Araştırma Makalesi
BibTex RIS Kaynak Göster

Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji ve Ekserji Analizi

Yıl 2020, Cilt: 23 Sayı: 1, 181 - 188, 01.03.2020
https://doi.org/10.2339/politeknik.528793

Öz



Küresel ısınmanın giderek arttığı ve hava kirliliğinin insan
sağlığını hissedilebilir şekilde tehdit ettiği bugünlerde, enerjiye olan
ihtiyaç da giderek artmaktadır. Bu nedenle sadece insanların enerji ihtiyacını
karşılamak değil bunun yanında çevreyi tehdit eden unsurların da minimum
seviyelere indirilmesi hedeflenmektedir. Enerji ihtiyacını karşılamak için
araştırmacılar farklı enerji üretim sistemleri üzerinde çalışmalar yapmakta ya
da var olan tesislerin kapasitesini arttırmaktadır. Ancak, küresel ısınma ve
hava kirliliğinin en önemli sebeplerinden biri olan endüstriyel atık ısı ve
baca gazları atmosfere bırakılarak büyük bir enerji israfına sebep olmaktadır. Bu
nedenle, kullanılmakta olan tesislerin iyileştirilmesi ve atık ısıların geri
kazanımı hayati derecede önem arz etmektedir. Bu çalışmada kombine ısı-güç çevrimindeki
orta derece sıcaklıktaki atık ısının geri dönüşümünü sağlamak için yeni bir
metot olan Kalina çevrimi tasarlanmıştır. Sonrasında tasarlanmış olan Kalina
çevriminin birinci ve ikinci kanun yönünden termodinamik analizi yapılmıştır. Çalışma
sonucunda, maksimum ekserji yıkımı buharlaştırıcıda görülürken, Kalina
çevriminin enerji verimi ve ekserji verimi sırasıyla yaklaşık %12 ve %27 olarak
hesaplanmıştır.

