Yıl 2020, Cilt 23 , Sayı 2, Sayfalar 333 - 341 2020-06-01

Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması
Self-Care Problems Classification of Children with Physical and Motor Disability by Deep Neural Networks

Abdulkadir KARACI [1]


Fiziksel ve motor engellilik bazı bireysel ana yaşam aktivitelerini büyük ölçüde sınırlandıran bir bozukluktur. Bu bozukluklar dünyanın birçok ülkesinde çocukları etkilemektedir. Bunun yanı sıra fiziksel ve motor engelli bireylerin doktorlar tarafından uygun mesleki tedavilerle sınıflandırılmaları zor bir süreçtir. Çünkü değerlendirilmesi gereken birçok değişken vardır. Bu çalışmadaki amaç, fiziksel ve motor engelli çocukların öz bakım beceri problemlerini derin sinir ağlarını (DSA) kullanarak en az hata ile sınıflandırmaktır. Bu amaçla farklı parametrelere sahip DSA modelleri oluşturulmuştur. Modellerin oluşturulmasında gizli katman sayısı, gizli katmanlardaki nöron sayısı, aktivasyon fonksiyonu, optimizasyon algoritması, kayıp fonksiyonu ve epoch değeri parametreleri dikkate alınmıştır. Oluşturulan DSA modelleri SCADI (Self-Care Activities Dataset based on ICFCY) veri seti vasıtasıyla eğitilmiş ve test işlemi gerçekleştirilmiştir. Modellerin sınıflandırma performansları F-1 puanı, kesinlik (precision-P), hassasiyet (recall-R) ve doğruluk (accuracy-ACC) metrikleri kullanılarak ortaya konulmuştur. En iyi sınıflandırma performansına sahip 8 modelin ayrıntıları sunulmuştur.  Elde edilen bulgulara göre en iyi sınıflandırma performansı Adadelta optimizasyon algoritmasını, Elu aktivasyon fonksiyonunu ve Categorical crossentropy kayıp fonksiyonunu kullanan DSA-1 modelinde elde edilmiştir. Bu modelin P, R, ACC ve F1 puanı değerleri 1’dir. Yani bu model fiziksel ve motor engelli çocukların öz bakım beceri problemlerini %100 doğrulukla tahmin etmektedir. Ayrıca, en iyi üç modelin (DSA-1, DSA-2 ve DSA-3) geçerliliğini artırmak için 10-fold çapraz doğrulama yöntemi ile eğitim ve test işlemi tekrar gerçekleştirilmiştir. Ortalama çapraz doğrulama accuracy değerleri sırasıyla %85.71,  % 85.71 ve % 87.14 olarak hesaplanmıştır. Mesleki terapistler, geliştirilen DSA modellerini öz bakım problemlerini teşhis etmede doğrulayıcı bir araç olarak kullanılabilirler.

Physical and motor disability is a disorder that greatly limits some of the individual main life activities. These disorders affect children in many countries of the world. In addition, it is a difficult process for physically and motorly disabled individuals to be classified by doctors with appropriate occupational treatments. Because, there are many variables that must be considered. The aim of this study is to classify the self-care skill problems of children with physical and motor disabilities by the minimal error using deep neural networks (DNN). For this purpose, DNN models with different parameters were created. The number of hidden layers, the number of neurons in the hidden layers, the activation function, the optimization algorithm, the loss function and the epoch value are taken into consideration in the creation of the models. The DSA models were trained and tested with the SCADI (Self-Care Activities Dataset based on ICFCY) data set. The classification performance of the models was demonstrated by using the F-1 score, precision (P), recall (R) and accuracy (ACC) metrics. Details of the 8 models with the best grading performance are presented. According to the findings, the best classification performance was obtained in the DSA-1 model using Adadelta optimization algorithm, Elu activation function and Categorical crossentropy loss function. The P, R, ACC and F1 scores of this model are 1. In other words, this model predicts the self-care skills problems of physical and motor disability children with 100% accuracy. In addition, in order to increase the validity of the three best models (DSA-1, DSA-2 and DSA-3), the training and testing process was performed with 10-fold cross-validation method. Mean cross validation accuracy values were calculated as 85.71%, 85.71% and 87.14% respectively. Occupational therapists can be used developed DSA models as a validating tool for diagnosing self-care problems.

