The Effect of CeO2 Nanoparticles Addition to PEO Coatings on Corrosion Behavior
Yıl 2020,
Cilt: 23 Sayı: 4, 1285 - 1295, 01.12.2020
Ahmet Melik Yılmaz
,
Fatma Songur
,
Ersin Arslan
,
Burak Dikici
Öz
Plasma Electrolytic Oxidation (PEO) is a coating technique commonly chosen to improve the corrosion and wear properties of Mg and its alloys. Besides, the limited phase composition and porous structure of the PEO coating layer influence negatively the long-term objective of corrosion protection. In recent years, the technique filing the micro or nano-sized particles into porous oxide layer during coating process is a novel approach for PEO. This investigation focuses on how surface morphology, microstructure, phase composition and corrosion behavior of incorporation of particles into PEO coatings on AZ31 magnesium alloy. This study aims at growth MgO/CeO2 nanocomposite coatings by using PEO technique in the electrolyte containing nano-sized cerium oxide (CeO2) particles on MgAZ31 substrate. The structural properties, surface morphology, coating thickness and corrosion behavior of the coatings grown in electrolyte containing different amounts of CeO2 nanoparticles were compared with the particle-free PEO coating. The research results showed that the nanoparticles could not completely fill the dense porous structure of the PEO coatings, reduced the coating growth rate and that the CeO2 nanoparticles are incorporated into the structure as inert. In addition, it is determined that the corrosion resistance of MgO/CeO2 nanocomposite coatings is higher than MgO coatings without particle.
Kaynakça
- [1] Yerokhin A., Nie X., Leyland A., Matthews A. and Dowey S., ''Plasma electrolysis for surface engineering'', Surface and Coatings Technology, 122(2-3), 73-93, (1999)
- [2] Curran J. and Clyne T., ''Thermo-physical properties of plasma electrolytic oxide coatings on aluminium'', Surface and Coatings Technology, 199(2-3), 168-176, (2005)
- [3] Arrabal R., Matykina E., Hashimoto T., Skeldon P. and Thompson G., ''Characterization of AC PEO coatings on magnesium alloys'', Surface and Coatings Technology'', 203(16), 2207-2220, (2009)
- [4] Cheng Y., Wu F., Matykina E., Skeldon P. and Thompson G., ''The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2'', Corrosion Science, 59, 307-315, (2012)
- [5] Hussein R., Northwood D. and Nie X., ''The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys'', Surface and Coatings Technology, 237, 357-368, (2013)
- [6] Song Y., Dong K., Shan D. and Han E.-H., ''Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy'', Journal of Magnesium and Alloys, 1(1), 82-87, (2013)
- [7] Yagi S., Kuwabara K., Fukuta Y., Kubota K. and Matsubara E., ''Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation'', Corrosion Science, 73, 188-195, (2013)
- [8] Barchiche C.-E., Rocca E., Juers C., Hazan J. and Steinmetz J., ''Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods'', Electrochimica Acta, 53(2), 417-425, (2007)
- [9] Srinivasan P.B., Liang J., Blawert C., Störmer M. and Dietzel W., ''Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy'', Applied Surface Science, 255(7), 4212-4218, (2009)
- [10] Hussein R., Zhang P., Nie X., Xia Y. and Northwood D., ''The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62'', Surface and Coatings Technology, 206(7), 1990-1997, (2011)
- [11] Lu X., ''Plasma Electrolytic Oxidation (PEO) Coatings on a Mg Alloy from Particle Containing Electrolytes'', PhD Thesis, der Technischen Fakultät, der Christian-Albrechts-Universität zu Kiel, (2017)
