Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi

Yıl 2019, Cilt: 22 Sayı: 1, 141 - 148, 01.03.2019
https://doi.org/10.2339/politeknik.426642

Öz

Otomobillerde
kullanılan çarpışma kutuları olası bir kaza durumunda ortaya çıkan darbe
enerjisini sönümleyerek otomobil içerisine en az seviyede iletilmesini sağlayan
bağlantı elemanlarıdır. Bu görevlerinden dolayı çarpışma kutuları otomobiller
üzerinde önemli bir komponent durumundadır. Yapılan çalışmada daire, kare,
beşgen ve altıgen kesite sahip çarpışma kutularının içerisine alüminyum esaslı
metalik köpük malzeme yerleştirilmiş ve sonlu elemanlar analizleri ile enerji
sönümleme kapasitesindeki değişimler incelenmiştir. Yapılan tüm analizler
Ls-Dyna programı ile gerçekleştirilmiştir. Gerçek kaza koşullarının
canlandırılması amacıyla çarpışma kutularına 500 kg’lık kütle 17,7 m/s’lik bir
hız ile çarptırılmıştır. Çalışmanın sonucunda içi boş çarpışma kutularının
içerisine yerleştirilen alüminyum esaslı metalik köpük malzemelerin enerji
sönümleme kapasitesini önemli derecede arttırdığı tespit edilmiştir.

