwards C. S., “Mineralogy of the Martian Surface”, Annu. Rev. Earth Planet. Sci., 42:291–315, (2014).
  • [10] Stephen N. R., Schofield P. F., Berry A. J., and Donaldson P., “Mid-IR Mapping of Martian Meteorites; Spatially Resolved Mineral Spectra from a Synchrotron Source”, 45th Lunar and Planetary Science Conference, #1378, (2014).
  • [11] Stephen N. R., Schofield P. F., Berry A. J., “Infrared mapping of silicate minerals in Martian meteorites using a synchrotron light source”, EPSC Abstracts, 8:297, (2013).
  • [12] Anderson M. S., Andringa J. M., Carlson R. W., Conrad P., Hartford W., Shafer M., Soto A., and Tsapin A. I., “Fourier transform infrared spectroscopy for Mars science”, Review of Scientific Instruments, 76:034101, (2005).
  • [13] Yesiltas M. and Kebukawa Y., “Associations of organic matter with minerals in Tagish Lake meteorite via high spatial resolution synchrotron-based FTIR microspectroscopy”, Meteoritics & Planetary Science, 51: 584–595, (2016).
  • [14] Nasse M. J., Mattson E. C., Reininger R., Kubala T., Janowski S., El-Bayyari Z. and Hirschmugl C. J., “Multi-beam synchrotron infrared chemical imaging with high spatial resolution: Beam line realization and first reports on image restoration”, Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 649:172–176, (2011).
  • [15] Storrie-Lombardi M. C., Muller J. P., Fisk M. R., Griffiths A. D., and Coates A. J. “Potential for non-destructive astrochemistry using the ExoMars PanCam”, Geophysical Research Letters, 35: L12201, doi:10.1029/2008GL034296, (2008).

Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites

Yıl 2018, Cilt: 21 Sayı: 4, 857 - 860, 01.12.2018
https://doi.org/10.2339/politeknik.385460

Öz

Martian meteorites from SNC group were studied with
synchrotron-based FTIR spectroscopy with ~1 µm spatial resolution in the
mid-infrared region (4000-850 cm-1). Silicate region in EET A79001, ALH 84001,
and Nakhla present three prominent bands, while Chassigny has a different
spectral profile. The infrared spectra reveal that some of the grains contain
aliphatic type organic molecules as well as OH. According to the spatially
resolved distribution maps, these molecules appear to be heterogeneously distributed
in the samples. This points to complex parent body processes.