  • Zarchi M.S., Bushehri S.M.M. F. and Dehghanizadeh M., “SCADI: A standard dataset for self-care problems classification of children with physical and motor disability”, International Journal of Medical Informatics, 114: 81-87, (2018).
  • Lucas-Carrasco R., Eser E., Hao Y., McPherson K.M., Green A., Kullmann L., Group T.W.D., “The quality of care and support (QOCS) for people with disability scale: development and psychometric properties”, Res. Dev. Disabil., 32(3):1212–1225, (2011).
  • Brown R. L., Turner R. J., “Physical disability and depression: clarifying racial/ ethnic contrasts”, Journal of Aging and Health, 22 (7): 977–1000, (2010).
  • Tsai C-F., Guo H-R., Tseng Y-C., Lai D-C., “Sex and geographic differences in the prevalence of reported childhood motor disability and their trends in Taiwan”, BioMed Research International, (2018), Article ID 6754230, 7 pages, 2018. https://doi.org/10.1155/2018/6754230.
  • Chang Y.-J., Chen S.-F., Huang J.-D., “A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities”, Research in Developmental Disabilities, 32(6): 2566-2570, (2011).
  • Yeh Y.L., Hou T.H., Chang W.Y., “An intelligent model for the classification of children's occupational therapy problems”, Expert Syst. Appl., 39(5): 5233–5242, (2012).
  • Lollar D.J., Simeonsson R.J., “Diagnosis to function: classification for children and youths”, J. Dev. Behav. Pediatrics, 26(4):323-330, (2005).
  • Keawutan P., Bell K. L., Oftedal S., Davies P. S. W., Ware R. S., Boyd R. N., “Relationship between habitual physical activity, motor capacity, and capability in children with cerebral palsy aged 4–5 years across all functional abilities”, Disability and Health Journal, 11(4): 632-636, (2018). https://doi.org/10.1016/j.dhjo.2018.03.006.
  • Organization, W.H., International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY, World Health Organization, 2007.
  • Wu T. K., Huang S.C., Meng Y.R., “Identifying and diagnosing students with learning disabilities using ANN and SVM”, International Joint Conference on Neural Networks, IJCNN’06, IEEE, 4387-4394, (2006).
  • David J.M., Balakrishnan K., “Prediction of learning disabilities in school-age children using SVM and decision tree”, International Journal of Computer Science and Information Technologies, 2(2):829-835, (2011).
  • Muangnak N., Pukdee W., Hengsanunkun T., “Classification students with learning disabilities using Naïve Bayes Classifier and Decision Tree”, The 6th International Conference on Networked Computing and Advanced Information Management, Seoul, 189-192, (2010).
  • Buduma N., Lacascio N., “Fundamentals of Deep Learning”, O’Reilly Media, United States of America, (2017).
  • Jia F., Lei Y., Lin J., Zhou X., Lu N., “Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data”, Mechanical Systems and Signal Processing, 72–73:303-315, (2016). doi:10.1016/j.ymssp.2015.10.025.
  • Wang B., Luo X., Li Z., Zhu W., Shi Z., Osher S.J., “Deep neural nets with interpolating function as output activation”. arXiv preprint arXiv:1802.00168, (2018).
  • Ding B., Qian H., Zhou J., “Activation functions and their characteristics in deep neural networks”, Chinese Control And Decision Conference (CCDC), Shenyang, 1836-1841, (2018). doi: 10.1109/CCDC.2018.8407425
  • An W., Wang H., Sun Q., Xu J., Dai Q., Zhang L., “A PID controller approach for stochastic optimization of deep networks”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8522-8531, (2018).
  • Schmidhuber J., “Deep learning in neural networks: An overview”, Neural Networks, 61:85-117, (2015).
  • Kızrak M. A., Bolata B., “Comprehensive survey of deep learning in crowd analysis”, International Journal of Informatics Technologies, 11(3):263-286, (2018).
  • Prasetijo A. B., Isnanto R. R., Eridani D., Soetrisno Y. A. A., Arfan M., Sofwan A., “Hoax detection system on Indonesian news sites based on text classification using SVM and SGD”, 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, 45-49, (2017).doi: 10.1109/ICITACEE.2017.8257673
  • Fawcett T., “An Introduction to ROC analysis”, Pattern Recognition Letters, 27(8): 861–874, (2006). doi:10.1016/j.patrec.2005.10.010.
  • Paix˜ao W. R., Paix˜ao T. M. , Costa M. C. B., Andrade J. O. , Pereira F. G., Komati K. S., “Texture classification of sea turtle shell based on color features: color histograms and chromaticity moments”, International Journal of Artificial Intelligence and Applications (IJAIA), 9(2): 55-67, (2018). doi: 10.5121/ijaia.2018.9205
  • Sasaki Y., “The truth of the f-measure”, Teach Tutor mater, 1(5):1-5, 2007.
  • Yang Y. and Liu X., “A re-examination of text categorization methods”, Proceedings of SIGIR-99, 22nd ACM International Conference of Research and Development in Information Retrieval, New York, 42-49, (1999).
  • Davis J., Goadrich M., “The relationship between precision-recall and roc curves”, in Proceedings of the 23rd international conference on Machine learning. ACM, 233-240, (2006).
  • Eschner N., Weiser L., Häfner B., Lanza G., “Development of an acoustic process monitoring system for selective laser melting (SLM)”, Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference Reviewed Paper, 2097-2117, (2018).
Birincil Dil tr
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Orcid: 0000-0002-2430-1372
Yazar: Abdulkadir KARACI (Sorumlu Yazar)
Kurum: KASTAMONU ÜNİVERSİTESİ, MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ, BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 1 Haziran 2020