- [12] Necula B., Fratila-Apachitei L., Berkani A., Apachitei I. and Duszczyk J., ''Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications'', Journal of Materials Science: Materials in Medicine, 20(1), 339, (2009)
- [13] Lee K.M., Ko Y.G. and Shin D.H., ''Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties'', Current Applied Physics, 11(4), S55-S59, (2011)
- [14] Li X. and Luan B.L., ''Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy'', Materials Letters, 86, 88-91, (2012)
- [15] Lim T.S., Ryu H.S. and Hong S.-H., ''Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation'', Corrosion Science, 62, 104-111, (2012)
- [16] Arrabal R., Matykina E., Skeldon P. and Thompson G., ''Incorporation of zirconia particles into coatings formed on magnesium by plasma electrolytic oxidation'', Journal of materials science, 43(5), 1532-1538, (2008)
- [17] Liang J., Hu L. and Hao J., ''Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation'', Electrochimica Acta, 52(14), 4836-4840, (2007)
- [18] Liu J., Lu Y., Jing X., Yuan Y. and Zhang M., ''Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline silicate electrolyte containing silica sol'', Materials and Corrosion, 60(11), 865-870, (2009)
- [19] Laleh M., Rouhaghdam A.S., Shahrabi T. and Shanghi A., ''Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D'', Journal of Alloys and Compounds, 496(1-2), 548-552, (2010)
- [20] Blawert C., Sah S.P., Liang J., Huang Y. and Höche D., ''Role of sintering and clay particle additions on coating formation during PEO processing of AM50 magnesium alloy'', Surface and Coatings Technology, 213, 48-58, (2012)
- [21] Zhang D., Gou Y., Liu Y. and Guo X., ''A composite anodizing coating containing superfine Al2O3 particles on AZ31 magnesium alloy'', Surface and Coatings Technology, 236, 52-57, (2013)
- [22] Daroonparvar M., Yajid M.A.M., Yusof N.M. and Bakhsheshi-Rad H.R., ''Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1% Ca alloy formed in aluminate electrolyte containing titania nano-additives'', Journal of Alloys and Compounds, 688, 841-857, (2016)
- [23] Sun M., Yerokhin A., Bychkova M.Y., Shtansky D., Levashov E. and Matthews A., ''Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy'', Corrosion Science, 111, 753-769, (2016)
- [24] Mohedano M., Blawert C. and Zheludkevich M., ''Silicate-based plasma electrolytic oxidation (PEO) coatings with incorporated CeO2 particles on AM50 magnesium alloy'', Materials & Design, 86, 735-744, (2015)
- [25] Tang M., Liu H., Li W. and Zhu L., ''Effect of zirconia sol in electrolyte on the characteristics of microarc oxidation coating on AZ91D magnesium'', Materials Letters, 65(3), 413-415, (2011)
- [26] Lee K.M., Lee B.U., Yoon S.I., Lee E.S., Yoo B. and Shin D.H., ''Evaluation of plasma temperature during plasma oxidation processing of AZ91 Mg alloy through analysis of the melting behavior of incorporated particles'', Electrochimica Acta, 67, 6-11, (2012)
- [27] Li W., Tang M., Zhu L. and Liu H., ''Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance'', Applied Surface Science, 258(24), 10017-10021, (2012)
- [28] Wang Y., Wei D., Yu J. and Di S., ''Effects of Al2O3 nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy'', Journal of Materials Science & Technology, 30(10), 984-990, (2014)
- [29] Rapheal G., Kumar S., Scharnagl N. and Blawert C., ''Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives'', Surface and Coatings Technology, 289, 150-164, (2016)
