Microstructural and Mechanical Properties of Ti3SiC2-CNF Composite Materials by PM
Yıl 2021,
Cilt: 24 Sayı: 1, 187 - 194, 01.03.2021
Abdualkarim Musbah M. Gariba
Faik Okay
,
Ibtesam Said Shneeb Said
Serkan Islak
Öz
This study aims to investigate the microstructure and mechanical properties of Ti3SiC2-carbon nanofiber (CNF) composite materials by powder metallurgy (PM). Ti, SiC, graphite and CNF powders were used to produce Ti3SiC2-CNF composite materials. After formulated powders were ground in a ball mill, the milled powders were pressed at 500 MPa pressure and then sintered at 1150 °C, 1300 °C and 1450 °C. SEM-EDS and XRD analysis were used to examine the microstructure and phase formation. Hardness test was carried out with the help of Vickers hardness test apparatus. The densities were measured by Archimedes’ principle. Three-point bending test was performed to determine the transverse rupture strength (TRS) of the samples. SEM images showed that the samples have kink band and nanolaminar structures typical of MAX phase materials. The presence of Ti3SiC2 phase detected by XRD analysis also supports this situation. Depending on the sintering temperature, there were changes in the microstructure, density and mechanical properties of the samples.
Kaynakça
- [1] Barsoum M. W., “The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates” Progress in Solid State Chemistry, 28: 201-281, (2000)
- [2] Sun Z. M., Hashimoto H., Zhang Z. F., Yang S. L., Tada S., “Synthesis and characterization of a metallic ceramic material–Ti3SiC2”, Materials transactions, 47: 170-174, (2006)
- [3] Amini S., Ni C., Barsoum M. W., “Processing microstructural characterization and mechanical properties of a Ti2AlC/Nanocrystalline Mg-matrix composite” Composites Science and Technology, 69: 414-420, (2009)
- [4] Palmquist J. P., Li S., Persson P Å., Emmerlich J., Wilhelmsson O., Högberg H., Katsnelson M.I., Johansson B., Ahuja R., Eriksson O., Hultman L., Jansson U., “Mn+1AXn phases in the Ti−Si−C system studied by thin-film synthesis and ab initio calculations”, Physical Review B, 70: 165401, (2004)
- [5] Lin Z., Zhuo M., Zhou Y., Li M., Wang J., “Microstructures and theoretical bulk modulus of layered ternary tantalum aluminium carbides”, Journal of the American Ceramic Society, 89: 3765-3769, (2006)
- [6] Bouhemadou A., “Structural, electronic and elastic properties of MAX phases M2GaN (M= Ti, V and Cr)”, Solid state sciences, 11: 1875-1881, (2009)
- [7] Music D., Sun Z., Schneider J. M., “Electronic structure of Sc2AC (A= Al, Ga, In, Tl)”, Solid state communications, 133: 381-383, (2005)
- [8] Music D., Sun Z., Voevodin A. A., Schneider J. M., “Electronic structure and shearing in nanolaminated ternary carbides”, Solid state communications, 139: 139-143, (2006)
- [9] Bouhemadou A., Khenata R., Chegaar M., “Structural and elastic properties of Zr2AlX and Ti2AlX (X= C and N) under pressure effect” The European Physical Journal B, 56: 209-215, (2007)
- [10] Bouhemadou A., “Prediction study of structural and elastic properties under pressure effect of M2SnC (M= Ti, Zr, Nb, Hf)”, Physica B: Condensed Matter, 403: 2707-2713, (2008)
- [11] Sun Z. M., Yang S., Hashimoto H., Tada S., Abe T., “Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders”, Materials Transactions, 45: 373-375, (2004)
- [12] Sun Z. M., “Progress in research and development on MAX phases: a family of layered ternary compounds”, International Materials Reviews, 56: 143-166, (2011)
- [13] Chang F., Li C., Yang J., Tang H., Xue M.,” Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2”, Materials Letters, 109: 295-298, (2013)
- [14] Kero I., Tegman R., Antti M. L., “Phase reactions associated with the formation of Ti3SiC2 from TiC/Si powders”, Ceramics International, 37: 2615-2619, (2011)
- [15] Hug G., Eklund P., Orchowski A., “Orientation dependence of electron energy loss spectra and dielectric functions of Ti3SiC2 and Ti3AlC2”, Ultramicroscopy, 110: 1054-1058, (2010)
- [16] Li D., Liang Y., Liu X., Zhou Y., “Corrosion behavior of Ti3AlC2 in NaOH and H2SO4.”, Journal of the European Ceramic Society, 30: 3227-3234, (2010)
- [17] Thomas T., Bowen C. R., “Thermodynamic predictions for the manufacture of Ti2AlC MAX-phase ceramic by combustion synthesis”, Journal of Alloys and Compounds, 602: 72-77, (2014)
- [18] Oh H. C., Lee S. H., Choi S. C., “The reaction mechanism for the low temperature synthesis of Cr2AlC under electronic field”, Journal of Alloys and Compounds, 587: 296-302, (2014)
