Derleme
BibTex RIS Kaynak Göster

Developments in Aluminum Production Technologies, Environmental Impact and Application Areas

Yıl 2021, Cilt: 24 Sayı: 2, 585 - 592, 01.06.2021
https://doi.org/10.2339/politeknik.707885

Öz

Aluminum is an indispensable material due to its attractive properties that we use in many areas of our life. In this study, the properties of aluminum, its place in the industry, production technology, energy need in production, its impact on the environment and its historical adventure are discussed. Aluminum is taken from nature as a bauxite mineral, which accounts for 8% of the world's crust. It offers the consumer both economic opportunities and a wide range of products with new methods that are being used and developed. In addition to these features, it has advantages such as low density, conductivity and processability, which increase the importance of this mineral. In the Organisation for Economic Co-operation and Development (OECD) countries aluminum consumption is 33 kg/person.year compared to that of Turkey (approximately 10 kg/person.year) consumption of aluminum with low awareness in Turkey.

Kaynakça

  • [1]Yalçın, H. ve Gürü M., “Malzeme Bilgisi”, Palme Yay., 3. Baskı, Ankara, (2012).
  • [2]Kaw, A.K., “Kompoze Malzeme Mekaniği”, Efil Yay., Ankara, (2014).
  • [3]Uzun, H., “Malzeme Biliminin Temel İlkeleri”, Değişim Yay., İstanbul, (2012).
  • [4]Demiral, F., “İkiz Merdane Sürekli Döküm Yöntemiyle Üretilen AA 1050 Alüminyum Alaşımına Anodik Oksidasyon (Eloksal) İşleminin Uygulanabilme Kabiliyetinin İncelenmesi”, YL Tezi, Gebze Tek. Ün., Fen Bil. Ens., (2015).
  • [5]Krüger, J., Meja, P., Autric, M. and Kautek, W, “Femtosecond pulse laser ablation of anodic oxide coatings on aluminium alloys with on-line acoustic obsevation”, Appl. Surf. Sci., 186: 374-380, (2002).
  • [6] Bykova, E., Parakhonskiy, G., Dubrovinskaia, N., Chernyshov, D. and Dubrovinsky, L, “The crystal structure of aluminum doped β-rhombohedral boron”, J. Solid State Chem., 194: 188-193, (2012).
  • [7] Haraldsson, J. and Johansson, M.T., “Review of measures for improved energy efficiency in production-related processes in the aluminium industry - From electrolysis to recycling”, Renew. Sust. Energ. Rev., 93: 525-548, (2018).
  • [8] European Integrated Pollution Prevention and Control Bureau, “Best available technique (BAT) reference document for the non-ferrous metals industries”, Seville: European Commission's Joint Research Centre, (2014).
  • [9] Balomenos, E., Panias, D. and Paspaliaris, I, “Energy and exergy analysis of the primary aluminum production processes: a review on current and future sustainability”, Miner. Process. Extr. Metall. Rev., 3(2): 69-89, (2011).
  • [10] Poulimenou, N.I., Giannopoulou, I. and Panias, D, “Use of ionic liquids as innovative solvents in primary aluminum production”, Mater. Manuf. Processes, 30(12): 1403-1407, (2014).
  • [11] Halmann, M., Frei, A. and Steinfeld, A, “Carbothermal reduction of alumina: thermochemical equilibrium calculations and experimental investigation”, Energy, 32(12): 2420-2427, (2007).
  • [12] Yang, W., Liu, X., Liu, J., Wang, Z., Zhou, J. and Cen, K, “Thermodynamics analysis of carbothermal-chlorination reduction in aluminum production”, Appl. Therm. Eng., 111: 876-883, (2017).
  • [13] Barzi Y.M. and Assadi M, “Evaluation of a thermosyphon heat pipe operation and application in a waste heat recovery system”, Exp. Heat Transfer, 28: 493-510 (2015).
  • [14] White D.W., “Furnaces designed for fuel efficiency”. In: Lindsay SJ, editor. Light metals, Springer Int. Pub., 1165-1172, Switzerland, (2011).
  • [15] Li, X., Yang, Y., Xu, X., Xu, C. and Hong, J, “Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China”, J. Clean. Prod., 112: 1360-1367, (2016).
  • [16] Zhang, Y., Sun, M., Hong, J., Han, X., He, J., Shi, W. and Li X, “Environmental footprint of aluminum production in China”, J. Clean. Prod., 133: 1242-1251, (2016).
  • [17] Editorial Board of the Yearbook of Nonferrous Metals Industry of China, “The yearbook of nonferrous metals industry of China”, China Nonferrous Metals Industry Association, Beijing, (2016).
  • [18] Farjana, S.H., Huda, N. and Mahmud, M.A.P, “Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment”, Sci. Total Environ., 663: 958-970, (2019).
  • [19] Peng, T., Ou, X., Yan, X. and Wang, G, “Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China”, Energy Proced., 158: 3937-3943, (2019).
  • [20] Norgate, T. and Haque, N., “Energy and greenhouse gas impacts of mining and mineral processing operations”, J. Clean. Prod., 18: 266-274, (2010).
  • [21] Farjana, S.H., Huda, N. and Mahmud, M.A.P, “Life cycle analysis of copper-gold-leadsilver-zinc beneficiation process”. Sci. Total Environ., 659: 41-52, (2019).
  • [22] He, X., Kim, H.C., Wallington, T.J., Zhang, S., Shen, W., Kleine, R., Keoleian, G.A., Ma, R., Zheng, Y., Zhou, B. And Wu Y, “Cradle-to-gate greenhouse gas (GHG) burdens for aluminum and steel production and cradle-to-grave GHG benefits of vehicle lightweighting in China”, Resour. Conserv. Recy., 152: 104497, (2020).
  • [23] Palencia, J.C.G., Sakamaki, T., Araki, M. and Shiga, S., “Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet”, Energy, 93(2):1489-1504, (2015).
  • [24] Yang, Z. and Bandivadekar, A., “Global Update: Light-duty Vehicle Greenhouse Gas and Fuel Economy Standards”, International Council on Clean Transportation (ICCT). https://theicct.org/sites/default/files/publications/2017-Global-LDV-Standards-Update_ICCT-Report_23062017_vF.pdf. (2017).
  • [25] Kim, H.C. and Wallington, T.J., “Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption”, Environ. Sci. Technol., 47(24): 14358-14366, (2013).
  • [26] Luk, J.M., Kim, H.C., De Kleine, R., Wallington, T.J. and MacLean, H.L., “Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting vehicles with different powertrains”, Environ. Sci. Technol., 51(15): 8215-8228, (2017).
  • [27] Kim, H.C., Wallington, T.J., Sullivan, J.L. and Keoleian, G.A., “Life Cycle assessment of vehicle lightweighting: novel mathematical methods to estimate use-phase fuel consumption”. Environ. Sci. Technol., 49(16): 10209-10216, (2015).
  • [28] Sheikhbahaei, V., Baniasadi, E. and Naterer, G.F., “Experimental investigation of solar assisted hydrogen production from water and aluminum”, Int. J. Hydrogen Energ., 43: 9181-9191, (2018).
  • [29] Godart, P., Fischman, J., Seto, K. and Hart, D., “Hydrogen production from aluminum-water reaction subject to varied pressures and temperatures”, Int. J. Hydrogen Energ., 44: 11448-11458, (2019).

Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi ve Uygulama Alanları

Yıl 2021, Cilt: 24 Sayı: 2, 585 - 592, 01.06.2021
https://doi.org/10.2339/politeknik.707885

Öz

Alüminyum yaşantımızın pek çok alanında kullandığımız cazip özellikleri sebebi ile vazgeçilmez bir malzemedir. Bu çalışmada alüminyumun özellikleri, sektördeki yeri, üretim teknolojisi, üretimdeki enerji ihtiyacı, çevreye etkisi ve tarihsel serüveni ana hatları ile incelenmektedir. Alüminyumun dünya kabuğunun %8’ini oluşturan boksit minerali halinde doğadan alınmaktadır. Kullanılmakta olan ve geliştirilen yeni yöntemler ile tüketiciye hem ekonomik fırsatlar hem de geniş bir ürün yelpazesi sunulmaktadır. Bu özelliklerine ek olarak düşük yoğunluk, iletkenlik, işlenebilirlik gibi konularda sunduğu avantajlarda bu mineralin önemini artırmaktadır. Ekonomik Kalkınma ve İşbirliği Örgütü (OECD) ülkelerindeki 33 kg/kişi.yıl tüketim miktarına oranla düşük olan Türkiye alüminyum üretimi son yıllardaki farkındalık ile yıllık kişi başına 10 kg sınırını zorlamaktadır. 