Bibtex @araştırma makalesi { politeknik522641, journal = {Politeknik Dergisi}, issn = {}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi Üniversitesi}, year = {2020}, volume = {23}, pages = {333 - 341}, doi = {10.2339/politeknik.522641}, title = {Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması}, key = {cite}, author = {KARACI, Abdulkadir} }
APA KARACI, A . (2020). Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması. Politeknik Dergisi , 23 (2) , 333-341 . DOI: 10.2339/politeknik.522641
MLA KARACI, A . "Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması". Politeknik Dergisi 23 (2020 ): 333-341 <https://dergipark.org.tr/tr/pub/politeknik/issue/53587/522641>
Chicago KARACI, A . "Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması". Politeknik Dergisi 23 (2020 ): 333-341
RIS TY - JOUR T1 - Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması AU - Abdulkadir KARACI Y1 - 2020 PY - 2020 N1 - doi: 10.2339/politeknik.522641 DO - 10.2339/politeknik.522641 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 333 EP - 341 VL - 23 IS - 2 SN - -2147-9429 M3 - doi: 10.2339/politeknik.522641 UR - https://doi.org/10.2339/politeknik.522641 Y2 - 2019 ER -
EndNote %0 Politeknik Dergisi Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması %A Abdulkadir KARACI %T Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması %D 2020 %J Politeknik Dergisi %P -2147-9429 %V 23 %N 2 %R doi: 10.2339/politeknik.522641 %U 10.2339/politeknik.522641
ISNAD KARACI, Abdulkadir . "Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması". Politeknik Dergisi 23 / 2 (Haziran 2020): 333-341 . https://doi.org/10.2339/politeknik.522641
AMA KARACI A . Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması. Politeknik Dergisi. 2020; 23(2): 333-341.
Vancouver KARACI A . Fiziksel ve Motor Engelli Çocukların Öz Bakım Problemlerinin Derin Sinir Ağları İle Sınıflandırılması. Politeknik Dergisi. 2020; 23(2): 341-333.