Kaynakça

  • Bose, B. K. (2010). Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 4(1), 6-17.
  • Mansoury, M., Jafarmadar, S. ve Khalilarya, S. (2018). Energy and exergy analyses of a combined cycle Kalina and organic Rankine cycles using waste heat. International Journal of Exergy, 27(2), 251-286.
  • Zhang, X., He, M., ve Zhang, Y. (2012). A review of research on the Kalina cycle. Renewable and sustainable energy reviews, 16(7), 5309-5318.
  • Ogriseck, S. (2009). Integration of Kalina cycle in a combined heat and power plant, a case study. Applied Thermal Engineering, 29(14-15), 2843-2848.
  • Zare, V. ve Mahmoudi, S. M. S. (2015). A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor. Energy, 79, 398-406.
  • Ibrahim, M. B. ve Kovach, R. M. (1993). A Kalina cycle application for power generation. Energy, 18(9), 961-969.
  • Ganesh, N. S. ve Srinivas, T. (2019). Nuclear energy-driven Kalina cycle system suitable for Indian climatic conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(3), 298-308.
  • Rodríguez, C. E. C., Palacio, J. C. E., Venturini, O. J., Lora, E. E. S., Cobas, V. M., dos Santos, D. M. ve Gialluca, V. (2013). Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Applied Thermal Engineering, 52(1), 109-119.
  • Bombarda, P., Invernizzi, C. M. ve Pietra, C. (2010). Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Applied thermal engineering, 30(2-3), 212-219.
  • Nemati, A., Nami, H., Ranjbar, F. ve Yari, M. (2017). A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: a case study for CGAM cogeneration system. Case Studies in Thermal Engineering, 9, 1-13.
  • Mirolli, M. D. (2005). The Kalina cycle for cement kiln waste heat recovery power plants. In Conference Record Cement Industry Technical Conference, 2005. (pp. 330-336). IEEE.
  • Mirolli, M. D. (2007). Ammonia-water based thermal conversion technology: Applications in waste heat recovery for the cement industry. In 2007 IEEE Cement Industry Technical Conference Record (pp. 234-241). IEEE.
  • Kalina, A. I. (1984). Combined-cycle system with novel bottoming cycle. Journal of engineering for gas turbines and power, 106(4), 737-742.
  • Usvika, R., Rifaldi, M. ve Noor, A. (2009). Energy and exergy analysis of kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation. Journal of mechanical science and technology, 23(7), 1871-1876.
  • El-Sayed, Y. M. ve Tribus, M. (1985, November). A theoretical comparison of the Rankine and Kalina cycles. In Proceedings of analysis of energy systems, design and operation, presented at the winter annual meeting of the American Society of Mechanical Engineers, Miami Beach, Florida (p. 97).
  • Reid, R. C., Prausnitz, J. M. ve Poling, B. E. (1987). The properties of gases and liquids.
  • Özdemir, M. B. ve Özkaya, M. G. (2015). Ankara İli Şartlarında Düşey Tip Toprak Kaynaklı Isı Pompası Sisteminin Enerji ve Ekserji Analizi. Politeknik Dergisi, 18(4), 269-280.
  • Abusoglu, A. ve Kanoglu, M. (2008) ‘First and second law analysis of diesel engine powered cogeneration systems’, Energy Conversion and Management, Vol. 49(8), pp.2026–2031.
  • Abusoglu, A. ve Kanoglu, M. (2009) ‘Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations’, Applied Thermal Engineering, Vol. 29(2–3), pp.234–241.
  • Kanoglu, M. ve Dincer, I. (2009) ‘Performance assessment of cogeneration plants’, Energy Conversion and Management, Vol. 50(1), pp.6–81.
  • Yagli, H., Koc, A., Karakus, C. ve Koc, Y. (2016) ‘Comparison of toluene and cyclohexane as a working fluid of an organic Rankine cycle used for reheat furnace waste heat recovery’, International Journal of Exergy, Vol. 19(3), pp.420–438.
  • Yilmaz, C., Kanoglu, M. ve Abusoglu, A. (2015) ‘Exergetic cost evaluation of hydrogen production powered by combined flash-binary geothermal power plant’, International Journal of Hydrogen Energy, Vol. 40(40), pp.14021–14030.
  • Yağli, H., Koç, Y., Koç, A., Görgülü, A. ve Tandiroğlu, A. (2016) ‘Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat’, Energy, Vol. 111, pp.923–932.
  • Mehrpooya, M. ve Mousavi, S. A. (2018). Advanced exergoeconomic assessment of a solar-driven Kalina cycle. Energy Conversion and Management, 178, 78-91.
  • Fallah, M., Mahmoudi, S. M. S., Yari, M. ve Ghiasi, R. A. (2016). Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system. Energy conversion and management, 108, 190-201.
  • Yari, M., Mehr, A. S., Zare, V., Mahmoudi, S. M. S. ve Rosen, M. A. (2015). Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy, 83, 712-722.
  • Singh, O. K. ve Kaushik, S. C. (2013). Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant. Applied thermal engineering, 51(1-2), 787-800.
  • Júnior, E. P. B., Arrieta, M. D. P., Arrieta, F. R. P., ve Silva, C. H. F. (2019). Assessment of a Kalina cycle for waste heat recovery in the cement industry. Applied Thermal Engineering, 147, 421-437.
  • Chen, Y., Guo, Z., Wu, J., Zhang, Z., ve Hua, J. (2015). Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle. Energy, 90, 2028-2037.
  • Rostamzadeh, H., Ebadollahi, M., Ghaebi, H. ve Shokri, A. (2019). Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle. Energy Conversion and Management, 183, 210-229.
  • Prananto, L. A., Zaini, I. N., Mahendranata, B. I., Juangsa, F. B., Aziz, M. ve Soelaiman, T. A. F. (2018). Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: Case study of the Wayang Windu geothermal power plant. Applied Thermal Engineering, 132, 686-696.
  • Tanç, B., Arat, H. T., Baltacıoğlu, E., ve Aydın, K. (2018). Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy.
  • Yağlı, H., Karakuş, C., Koç, Y., Çevik, M., Uğurlu, İ. ve Koç, A. (2019). Designing and exergetic analysis of a solar power tower system for Iskenderun region. International Journal of Exergy, 28(1), 96-112.
  • Koc, A., Bulgan, A. T. ve Öztürk, N. A. (2000). Design and analysis of a water-ammonia absorption refrigeration system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 214(5), 449-454.
  • Sözen, A., Alp, I. ve İskender, Ü. (2014). An evaluation of Turkey's energy dependency. Energy Sources, Part B: Economics, Planning, and Policy, 9(4), 398-412.
  • Sözen, A., Cakir, M. T. ve Cipil, F. (2016). Sectoral CO2 emission reductions in Turkey: Preparing for DOHA 2020. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(7), 905-913.
  • Bilgiç, H. H., Yağlı, H., Ali, K. ve Yapıcı, A. (2016). Power Prediction with Artificial Neural Network in Experimental Organic Rankine Cycle. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 4(1), 7-17.