- [19] Li S., Li H., Zhou Y., Zhai H., “Mechanism for abnormal thermal shock behavior of Cr2AlC”, Journal of the European Ceramic Society, 34: 1083-1088, (2014)
- [20] Abdulkadhim A., To Baben M., Schnabe V., Hans M., Thieme N., Polzer C., Polcik P., Schneider J. M., “Crystallization kinetics of V2AlC”, Thin Solid Films, 520: 1930-1933, (2012)
- [21] Chunfeng H., Yoshio S., Salvatore G., Toshiyuki N., Shuqi G., Hidehiko T., “Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness”, Scripta Materialia, 64: 765-768, (2011)
- [22] Ghebouli M. A., Ghebouli B., Bouhemadou A., Fatmi M., “Theoretical study of the structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC”, Solid State Communications, 151: 382-387, (2011)
- [23] Ortiz A. L., Cumbrera F. L., Sánchez‐Bajo F., Guiberteau F., Xu H., Padture N. P., “Quantitative phase‐composition analysis of liquid‐phase‐sintered silicon carbide using the rietveld method”, Journal of the American Ceramic Society, 83: 2282-2286, (2000)
- [24] Singh A., Bakshi S. R., Virzi D. A., Keshri A. K., Agarwal A., Harimkar S. P., “In-situ synthesis of TiC/SiC/Ti3SiC2 composite coatings by spark plasma sintering”, Surface and Coatings Technology, 205: 3840-3846, (2011)
- [25] Bale C. W., Chartrand P., Degterov S. A., Eriksson G., Hack K., Ben Mahfoud R., Melançon J., Pelton A.D., Petersen S., “FactSage thermochemical software and databases”, Calphad, 26: 189-228, (2002)
- [26] Ding H., Chu W., Wang Q., Miao W., Wang H., Liu Q., Glandut N., Li C., “The in-situ synthesis of TiC in Cu melts based on Ti–C–Si system and its mechanism”, Materials & Design, 182: 108007. (2019)
- [27] Yaghobizadeh O., Sedghi A., Baharvandi H. R., “Mechanical properties and microstructure of the CC-SiC, CC-SiC-Ti3SiC2 and CC-SiC-Ti3Si(Al)C2 composites”, Materials Science and Engineering: A, 731: 446-453, (2018)
- [28] Wakelkamp W. J. J., Van Loo F. J. J., Metselaar R., “Phase relations in the Ti-Si-C system”, Journal of the European Ceramic Society, 8: 135-139, (1991)
- [29] Min K. H., Lee B. H., Chang S. Y., Do Kim Y., “Mechanical properties of sintered 7xxx series AI/SiCp composites”, Materials Letters, 61: 2544-2546, (2007)
- [30] Islak S., Kır D., Buytoz S., “Effect of sintering temperature on electrical and microstructure properties of hot pressed Cu-TiC composites”, Science of Sintering, 46: 15-21, (2014)
- [31] Darabi M., Rajabi M., Junipour B., Noghani M. T., “The effect of sintering temperature on Cu-CNTs nano composites properties Produced by PM Method”, Science of Sintering, 50: 477-486, (2018)
- [32] Liu Y., Chen J., Zhou Y., “Effect of Ti5Si3 on wear properties of Ti3Si (Al) C2”, Journal of the European Ceramic Society, 29: 3379-3385, (2009)
- [33] Islak S., Çelik H., “Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments”, Science of Sintering, 47: 131-143, (2015)
- [34] Curtin W. A., “Theory of mechanical properties of ceramic‐matrix composites”, Journal of the American Ceramic Society, 74: 2837-2845, (1991)
- [35] Pompidou S., Lamon J., “Analysis of crack deviation in ceramic matrix composites and multilayers based on the Cook and Gordon mechanism”, Composites science and technology, 67: 2052-2060, (2007)
- [36] Ly H. Q., Taylor R., Day R. J., Heatley F., “Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1 Characterisation of PCS and curing products”, Journal of Materials Science, 36: 4037-4043, (2001)
Microstructural and Mechanical Properties of Ti3SiC2-CNF Composite Materials by PM
Yıl 2021,
Cilt: 24 Sayı: 1, 187 - 194, 01.03.2021
Abdualkarim Musbah M. Gariba
Faik Okay
,
Ibtesam Said Shneeb Said
Serkan Islak
Öz
This study aims to investigate the microstructure and mechanical properties of Ti3SiC2-carbon nanofiber (CNF) composite materials by powder metallurgy (PM). Ti, SiC, graphite and CNF powders were used to produce Ti3SiC2-CNF composite materials. After formulated powders were ground in a ball mill, the milled powders were pressed at 500 MPa pressure and then sintered at 1150 °C, 1300 °C and 1450 °C. SEM-EDS and XRD analysis were used to examine the microstructure and phase formation. Hardness test was carried out with the help of Vickers hardness test apparatus. The densities were measured by Archimedes’ principle. Three-point bending test was performed to determine the transverse rupture strength (TRS) of the samples. SEM images showed that the samples have kink band and nanolaminar structures typical of MAX phase materials. The presence of Ti3SiC2 phase detected by XRD analysis also supports this situation. Depending on the sintering temperature, there were changes in the microstructure, density and mechanical properties of the samples.