- [30] Wang Y., Wang F., Xu M., Zhao B., Guo L. and Ouyang J., ''Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application'', Applied Surface Science, 255(22), 9124-9131, (2009)
- [31] Ma C., Zhang M., Yuan Y., Jing X. and Bai X., ''Tribological behavior of plasma electrolytic oxidation coatings on the surface of Mg–8Li–1Al alloy'', Tribology International, 47, 62-68, (2012)
- [32] Bala Srinivasan P., Liang J., Blawert C., Störmer M. and Dietzel W., ''Development of decorative and corrosion resistant plasma electrolytic oxidation coatings on AM50 magnesium alloy'', Surface Engineering, 26(5), 367-370, (2010)
- [33] Song Y., Sun X. and Liu Y., ''Effect of TiO2 nanoparticles on the microstructure and corrosion behavior of MAO coatings on magnesium alloy'', Materials and Corrosion, 63(9), 813-818, (2012)
- [34] Arrabal R., Matykina E., Viejo F., Skeldon P., Thompson G. and Merino M., ''AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles'', Applied Surface Science, 254(21), 6937-6942, (2008)
- [35] Toorani M., Aliofkhazraei M. and Rouhaghdam A.S., ''Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy'', Surface and Coatings Technology, 352, 561-580, (2018)
- [36] Ji R., Peng G., Zhang S., Li Z., Li J., Fang T., Zhang Z., Wang Y., He Y. and Wu J., ''The fabrication of a CeO2 coating via cathode plasma electrolytic deposition for the corrosion resistance of AZ31 magnesium alloy'', Ceramics International, 44(16), 19885-19891, (2018)
- [37] Sarbishei S., Sani M.A.F. and Mohammadi M.R., ''Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process'', Ceramics International, 42(7), 8789-8797, (2016)
PEO Kaplamalara CeO2 Nanopartikül İlavesinin Korozyon Davranışına Etkisi
Yıl 2020,
Cilt: 23 Sayı: 4, 1285 - 1295, 01.12.2020
Ahmet Melik Yılmaz
,
Fatma Songur
,
Ersin Arslan
,
Burak Dikici
Öz
Endüstriyel bir yüzey modifikasyon işlemi olarak bilinen Plazma Elektrolitik Oksidasyon (PEO) yöntemi; Mg ve alaşımlarının korozyon ve aşınma özelliklerinin iyileştirilmesinde çoğunlukla tercih edilen bir kaplama tekniğidir. Bununla birlikte, PEO kaplama tabakasının sınırlı faz kompozisyonu ve gözenekli yapısı uzun vadede korozyondan koruma hedefini olumsuz yönde etkilemektedir. Oksit tabakasının büyümesi esnasında oluşan gözeneklerin mikro veya nano boyutlu partiküllerle doldurulması tekniği son yıllarda PEO işlemine yeni bir yaklaşım kazandırmıştır. Bu sayede partiküller yardımıyla kusurların kapatılabileceği ve üretilen kaplamaların kompozisyon aralığı ve işlevselliğinin arttırılabileceği düşünülmektedir. Bu çalışma; magnezyum alaşımı üzerine büyütülen PEO kaplamalara partikül ilavesinin yüzey morfolojisine, mikro yapıya, faz kompozisyonuna ve korozyon davranışına nasıl etki edeceği araştırması üzerine odaklanmıştır. Bu amaç doğrultusunda çalışma MgAZ31 taban malzemesi üzerine PEO yöntemi ile nano boyutlu seryum oksit (CeO2) partikülleri içeren MgO/CeO2 nanokompozit kaplamaların büyütülmesini hedeflemiştir. Farklı miktarlarda CeO2 nano partikül içeren elektrolit içerisinde büyütülen kaplamaların yapısal özellikleri, yüzey morfolojisi, kaplama kalınlıkları ve korozyon davranışı partikülsüz PEO kaplaması ile karşılaştırılmıştır. Araştırma sonuçları nano partiküllerin PEO kaplamaların yoğun gözenekli yapısını tamamen dolduramadığını, kaplama büyüme hızını azalttığını ve CeO2 nano partiküllerin yapı içerisine inert olarak dâhil olduğunu gösterdi. Ayrıca partikül miktarına bağlı olarak MgO/CeO2 nanokompozit kaplamaların korozyon direncinin partikülsüz MgO kaplamalara göre daha yüksek olduğu tespit edildi.