Energy and Exergy Analysis of a Kalina Cycle Used for Combined Heat-Power Systems

Yıl 2020, Cilt: 23 Sayı: 1, 181 - 188, 01.03.2020
https://doi.org/10.2339/politeknik.528793

Öz

Nowadays, when global warming is increasing and air
pollution threatens human health in a sensible way, the need for energy is
increasing. Therefore, it is aimed not only to meet the people's energy needs
but also to minimize the factors that threaten the environment. To meet the
energy needs, researchers are working on different power generation systems or
trying to increase the capacity of existing plants. However, industrial waste
heat and flue gases, one of the most important reasons of global warming and
air pollution, are released to the atmosphere and cause a great waste of
energy. Therefore, the improvement of the facilities in use and the recovery of
waste heat are of vital importance. In this study, the Kalina cycle, which is a
new method for recovering the waste heat has been designed for a medium
temperature waste heat source released from a combined heat-power system.
Afterwards, the thermodynamic analysis of the designed Kalina cycle was carried
out in terms of the first and second law of the thermodynamics. As a result of
the study, maximum exergy destruction was observed in evaporator, while energy
efficiency and exergy efficiency of Kalina cycle were calculated as 12% and
27%, respectively
.

Kaynakça

  • Bose, B. K. (2010). Global warming: Energy, environmental pollution, and the impact of power electronics. IEEE Industrial Electronics Magazine, 4(1), 6-17.
  • Mansoury, M., Jafarmadar, S. ve Khalilarya, S. (2018). Energy and exergy analyses of a combined cycle Kalina and organic Rankine cycles using waste heat. International Journal of Exergy, 27(2), 251-286.
  • Zhang, X., He, M., ve Zhang, Y. (2012). A review of research on the Kalina cycle. Renewable and sustainable energy reviews, 16(7), 5309-5318.
  • Ogriseck, S. (2009). Integration of Kalina cycle in a combined heat and power plant, a case study. Applied Thermal Engineering, 29(14-15), 2843-2848.
  • Zare, V. ve Mahmoudi, S. M. S. (2015). A thermodynamic comparison between organic Rankine and Kalina cycles for waste heat recovery from the Gas Turbine-Modular Helium Reactor. Energy, 79, 398-406.
  • Ibrahim, M. B. ve Kovach, R. M. (1993). A Kalina cycle application for power generation. Energy, 18(9), 961-969.
  • Ganesh, N. S. ve Srinivas, T. (2019). Nuclear energy-driven Kalina cycle system suitable for Indian climatic conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(3), 298-308.
  • Rodríguez, C. E. C., Palacio, J. C. E., Venturini, O. J., Lora, E. E. S., Cobas, V. M., dos Santos, D. M. ve Gialluca, V. (2013). Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Applied Thermal Engineering, 52(1), 109-119.
  • Bombarda, P., Invernizzi, C. M. ve Pietra, C. (2010). Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles. Applied thermal engineering, 30(2-3), 212-219.
  • Nemati, A., Nami, H., Ranjbar, F. ve Yari, M. (2017). A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: a case study for CGAM cogeneration system. Case Studies in Thermal Engineering, 9, 1-13.
  • Mirolli, M. D. (2005). The Kalina cycle for cement kiln waste heat recovery power plants. In Conference Record Cement Industry Technical Conference, 2005. (pp. 330-336). IEEE.
  • Mirolli, M. D. (2007). Ammonia-water based thermal conversion technology: Applications in waste heat recovery for the cement industry. In 2007 IEEE Cement Industry Technical Conference Record (pp. 234-241). IEEE.
  • Kalina, A. I. (1984). Combined-cycle system with novel bottoming cycle. Journal of engineering for gas turbines and power, 106(4), 737-742.
  • Usvika, R., Rifaldi, M. ve Noor, A. (2009). Energy and exergy analysis of kalina cycle system (KCS) 34 with mass fraction ammonia-water mixture variation. Journal of mechanical science and technology, 23(7), 1871-1876.
  • El-Sayed, Y. M. ve Tribus, M. (1985, November). A theoretical comparison of the Rankine and Kalina cycles. In Proceedings of analysis of energy systems, design and operation, presented at the winter annual meeting of the American Society of Mechanical Engineers, Miami Beach, Florida (p. 97).