Kaynakça
- [1] Barsoum M. W., “The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates” Progress in Solid State Chemistry, 28: 201-281, (2000)
- [2] Sun Z. M., Hashimoto H., Zhang Z. F., Yang S. L., Tada S., “Synthesis and characterization of a metallic ceramic material–Ti3SiC2”, Materials transactions, 47: 170-174, (2006)
- [3] Amini S., Ni C., Barsoum M. W., “Processing microstructural characterization and mechanical properties of a Ti2AlC/Nanocrystalline Mg-matrix composite” Composites Science and Technology, 69: 414-420, (2009)
- [4] Palmquist J. P., Li S., Persson P Å., Emmerlich J., Wilhelmsson O., Högberg H., Katsnelson M.I., Johansson B., Ahuja R., Eriksson O., Hultman L., Jansson U., “Mn+1AXn phases in the Ti−Si−C system studied by thin-film synthesis and ab initio calculations”, Physical Review B, 70: 165401, (2004)
- [5] Lin Z., Zhuo M., Zhou Y., Li M., Wang J., “Microstructures and theoretical bulk modulus of layered ternary tantalum aluminium carbides”, Journal of the American Ceramic Society, 89: 3765-3769, (2006)
- [6] Bouhemadou A., “Structural, electronic and elastic properties of MAX phases M2GaN (M= Ti, V and Cr)”, Solid state sciences, 11: 1875-1881, (2009)
- [7] Music D., Sun Z., Schneider J. M., “Electronic structure of Sc2AC (A= Al, Ga, In, Tl)”, Solid state communications, 133: 381-383, (2005)
- [8] Music D., Sun Z., Voevodin A. A., Schneider J. M., “Electronic structure and shearing in nanolaminated ternary carbides”, Solid state communications, 139: 139-143, (2006)
- [9] Bouhemadou A., Khenata R., Chegaar M., “Structural and elastic properties of Zr2AlX and Ti2AlX (X= C and N) under pressure effect” The European Physical Journal B, 56: 209-215, (2007)
- [10] Bouhemadou A., “Prediction study of structural and elastic properties under pressure effect of M2SnC (M= Ti, Zr, Nb, Hf)”, Physica B: Condensed Matter, 403: 2707-2713, (2008)
- [11] Sun Z. M., Yang S., Hashimoto H., Tada S., Abe T., “Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders”, Materials Transactions, 45: 373-375, (2004)
- [12] Sun Z. M., “Progress in research and development on MAX phases: a family of layered ternary compounds”, International Materials Reviews, 56: 143-166, (2011)
- [13] Chang F., Li C., Yang J., Tang H., Xue M.,” Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2”, Materials Letters, 109: 295-298, (2013)
- [14] Kero I., Tegman R., Antti M. L., “Phase reactions associated with the formation of Ti3SiC2 from TiC/Si powders”, Ceramics International, 37: 2615-2619, (2011)
- [15] Hug G., Eklund P., Orchowski A., “Orientation dependence of electron energy loss spectra and dielectric functions of Ti3SiC2 and Ti3AlC2”, Ultramicroscopy, 110: 1054-1058, (2010)
- [16] Li D., Liang Y., Liu X., Zhou Y., “Corrosion behavior of Ti3AlC2 in NaOH and H2SO4.”, Journal of the European Ceramic Society, 30: 3227-3234, (2010)
- [17] Thomas T., Bowen C. R., “Thermodynamic predictions for the manufacture of Ti2AlC MAX-phase ceramic by combustion synthesis”, Journal of Alloys and Compounds, 602: 72-77, (2014)
- [18] Oh H. C., Lee S. H., Choi S. C., “The reaction mechanism for the low temperature synthesis of Cr2AlC under electronic field”, Journal of Alloys and Compounds, 587: 296-302, (2014)
- [19] Li S., Li H., Zhou Y., Zhai H., “Mechanism for abnormal thermal shock behavior of Cr2AlC”, Journal of the European Ceramic Society, 34: 1083-1088, (2014)