Kaynakça
- [1] Yerokhin A., Nie X., Leyland A., Matthews A. and Dowey S., ''Plasma electrolysis for surface engineering'', Surface and Coatings Technology, 122(2-3), 73-93, (1999)
- [2] Curran J. and Clyne T., ''Thermo-physical properties of plasma electrolytic oxide coatings on aluminium'', Surface and Coatings Technology, 199(2-3), 168-176, (2005)
- [3] Arrabal R., Matykina E., Hashimoto T., Skeldon P. and Thompson G., ''Characterization of AC PEO coatings on magnesium alloys'', Surface and Coatings Technology'', 203(16), 2207-2220, (2009)
- [4] Cheng Y., Wu F., Matykina E., Skeldon P. and Thompson G., ''The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2'', Corrosion Science, 59, 307-315, (2012)
- [5] Hussein R., Northwood D. and Nie X., ''The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys'', Surface and Coatings Technology, 237, 357-368, (2013)
- [6] Song Y., Dong K., Shan D. and Han E.-H., ''Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy'', Journal of Magnesium and Alloys, 1(1), 82-87, (2013)
- [7] Yagi S., Kuwabara K., Fukuta Y., Kubota K. and Matsubara E., ''Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation'', Corrosion Science, 73, 188-195, (2013)
- [8] Barchiche C.-E., Rocca E., Juers C., Hazan J. and Steinmetz J., ''Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods'', Electrochimica Acta, 53(2), 417-425, (2007)
- [9] Srinivasan P.B., Liang J., Blawert C., Störmer M. and Dietzel W., ''Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy'', Applied Surface Science, 255(7), 4212-4218, (2009)
- [10] Hussein R., Zhang P., Nie X., Xia Y. and Northwood D., ''The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62'', Surface and Coatings Technology, 206(7), 1990-1997, (2011)
- [11] Lu X., ''Plasma Electrolytic Oxidation (PEO) Coatings on a Mg Alloy from Particle Containing Electrolytes'', PhD Thesis, der Technischen Fakultät, der Christian-Albrechts-Universität zu Kiel, (2017)
- [12] Necula B., Fratila-Apachitei L., Berkani A., Apachitei I. and Duszczyk J., ''Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications'', Journal of Materials Science: Materials in Medicine, 20(1), 339, (2009)
- [13] Lee K.M., Ko Y.G. and Shin D.H., ''Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties'', Current Applied Physics, 11(4), S55-S59, (2011)
- [14] Li X. and Luan B.L., ''Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy'', Materials Letters, 86, 88-91, (2012)
- [15] Lim T.S., Ryu H.S. and Hong S.-H., ''Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation'', Corrosion Science, 62, 104-111, (2012)
- [16] Arrabal R., Matykina E., Skeldon P. and Thompson G., ''Incorporation of zirconia particles into coatings formed on magnesium by plasma electrolytic oxidation'', Journal of materials science, 43(5), 1532-1538, (2008)
- [17] Liang J., Hu L. and Hao J., ''Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation'', Electrochimica Acta, 52(14), 4836-4840, (2007)
- [18] Liu J., Lu Y., Jing X., Yuan Y. and Zhang M., ''Characterization of plasma electrolytic oxidation coatings formed on Mg–Li alloy in an alkaline silicate electrolyte containing silica sol'', Materials and Corrosion, 60(11), 865-870, (2009)
- [19] Laleh M., Rouhaghdam A.S., Shahrabi T. and Shanghi A., ''Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D'', Journal of Alloys and Compounds, 496(1-2), 548-552, (2010)
- [20] Blawert C., Sah S.P., Liang J., Huang Y. and Höche D., ''Role of sintering and clay particle additions on coating formation during PEO processing of AM50 magnesium alloy'', Surface and Coatings Technology, 213, 48-58, (2012)