  • Reid, R. C., Prausnitz, J. M. ve Poling, B. E. (1987). The properties of gases and liquids.
  • Özdemir, M. B. ve Özkaya, M. G. (2015). Ankara İli Şartlarında Düşey Tip Toprak Kaynaklı Isı Pompası Sisteminin Enerji ve Ekserji Analizi. Politeknik Dergisi, 18(4), 269-280.
  • Abusoglu, A. ve Kanoglu, M. (2008) ‘First and second law analysis of diesel engine powered cogeneration systems’, Energy Conversion and Management, Vol. 49(8), pp.2026–2031.
  • Abusoglu, A. ve Kanoglu, M. (2009) ‘Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 1 - Formulations’, Applied Thermal Engineering, Vol. 29(2–3), pp.234–241.
  • Kanoglu, M. ve Dincer, I. (2009) ‘Performance assessment of cogeneration plants’, Energy Conversion and Management, Vol. 50(1), pp.6–81.
  • Yagli, H., Koc, A., Karakus, C. ve Koc, Y. (2016) ‘Comparison of toluene and cyclohexane as a working fluid of an organic Rankine cycle used for reheat furnace waste heat recovery’, International Journal of Exergy, Vol. 19(3), pp.420–438.
  • Yilmaz, C., Kanoglu, M. ve Abusoglu, A. (2015) ‘Exergetic cost evaluation of hydrogen production powered by combined flash-binary geothermal power plant’, International Journal of Hydrogen Energy, Vol. 40(40), pp.14021–14030.
  • Yağli, H., Koç, Y., Koç, A., Görgülü, A. ve Tandiroğlu, A. (2016) ‘Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat’, Energy, Vol. 111, pp.923–932.
  • Mehrpooya, M. ve Mousavi, S. A. (2018). Advanced exergoeconomic assessment of a solar-driven Kalina cycle. Energy Conversion and Management, 178, 78-91.
  • Fallah, M., Mahmoudi, S. M. S., Yari, M. ve Ghiasi, R. A. (2016). Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system. Energy conversion and management, 108, 190-201.
  • Yari, M., Mehr, A. S., Zare, V., Mahmoudi, S. M. S. ve Rosen, M. A. (2015). Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy, 83, 712-722.
  • Singh, O. K. ve Kaushik, S. C. (2013). Energy and exergy analysis and optimization of Kalina cycle coupled with a coal fired steam power plant. Applied thermal engineering, 51(1-2), 787-800.
  • Júnior, E. P. B., Arrieta, M. D. P., Arrieta, F. R. P., ve Silva, C. H. F. (2019). Assessment of a Kalina cycle for waste heat recovery in the cement industry. Applied Thermal Engineering, 147, 421-437.
  • Chen, Y., Guo, Z., Wu, J., Zhang, Z., ve Hua, J. (2015). Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle. Energy, 90, 2028-2037.
  • Rostamzadeh, H., Ebadollahi, M., Ghaebi, H. ve Shokri, A. (2019). Comparative study of two novel micro-CCHP systems based on organic Rankine cycle and Kalina cycle. Energy Conversion and Management, 183, 210-229.
  • Prananto, L. A., Zaini, I. N., Mahendranata, B. I., Juangsa, F. B., Aziz, M. ve Soelaiman, T. A. F. (2018). Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: Case study of the Wayang Windu geothermal power plant. Applied Thermal Engineering, 132, 686-696.
  • Tanç, B., Arat, H. T., Baltacıoğlu, E., ve Aydın, K. (2018). Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy.
  • Yağlı, H., Karakuş, C., Koç, Y., Çevik, M., Uğurlu, İ. ve Koç, A. (2019). Designing and exergetic analysis of a solar power tower system for Iskenderun region. International Journal of Exergy, 28(1), 96-112.
  • Koc, A., Bulgan, A. T. ve Öztürk, N. A. (2000). Design and analysis of a water-ammonia absorption refrigeration system. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 214(5), 449-454.
  • Sözen, A., Alp, I. ve İskender, Ü. (2014). An evaluation of Turkey's energy dependency. Energy Sources, Part B: Economics, Planning, and Policy, 9(4), 398-412.
  • Sözen, A., Cakir, M. T. ve Cipil, F. (2016). Sectoral CO2 emission reductions in Turkey: Preparing for DOHA 2020. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(7), 905-913.
  • Bilgiç, H. H., Yağlı, H., Ali, K. ve Yapıcı, A. (2016). Power Prediction with Artificial Neural Network in Experimental Organic Rankine Cycle. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 4(1), 7-17.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Yıldız Koç 0000-0002-2219-645X