Kaynakça

  • [1] Altın M., “Taşitlarda kullanilan metalik köpük içeren çarpişma kutularinin enerji sönümleme kapasitelerinin araştirilmasi” , Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, (2017).
  • [2] Javad M., Abdollahpoor A. and Mashadi B., “Effects of the triggering of circular aluminum tubes on crashworthiness”, International Journal of Crashworthiness, 14(6): 591-599, (2009).
  • [3] Zarei H. R. and M. Kröger, “Multiobjective crashworthiness optimization of circular aluminum tubes” Thin-walled structures, 44(3): 301-308, (2006).
  • [4] Guillow S. R., Lu G. and Grzebieta R. H., “Quasi-static axial compression of thin-walled circular aluminium tubes”, International Journal of Mechanical Sciences, 43(9): 2103-2123, (2001).
  • [5] Zou X., Gao G., Dong H., Xie S., Chen G. and Tan T., “Crashworthiness analysis and structural optimisation of multi-cell square tubes under axial and oblique loads”, International Journal of Crashworthiness, 22(2): 129-147, (2017).
  • [6] Xie S., Yang W., Li H. and Wang N., “Impact characteristics and crashworthiness of multi-cell, square, thin-walled, structures under axial loads” , International Journal of Crashworthiness, 22(5): 1-15, (2017).
  • [7] Mamalis A. G., Manolakos D. E., Spentzas K. N., Loannidis M. B., Kautrobakis S. and Kostazos P. K., “The effect of the implementation of circular holes as crush initiators to the crushing characteristics of mild steel square tubes: experimental and numerical simulation”, International Journal of Crashworthiness, 14(5): 489-501, (2009).
  • [8] Yin H., Wen G., Hou S. and Chen K.,”Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes”, Materials & Design, 32(8): 4449-4460, (2011).
  • [9] Zhang X., Cheng G., You Z. and Zhang H.,“Energy absorption of axially compressed thin-walled square tubes with patterns”, Thin-Walled Structures, 45(9): 737-746, (2007).
  • [10] Reddy S., Abbasi M. and Fard M.,”Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection”, Thin-Walled Structures, 94: 56-66, (2015).
  • [11] Hussain N., Nasir S. P. and Rao Y. V. D., “Comparative Study of Trigger Configuration for Enhancement of Crashworthiness of Automobile Crash Box Subjected to Axial Impact Loading”, Procedia Engineering, 173: 1390-1398, (2017).
  • [12] Hussain N., Nasir S. P. and Rao Y. V. D., “Low velocity Impact Characterization of Glass Fiber Reinforced Plastics for Application of Crash Box”, Materials Today: Proceedings, 4(2): 3252-3262, (2017).
  • [13] Sun G., Pang T., Xu G., Zheng G. and Song J., “Energy absorption mechanics for variable thickness thin-walled structures”, Thin-Walled Structures, 118: 214-228, (2017).
  • [14] Xu F., “Enhancing material efficiency of energy absorbers through graded thickness structures”, Thin-Walled Structures, 97: 250-265, (2015).
  • [15] Fang J., Gao Y., Sun G., Zheng G. and Q. Li, “Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness”, International Journal of Mechanical Sciences, 103: 63-73, (2015).
  • [16] Asanjarani A., Dibajian S. H. and A. Mahdian, “Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations”, Thin-Walled Structures, 116: 26-36, (2017).
  • [17] Li G., Xu F., Sun G. and Li Q., “A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading”, International Journal of Impact Engineering, 77: 68-83, (2015).
  • [18] Qi C., Yang S. and Dong F., “Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading”, Thin-Walled Structures, 59: 103-119, (2012).
  • [19] Öztürk, İ., Kaya, N., “Otomobil ön tampon çarpışma analizi ve optimizasyonu”, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 13(1), 119-127, (2008).
  • [20] Demirci, E., Yıldız, A.R., Semerci, F., “Taşıtlarda önden çarpışma performansını etkileyen enerji yutucularının optimum tasarımı”, 7. Otomotiv Teknolojileri Kongresi, Bursa, 56 (663), 40-45, (2014).
  • [21] Toksoy, A.K., “Optimization of the axcial crushing behavior of closed-cell aluminum foam filled welled 1050 al square-cross section crash boxes”, Yüksek Lisans Tezi, İzmir Yüksek Teknoloji Enstitüsü Fen Bilimleri, İzmir, 20-138. (2009).
  • [22] Zarei, H., Kröger, M. “Optimum honeycomb filled crash absorber design”, Materials and Design, 29(1), 193-204, (2006).
  • [23] Sezer Ş. D., “Kompakt toz ergitme tekniği ile alüminyum köpük üretimi”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2009).
  • [24] A. A. Sertkaya “Alüminyum köpüğün ısı değişiricisi olarak tasarımı ve ısı transferi modeli”, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, (2008).
  • [25] Ahmad Z. and Thambiratnam D. P., “Crushing response of foam-filled conical tubes under quasi-static axial loading”, Materials & Design, 30(7): 2393-2403, (2009).
  • [26] Toksoy A. K. and Güden M., “Partial Al foam filling of commercial 1050H14 Al crash boxes: The effect of box column thickness and foam relative density on energy absorption”, Thin-walled structures, 48(7): 482-494, (2010).
  • [27] Hanssen A. G., Langseth M. and Hopperstad O. S., “Optimum design for energy absorption of square aluminium columns with aluminium foam filler”, International Journal of Mechanical Sciences, 43(1): 153-176, (2001).
  • [28] Azarakhsh S., Rahi A., Ghamarian A. and Motamedi H., “Axial crushing analysis of empty and foam-filled brass bitubular cylinder tubes”, Thin-Walled Structures, 95: 60-72, (2015).
  • [29] Haorongban B., Deb A. and Grupta N. K., “Behaviour of polyethylene foam-filled steel hat sections under axial loading: testing and simulation”, 11 th International Symposium on Plasticity and Impact Mechanics, Delhi, 1349-1356, (2017).
  • [30] Jin S. Y. and Altenhof W., “ Comparison of the load/displacement and energy absorption performance of round and square AA6061-T6 extrusions under a cutting deformation mode”, International Journal of Crashworthiness, 12: 265-278, (2007).

The Effect Of Aluminium Foam Material On The Energy Absorption Capacity Of Different Geometric Structure Crash Boxes

Yıl 2019, Cilt: 22 Sayı: 1, 141 - 148, 01.03.2019
https://doi.org/10.2339/politeknik.426642

Öz

Crash boxes
used in automobiles are connecting elements that can transmit the impact energy
to the automobile at the minimum level by damping the impact energy that arises
in case of a possible accident. Due to this role, crash boxes are an important
component on automobiles. In the study, aluminum based metallic foam material
was placed in crash boxes with circle, square, pentagonal and hexagonal
sections and the changes in energy absorption capacity were invastigated using
finite elements analysis. All analyses were performed with Ls-Dyna program. In
order to simulate real accident conditions, a mass of 500 kg was hit at a speed
of 17.7 m / s to the crash boxes. As a result of the study, it has been found
that the aluminum based metallic foam materials placed in the hollow crash
boxes have been found to significantly increase the energy absorption capacity.