Kaynakça

  • [1] Bridges J. C. & Warren P. H., “The SNC meteorites: basaltic igneous processes on Mars”, Journal of the Geological Society, 163:229–251, (2006).
  • [2] Fritzi J., Artemieva N., and Greshake A., “Ejection of Martian meteorites”, Meteoritics & Planetary Science, 40:1393–1411 (2005).
  • [3] Treiman A. H., Gleason J. D., and Bogard D. D., “The SNC meteorites are from Mars”, Planetary and Space Science, 48:1213–1230, (2000).
  • [4] McKay D. S., Gibson E. K., Jr., Thomas-Keprta K. L., Vali H., Romanek C. S., Clemett S. J., Chillier X. D. F., Maechling C. R., and Zare R. N., “Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH 84001”, Science, 273:924–930. (1996).
  • [5] Steele A., Fries M. D., Amundsen H. E. F., Mysen B. O., Fogel M. L., Schweizer M., Boctor N. Z., “Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard”, Meteoritics & Planetary Science, 42:1549–1566, (2007).
  • [6] Lane M. D., Dyar M. D., and Bishop J. L., “Spectroscopic evidence for hydrous iron sulfate in the Martian soil”, Geophysical Research Letters, 31:L19702, (2004).
  • [7] Altheide T. S., Chevrier V. F., Dobrea E. N., “Mineralogical characterization of acid weathered phyllosilicates with implications for secondary martian deposits”, Geochimica et Cosmochimica Acta, 74:6232–6248, (2010).
  • [8] Dyar M. D., Treiman A. H., Pieters C. M., Hiroi T., Lane M. D., and O’Connor V., “MIL03346, the most oxidized Martian meteorite: A first look at spectroscopy, petrography, and mineral chemistry”, Journal of Geophysical Research, 110:E09005, (2005).
  • [9] Ehlmann B. L. and Edwards C. S., “Mineralogy of the Martian Surface”, Annu. Rev. Earth Planet. Sci., 42:291–315, (2014).
  • [10] Stephen N. R., Schofield P. F., Berry A. J., and Donaldson P., “Mid-IR Mapping of Martian Meteorites; Spatially Resolved Mineral Spectra from a Synchrotron Source”, 45th Lunar and Planetary Science Conference, #1378, (2014).
  • [11] Stephen N. R., Schofield P. F., Berry A. J., “Infrared mapping of silicate minerals in Martian meteorites using a synchrotron light source”, EPSC Abstracts, 8:297, (2013).
  • [12] Anderson M. S., Andringa J. M., Carlson R. W., Conrad P., Hartford W., Shafer M., Soto A., and Tsapin A. I., “Fourier transform infrared spectroscopy for Mars science”, Review of Scientific Instruments, 76:034101, (2005).
  • [13] Yesiltas M. and Kebukawa Y., “Associations of organic matter with minerals in Tagish Lake meteorite via high spatial resolution synchrotron-based FTIR microspectroscopy”, Meteoritics & Planetary Science, 51: 584–595, (2016).
  • [14] Nasse M. J., Mattson E. C., Reininger R., Kubala T., Janowski S., El-Bayyari Z. and Hirschmugl C. J., “Multi-beam synchrotron infrared chemical imaging with high spatial resolution: Beam line realization and first reports on image restoration”, Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 649:172–176, (2011).
  • [15] Storrie-Lombardi M. C., Muller J. P., Fisk M. R., Griffiths A. D., and Coates A. J. “Potential for non-destructive astrochemistry using the ExoMars PanCam”, Geophysical Research Letters, 35: L12201, doi:10.1029/2008GL034296, (2008).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Yesiltas Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2018
Gönderilme Tarihi 12 Temmuz 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 21 Sayı: 4

Kaynak Göster

APA Yesiltas, M. (2018). Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites. Politeknik Dergisi, 21(4), 857-860. https://doi.org/10.2339/politeknik.385460
AMA Yesiltas M. Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites. Politeknik Dergisi. Aralık 2018;21(4):857-860. doi:10.2339/politeknik.385460
Chicago Yesiltas, Mehmet. “Synchrotron-Based FTIR Micro-Spectroscopy of Martian Meteorites”. Politeknik Dergisi 21, sy. 4 (Aralık 2018): 857-60. https://doi.org/10.2339/politeknik.385460.
EndNote Yesiltas M (01 Aralık 2018) Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites. Politeknik Dergisi 21 4 857–860.
IEEE M. Yesiltas, “Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites”, Politeknik Dergisi, c. 21, sy. 4, ss. 857–860, 2018, doi: 10.2339/politeknik.385460.
ISNAD Yesiltas, Mehmet. “Synchrotron-Based FTIR Micro-Spectroscopy of Martian Meteorites”. Politeknik Dergisi 21/4 (Aralık 2018), 857-860. https://doi.org/10.2339/politeknik.385460.
JAMA Yesiltas M. Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites. Politeknik Dergisi. 2018;21:857–860.
MLA Yesiltas, Mehmet. “Synchrotron-Based FTIR Micro-Spectroscopy of Martian Meteorites”. Politeknik Dergisi, c. 21, sy. 4, 2018, ss. 857-60, doi:10.2339/politeknik.385460.
Vancouver Yesiltas M. Synchrotron-Based FTIR Micro-spectroscopy of Martian Meteorites. Politeknik Dergisi. 2018;21(4):857-60.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.