Kaynakça

  • [1]Yalçın, H. ve Gürü M., “Malzeme Bilgisi”, Palme Yay., 3. Baskı, Ankara, (2012).
  • [2]Kaw, A.K., “Kompoze Malzeme Mekaniği”, Efil Yay., Ankara, (2014).
  • [3]Uzun, H., “Malzeme Biliminin Temel İlkeleri”, Değişim Yay., İstanbul, (2012).
  • [4]Demiral, F., “İkiz Merdane Sürekli Döküm Yöntemiyle Üretilen AA 1050 Alüminyum Alaşımına Anodik Oksidasyon (Eloksal) İşleminin Uygulanabilme Kabiliyetinin İncelenmesi”, YL Tezi, Gebze Tek. Ün., Fen Bil. Ens., (2015).
  • [5]Krüger, J., Meja, P., Autric, M. and Kautek, W, “Femtosecond pulse laser ablation of anodic oxide coatings on aluminium alloys with on-line acoustic obsevation”, Appl. Surf. Sci., 186: 374-380, (2002).
  • [6] Bykova, E., Parakhonskiy, G., Dubrovinskaia, N., Chernyshov, D. and Dubrovinsky, L, “The crystal structure of aluminum doped β-rhombohedral boron”, J. Solid State Chem., 194: 188-193, (2012).
  • [7] Haraldsson, J. and Johansson, M.T., “Review of measures for improved energy efficiency in production-related processes in the aluminium industry - From electrolysis to recycling”, Renew. Sust. Energ. Rev., 93: 525-548, (2018).
  • [8] European Integrated Pollution Prevention and Control Bureau, “Best available technique (BAT) reference document for the non-ferrous metals industries”, Seville: European Commission's Joint Research Centre, (2014).
  • [9] Balomenos, E., Panias, D. and Paspaliaris, I, “Energy and exergy analysis of the primary aluminum production processes: a review on current and future sustainability”, Miner. Process. Extr. Metall. Rev., 3(2): 69-89, (2011).
  • [10] Poulimenou, N.I., Giannopoulou, I. and Panias, D, “Use of ionic liquids as innovative solvents in primary aluminum production”, Mater. Manuf. Processes, 30(12): 1403-1407, (2014).
  • [11] Halmann, M., Frei, A. and Steinfeld, A, “Carbothermal reduction of alumina: thermochemical equilibrium calculations and experimental investigation”, Energy, 32(12): 2420-2427, (2007).
  • [12] Yang, W., Liu, X., Liu, J., Wang, Z., Zhou, J. and Cen, K, “Thermodynamics analysis of carbothermal-chlorination reduction in aluminum production”, Appl. Therm. Eng., 111: 876-883, (2017).
  • [13] Barzi Y.M. and Assadi M, “Evaluation of a thermosyphon heat pipe operation and application in a waste heat recovery system”, Exp. Heat Transfer, 28: 493-510 (2015).
  • [14] White D.W., “Furnaces designed for fuel efficiency”. In: Lindsay SJ, editor. Light metals, Springer Int. Pub., 1165-1172, Switzerland, (2011).
  • [15] Li, X., Yang, Y., Xu, X., Xu, C. and Hong, J, “Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China”, J. Clean. Prod., 112: 1360-1367, (2016).
  • [16] Zhang, Y., Sun, M., Hong, J., Han, X., He, J., Shi, W. and Li X, “Environmental footprint of aluminum production in China”, J. Clean. Prod., 133: 1242-1251, (2016).
  • [17] Editorial Board of the Yearbook of Nonferrous Metals Industry of China, “The yearbook of nonferrous metals industry of China”, China Nonferrous Metals Industry Association, Beijing, (2016).
  • [18] Farjana, S.H., Huda, N. and Mahmud, M.A.P, “Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment”, Sci. Total Environ., 663: 958-970, (2019).
  • [19] Peng, T., Ou, X., Yan, X. and Wang, G, “Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China”, Energy Proced., 158: 3937-3943, (2019).
  • [20] Norgate, T. and Haque, N., “Energy and greenhouse gas impacts of mining and mineral processing operations”, J. Clean. Prod., 18: 266-274, (2010).
  • [21] Farjana, S.H., Huda, N. and Mahmud, M.A.P, “Life cycle analysis of copper-gold-leadsilver-zinc beneficiation process”. Sci. Total Environ., 659: 41-52, (2019).
  • [22] He, X., Kim, H.C., Wallington, T.J., Zhang, S., Shen, W., Kleine, R., Keoleian, G.A., Ma, R., Zheng, Y., Zhou, B. And Wu Y, “Cradle-to-gate greenhouse gas (GHG) burdens for aluminum and steel production and cradle-to-grave GHG benefits of vehicle lightweighting in China”, Resour. Conserv. Recy., 152: 104497, (2020).
  • [23] Palencia, J.C.G., Sakamaki, T., Araki, M. and Shiga, S., “Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet”, Energy, 93(2):1489-1504, (2015).
  • [24] Yang, Z. and Bandivadekar, A., “Global Update: Light-duty Vehicle Greenhouse Gas and Fuel Economy Standards”, International Council on Clean Transportation (ICCT). https://theicct.org/sites/default/files/publications/2017-Global-LDV-Standards-Update_ICCT-Report_23062017_vF.pdf. (2017).
  • [25] Kim, H.C. and Wallington, T.J., “Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption”, Environ. Sci. Technol., 47(24): 14358-14366, (2013).
  • [26] Luk, J.M., Kim, H.C., De Kleine, R., Wallington, T.J. and MacLean, H.L., “Review of the fuel saving, life cycle GHG emission, and ownership cost impacts of lightweighting vehicles with different powertrains”, Environ. Sci. Technol., 51(15): 8215-8228, (2017).
  • [27] Kim, H.C., Wallington, T.J., Sullivan, J.L. and Keoleian, G.A., “Life Cycle assessment of vehicle lightweighting: novel mathematical methods to estimate use-phase fuel consumption”. Environ. Sci. Technol., 49(16): 10209-10216, (2015).
  • [28] Sheikhbahaei, V., Baniasadi, E. and Naterer, G.F., “Experimental investigation of solar assisted hydrogen production from water and aluminum”, Int. J. Hydrogen Energ., 43: 9181-9191, (2018).
  • [29] Godart, P., Fischman, J., Seto, K. and Hart, D., “Hydrogen production from aluminum-water reaction subject to varied pressures and temperatures”, Int. J. Hydrogen Energ., 44: 11448-11458, (2019).
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Çetin Çakanyıldırım 0000-0001-7040-1369