- [20] Abdulkadhim A., To Baben M., Schnabe V., Hans M., Thieme N., Polzer C., Polcik P., Schneider J. M., “Crystallization kinetics of V2AlC”, Thin Solid Films, 520: 1930-1933, (2012)
- [21] Chunfeng H., Yoshio S., Salvatore G., Toshiyuki N., Shuqi G., Hidehiko T., “Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness”, Scripta Materialia, 64: 765-768, (2011)
- [22] Ghebouli M. A., Ghebouli B., Bouhemadou A., Fatmi M., “Theoretical study of the structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC”, Solid State Communications, 151: 382-387, (2011)
- [23] Ortiz A. L., Cumbrera F. L., Sánchez‐Bajo F., Guiberteau F., Xu H., Padture N. P., “Quantitative phase‐composition analysis of liquid‐phase‐sintered silicon carbide using the rietveld method”, Journal of the American Ceramic Society, 83: 2282-2286, (2000)
- [24] Singh A., Bakshi S. R., Virzi D. A., Keshri A. K., Agarwal A., Harimkar S. P., “In-situ synthesis of TiC/SiC/Ti3SiC2 composite coatings by spark plasma sintering”, Surface and Coatings Technology, 205: 3840-3846, (2011)
- [25] Bale C. W., Chartrand P., Degterov S. A., Eriksson G., Hack K., Ben Mahfoud R., Melançon J., Pelton A.D., Petersen S., “FactSage thermochemical software and databases”, Calphad, 26: 189-228, (2002)
- [26] Ding H., Chu W., Wang Q., Miao W., Wang H., Liu Q., Glandut N., Li C., “The in-situ synthesis of TiC in Cu melts based on Ti–C–Si system and its mechanism”, Materials & Design, 182: 108007. (2019)
- [27] Yaghobizadeh O., Sedghi A., Baharvandi H. R., “Mechanical properties and microstructure of the CC-SiC, CC-SiC-Ti3SiC2 and CC-SiC-Ti3Si(Al)C2 composites”, Materials Science and Engineering: A, 731: 446-453, (2018)
- [28] Wakelkamp W. J. J., Van Loo F. J. J., Metselaar R., “Phase relations in the Ti-Si-C system”, Journal of the European Ceramic Society, 8: 135-139, (1991)
- [29] Min K. H., Lee B. H., Chang S. Y., Do Kim Y., “Mechanical properties of sintered 7xxx series AI/SiCp composites”, Materials Letters, 61: 2544-2546, (2007)
- [30] Islak S., Kır D., Buytoz S., “Effect of sintering temperature on electrical and microstructure properties of hot pressed Cu-TiC composites”, Science of Sintering, 46: 15-21, (2014)
- [31] Darabi M., Rajabi M., Junipour B., Noghani M. T., “The effect of sintering temperature on Cu-CNTs nano composites properties Produced by PM Method”, Science of Sintering, 50: 477-486, (2018)
- [32] Liu Y., Chen J., Zhou Y., “Effect of Ti5Si3 on wear properties of Ti3Si (Al) C2”, Journal of the European Ceramic Society, 29: 3379-3385, (2009)
- [33] Islak S., Çelik H., “Effect of sintering temperature and boron carbide content on the wear behavior of hot pressed diamond cutting segments”, Science of Sintering, 47: 131-143, (2015)
- [34] Curtin W. A., “Theory of mechanical properties of ceramic‐matrix composites”, Journal of the American Ceramic Society, 74: 2837-2845, (1991)
- [35] Pompidou S., Lamon J., “Analysis of crack deviation in ceramic matrix composites and multilayers based on the Cook and Gordon mechanism”, Composites science and technology, 67: 2052-2060, (2007)
- [36] Ly H. Q., Taylor R., Day R. J., Heatley F., “Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1 Characterisation of PCS and curing products”, Journal of Materials Science, 36: 4037-4043, (2001)