Hüseyin Yağlı Bu kişi benim 0000-0002-9777-0698

Yayımlanma Tarihi 1 Mart 2020
Gönderilme Tarihi 19 Şubat 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 23 Sayı: 1

Kaynak Göster

APA Koç, Y., & Yağlı, H. (2020). Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji ve Ekserji Analizi. Politeknik Dergisi, 23(1), 181-188. https://doi.org/10.2339/politeknik.528793
AMA Koç Y, Yağlı H. Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji ve Ekserji Analizi. Politeknik Dergisi. Mart 2020;23(1):181-188. doi:10.2339/politeknik.528793
Chicago Koç, Yıldız, ve Hüseyin Yağlı. “Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji Ve Ekserji Analizi”. Politeknik Dergisi 23, sy. 1 (Mart 2020): 181-88. https://doi.org/10.2339/politeknik.528793.
EndNote Koç Y, Yağlı H (01 Mart 2020) Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji ve Ekserji Analizi. Politeknik Dergisi 23 1 181–188.
IEEE Y. Koç ve H. Yağlı, “Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji ve Ekserji Analizi”, Politeknik Dergisi, c. 23, sy. 1, ss. 181–188, 2020, doi: 10.2339/politeknik.528793.
ISNAD Koç, Yıldız - Yağlı, Hüseyin. “Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji Ve Ekserji Analizi”. Politeknik Dergisi 23/1 (Mart 2020), 181-188. https://doi.org/10.2339/politeknik.528793.
JAMA Koç Y, Yağlı H. Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji ve Ekserji Analizi. Politeknik Dergisi. 2020;23:181–188.
MLA Koç, Yıldız ve Hüseyin Yağlı. “Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji Ve Ekserji Analizi”. Politeknik Dergisi, c. 23, sy. 1, 2020, ss. 181-8, doi:10.2339/politeknik.528793.
Vancouver Koç Y, Yağlı H. Isı-Güç Kombine Sistemlerinde Kullanılan Kalina Çevriminin Enerji ve Ekserji Analizi. Politeknik Dergisi. 2020;23(1):181-8.

Cited By








 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.