Kaynakça

  • [1] Altın M., “Taşitlarda kullanilan metalik köpük içeren çarpişma kutularinin enerji sönümleme kapasitelerinin araştirilmasi” , Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, (2017).
  • [2] Javad M., Abdollahpoor A. and Mashadi B., “Effects of the triggering of circular aluminum tubes on crashworthiness”, International Journal of Crashworthiness, 14(6): 591-599, (2009).
  • [3] Zarei H. R. and M. Kröger, “Multiobjective crashworthiness optimization of circular aluminum tubes” Thin-walled structures, 44(3): 301-308, (2006).
  • [4] Guillow S. R., Lu G. and Grzebieta R. H., “Quasi-static axial compression of thin-walled circular aluminium tubes”, International Journal of Mechanical Sciences, 43(9): 2103-2123, (2001).
  • [5] Zou X., Gao G., Dong H., Xie S., Chen G. and Tan T., “Crashworthiness analysis and structural optimisation of multi-cell square tubes under axial and oblique loads”, International Journal of Crashworthiness, 22(2): 129-147, (2017).
  • [6] Xie S., Yang W., Li H. and Wang N., “Impact characteristics and crashworthiness of multi-cell, square, thin-walled, structures under axial loads” , International Journal of Crashworthiness, 22(5): 1-15, (2017).
  • [7] Mamalis A. G., Manolakos D. E., Spentzas K. N., Loannidis M. B., Kautrobakis S. and Kostazos P. K., “The effect of the implementation of circular holes as crush initiators to the crushing characteristics of mild steel square tubes: experimental and numerical simulation”, International Journal of Crashworthiness, 14(5): 489-501, (2009).
  • [8] Yin H., Wen G., Hou S. and Chen K.,”Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes”, Materials & Design, 32(8): 4449-4460, (2011).
  • [9] Zhang X., Cheng G., You Z. and Zhang H.,“Energy absorption of axially compressed thin-walled square tubes with patterns”, Thin-Walled Structures, 45(9): 737-746, (2007).
  • [10] Reddy S., Abbasi M. and Fard M.,”Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection”, Thin-Walled Structures, 94: 56-66, (2015).
  • [11] Hussain N., Nasir S. P. and Rao Y. V. D., “Comparative Study of Trigger Configuration for Enhancement of Crashworthiness of Automobile Crash Box Subjected to Axial Impact Loading”, Procedia Engineering, 173: 1390-1398, (2017).
  • [12] Hussain N., Nasir S. P. and Rao Y. V. D., “Low velocity Impact Characterization of Glass Fiber Reinforced Plastics for Application of Crash Box”, Materials Today: Proceedings, 4(2): 3252-3262, (2017).
  • [13] Sun G., Pang T., Xu G., Zheng G. and Song J., “Energy absorption mechanics for variable thickness thin-walled structures”, Thin-Walled Structures, 118: 214-228, (2017).
  • [14] Xu F., “Enhancing material efficiency of energy absorbers through graded thickness structures”, Thin-Walled Structures, 97: 250-265, (2015).
  • [15] Fang J., Gao Y., Sun G., Zheng G. and Q. Li, “Dynamic crashing behavior of new extrudable multi-cell tubes with a functionally graded thickness”, International Journal of Mechanical Sciences, 103: 63-73, (2015).
  • [16] Asanjarani A., Dibajian S. H. and A. Mahdian, “Multi-objective crashworthiness optimization of tapered thin-walled square tubes with indentations”, Thin-Walled Structures, 116: 26-36, (2017).
  • [17] Li G., Xu F., Sun G. and Li Q., “A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading”, International Journal of Impact Engineering, 77: 68-83, (2015).
  • [18] Qi C., Yang S. and Dong F., “Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading”, Thin-Walled Structures, 59: 103-119, (2012).
  • [19] Öztürk, İ., Kaya, N., “Otomobil ön tampon çarpışma analizi ve optimizasyonu”, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 13(1), 119-127, (2008).
  • [20] Demirci, E., Yıldız, A.R., Semerci, F., “Taşıtlarda önden çarpışma performansını etkileyen enerji yutucularının optimum tasarımı”, 7. Otomotiv Teknolojileri Kongresi, Bursa, 56 (663), 40-45, (2014).
  • [21] Toksoy, A.K., “Optimization of the axcial crushing behavior of closed-cell aluminum foam filled welled 1050 al square-cross section crash boxes”, Yüksek Lisans Tezi, İzmir Yüksek Teknoloji Enstitüsü Fen Bilimleri, İzmir, 20-138. (2009).
  • [22] Zarei, H., Kröger, M. “Optimum honeycomb filled crash absorber design”, Materials and Design, 29(1), 193-204, (2006).
  • [23] Sezer Ş. D., “Kompakt toz ergitme tekniği ile alüminyum köpük üretimi”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2009).
  • [24] A. A. Sertkaya “Alüminyum köpüğün ısı değişiricisi olarak tasarımı ve ısı transferi modeli”, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, (2008).
  • [25] Ahmad Z. and Thambiratnam D. P., “Crushing response of foam-filled conical tubes under quasi-static axial loading”, Materials & Design, 30(7): 2393-2403, (2009).
  • [26] Toksoy A. K. and Güden M., “Partial Al foam filling of commercial 1050H14 Al crash boxes: The effect of box column thickness and foam relative density on energy absorption”, Thin-walled structures, 48(7): 482-494, (2010).
  • [27] Hanssen A. G., Langseth M. and Hopperstad O. S., “Optimum design for energy absorption of square aluminium columns with aluminium foam filler”, International Journal of Mechanical Sciences, 43(1): 153-176, (2001).
  • [28] Azarakhsh S., Rahi A., Ghamarian A. and Motamedi H., “Axial crushing analysis of empty and foam-filled brass bitubular cylinder tubes”, Thin-Walled Structures, 95: 60-72, (2015).
  • [29] Haorongban B., Deb A. and Grupta N. K., “Behaviour of polyethylene foam-filled steel hat sections under axial loading: testing and simulation”, 11 th International Symposium on Plasticity and Impact Mechanics, Delhi, 1349-1356, (2017).
  • [30] Jin S. Y. and Altenhof W., “ Comparison of the load/displacement and energy absorption performance of round and square AA6061-T6 extrusions under a cutting deformation mode”, International Journal of Crashworthiness, 12: 265-278, (2007).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Murat Altın