Metin Gürü 0000-0002-7335-7583

Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 24 Mart 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 24 Sayı: 2

Kaynak Göster

APA Çakanyıldırım, Ç., & Gürü, M. (2021). Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi ve Uygulama Alanları. Politeknik Dergisi, 24(2), 585-592. https://doi.org/10.2339/politeknik.707885
AMA Çakanyıldırım Ç, Gürü M. Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi ve Uygulama Alanları. Politeknik Dergisi. Haziran 2021;24(2):585-592. doi:10.2339/politeknik.707885
Chicago Çakanyıldırım, Çetin, ve Metin Gürü. “Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi Ve Uygulama Alanları”. Politeknik Dergisi 24, sy. 2 (Haziran 2021): 585-92. https://doi.org/10.2339/politeknik.707885.
EndNote Çakanyıldırım Ç, Gürü M (01 Haziran 2021) Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi ve Uygulama Alanları. Politeknik Dergisi 24 2 585–592.
IEEE Ç. Çakanyıldırım ve M. Gürü, “Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi ve Uygulama Alanları”, Politeknik Dergisi, c. 24, sy. 2, ss. 585–592, 2021, doi: 10.2339/politeknik.707885.
ISNAD Çakanyıldırım, Çetin - Gürü, Metin. “Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi Ve Uygulama Alanları”. Politeknik Dergisi 24/2 (Haziran 2021), 585-592. https://doi.org/10.2339/politeknik.707885.
JAMA Çakanyıldırım Ç, Gürü M. Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi ve Uygulama Alanları. Politeknik Dergisi. 2021;24:585–592.
MLA Çakanyıldırım, Çetin ve Metin Gürü. “Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi Ve Uygulama Alanları”. Politeknik Dergisi, c. 24, sy. 2, 2021, ss. 585-92, doi:10.2339/politeknik.707885.
Vancouver Çakanyıldırım Ç, Gürü M. Alüminyum Üretim Teknolojilerindeki Gelişmeler, Çevreye Etkisi ve Uygulama Alanları. Politeknik Dergisi. 2021;24(2):585-92.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.