- [21] Zhang D., Gou Y., Liu Y. and Guo X., ''A composite anodizing coating containing superfine Al2O3 particles on AZ31 magnesium alloy'', Surface and Coatings Technology, 236, 52-57, (2013)
- [22] Daroonparvar M., Yajid M.A.M., Yusof N.M. and Bakhsheshi-Rad H.R., ''Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1% Ca alloy formed in aluminate electrolyte containing titania nano-additives'', Journal of Alloys and Compounds, 688, 841-857, (2016)
- [23] Sun M., Yerokhin A., Bychkova M.Y., Shtansky D., Levashov E. and Matthews A., ''Self-healing plasma electrolytic oxidation coatings doped with benzotriazole loaded halloysite nanotubes on AM50 magnesium alloy'', Corrosion Science, 111, 753-769, (2016)
- [24] Mohedano M., Blawert C. and Zheludkevich M., ''Silicate-based plasma electrolytic oxidation (PEO) coatings with incorporated CeO2 particles on AM50 magnesium alloy'', Materials & Design, 86, 735-744, (2015)
- [25] Tang M., Liu H., Li W. and Zhu L., ''Effect of zirconia sol in electrolyte on the characteristics of microarc oxidation coating on AZ91D magnesium'', Materials Letters, 65(3), 413-415, (2011)
- [26] Lee K.M., Lee B.U., Yoon S.I., Lee E.S., Yoo B. and Shin D.H., ''Evaluation of plasma temperature during plasma oxidation processing of AZ91 Mg alloy through analysis of the melting behavior of incorporated particles'', Electrochimica Acta, 67, 6-11, (2012)
- [27] Li W., Tang M., Zhu L. and Liu H., ''Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance'', Applied Surface Science, 258(24), 10017-10021, (2012)
- [28] Wang Y., Wei D., Yu J. and Di S., ''Effects of Al2O3 nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy'', Journal of Materials Science & Technology, 30(10), 984-990, (2014)
- [29] Rapheal G., Kumar S., Scharnagl N. and Blawert C., ''Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives'', Surface and Coatings Technology, 289, 150-164, (2016)
- [30] Wang Y., Wang F., Xu M., Zhao B., Guo L. and Ouyang J., ''Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application'', Applied Surface Science, 255(22), 9124-9131, (2009)
- [31] Ma C., Zhang M., Yuan Y., Jing X. and Bai X., ''Tribological behavior of plasma electrolytic oxidation coatings on the surface of Mg–8Li–1Al alloy'', Tribology International, 47, 62-68, (2012)
- [32] Bala Srinivasan P., Liang J., Blawert C., Störmer M. and Dietzel W., ''Development of decorative and corrosion resistant plasma electrolytic oxidation coatings on AM50 magnesium alloy'', Surface Engineering, 26(5), 367-370, (2010)
- [33] Song Y., Sun X. and Liu Y., ''Effect of TiO2 nanoparticles on the microstructure and corrosion behavior of MAO coatings on magnesium alloy'', Materials and Corrosion, 63(9), 813-818, (2012)
- [34] Arrabal R., Matykina E., Viejo F., Skeldon P., Thompson G. and Merino M., ''AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles'', Applied Surface Science, 254(21), 6937-6942, (2008)
- [35] Toorani M., Aliofkhazraei M. and Rouhaghdam A.S., ''Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy'', Surface and Coatings Technology, 352, 561-580, (2018)
- [36] Ji R., Peng G., Zhang S., Li Z., Li J., Fang T., Zhang Z., Wang Y., He Y. and Wu J., ''The fabrication of a CeO2 coating via cathode plasma electrolytic deposition for the corrosion resistance of AZ31 magnesium alloy'', Ceramics International, 44(16), 19885-19891, (2018)
- [37] Sarbishei S., Sani M.A.F. and Mohammadi M.R., ''Effects of alumina nanoparticles concentration on microstructure and corrosion behavior of coatings formed on titanium substrate via PEO process'', Ceramics International, 42(7), 8789-8797, (2016)