Hüseyin Serdar Yücesu Bu kişi benim

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 14 Kasım 2017
Yayımlandığı Sayı Yıl 2019 Cilt: 22 Sayı: 1

Kaynak Göster

APA Altın, M., & Yücesu, H. S. (2019). Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi. Politeknik Dergisi, 22(1), 141-148. https://doi.org/10.2339/politeknik.426642
AMA Altın M, Yücesu HS. Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi. Politeknik Dergisi. Mart 2019;22(1):141-148. doi:10.2339/politeknik.426642
Chicago Altın, Murat, ve Hüseyin Serdar Yücesu. “Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi”. Politeknik Dergisi 22, sy. 1 (Mart 2019): 141-48. https://doi.org/10.2339/politeknik.426642.
EndNote Altın M, Yücesu HS (01 Mart 2019) Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi. Politeknik Dergisi 22 1 141–148.
IEEE M. Altın ve H. S. Yücesu, “Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi”, Politeknik Dergisi, c. 22, sy. 1, ss. 141–148, 2019, doi: 10.2339/politeknik.426642.
ISNAD Altın, Murat - Yücesu, Hüseyin Serdar. “Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi”. Politeknik Dergisi 22/1 (Mart 2019), 141-148. https://doi.org/10.2339/politeknik.426642.
JAMA Altın M, Yücesu HS. Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi. Politeknik Dergisi. 2019;22:141–148.
MLA Altın, Murat ve Hüseyin Serdar Yücesu. “Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi”. Politeknik Dergisi, c. 22, sy. 1, 2019, ss. 141-8, doi:10.2339/politeknik.426642.
Vancouver Altın M, Yücesu HS. Farklı Geometrik Yapılardaki Çarpışma Kutularının İçerisine Yerleştirilen Alüminyum Köpük Malzemenin Enerji Sönümleme Kapasitesi Üzerine Etkisinin İncelenmesi. Politeknik Dergisi. 2019;22(1):141-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.