Derleme
BibTex RIS Kaynak Göster

Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler

Yıl 2021, Cilt: 24 Sayı: 2, 691 - 701, 01.06.2021

Öz

Teknolojik icatlar, düşünsel bir geçmiş ile sosyo-ekonomik ve işlevsel bir geleceğin birleşimidirler. Teknoloji alanındaki ilerlemeler ve teknolojik buluşlar sayesinde üretim sürekli gelişmiş ve bu gelişim sürecinde üç büyük devrim görmüştür. Bu devrimlerin gerçekleşmesinin altında yatan teknolojiler üretimin ilerlemesinde katalizör görevi üstlenmişlerdir. Teknolojideki ilerlemeler hızlandığında üretim alanında teknolojik baskılara neden olmuş bu baskılar da devrimlerin gerçekleşmesine yol açmıştır. Siber-fiziksel sistemler, bulut teknolojileri, nesnelerin interneti, büyük veri, sanal gerçeklik, yapay zeka ve 3 boyutlu yazıcı teknolojileri gibi Endüstri 4.0’ın bileşeni olarak kabul edilen yeni teknolojiler de endüstriyel bir devrimin gerçekleşmesini sağlayan baskı unsurları olmuştur. Bu teknolojilerin her biri birbirinden bağımsız olarak gelişip farklı uygulama alanlarına sahip olmuş olsa da bir arada kullanıldıklarında elde edilen sinerji sayesinde üretimi, geleneksel yapıdan akıllı üretim seviyesine taşımayı başarmışlardır. Önce sayısallaşan, ardından sanallaşan fiziksel fabrikalar bu sinerjiyle “akıllı fabrikalar”a dönüşmüştür. Fiziksel bir ürünün fikir aşamasındayken başlayan ve ürün ömrü boyunca gerçek zamanlı verilerle sanal bir kopyasının elde edilmesi fikrine dayanan Dijital İkizler, akıllı fabrikaların gerçekleşmesinde bahsi geçen teknolojileri bir arada kullanarak, sinerjiyi ortaya çıkaran anahtar bir teknoloji olmayı başarmıştır. Bu makalenin amacı; Endüstri 4.0 bağlamında akıllı üretim sistem ve süreçlerinde Dijital İkiz kavramının yeri, önemi ve gelecekteki potansiyelini anlamak, bir referans noktası geliştirmek için literatüre katkı sağlamaktır.

Kaynakça

  • [1] Zhuang C., Liu J. and Xiong H., “Digital twin-based smart production management and control framework for the complex product assembly shop-floor”. The International Journal of Advanced Manufacturing Technology, 96: 1149–1163, (2018).
  • [2] Grieves M., “Origins of the digital twin concept”. Working Paper, Florida Institute of Technology, (2016). https://www.researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept Yayınlanma Tarihi: Ağustos 2016. Erişim Tarihi Ağustos 2020
  • [3] Grieves M., “Product lifecycle management: driving the next generation of lean thinking”. McGraw-Hill Education, NewYork, (2006).
  • [4] National Aeronautics and Space Administration (NASA), “Technology area 12: materials, structures, mechanical systems and manufacturing road map”. USA, (2010). Yayınlanma Tarihi: Kasım 2010. Erişim Tarihi: Ağustos 2020.
  • [5] Glaessgen E. H. and Stargel D.S., “The digital twin paradigm for future NASA and US air force vehicles”. 53rd Structures, Structural Dynamics and Materials Conference: Special Session On Digital Twin, Hawaii, 1818-1832, (2012).
  • [6] Grieves M. and Vickers J., “Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems”. Transdisciplinary Perspectives on Complex Systems, Springer International Publishing, Switzerland, (2017).
  • [7] Rayes A. and Salam S., “Internet of things from hype to reality the road to digitization”, Springer Nature, Switzerland, (2017).
  • [8] GE Türkiye Blog, “Öngörü ve verimliliğin adı: dijital ikiz”. https://geturkiyeblog.com/ongoru-ve-verimliligin-adi-dijital-ikiz/. Yayınlanma Tarihi: Haziran 2018. Erişim Tarihi: 20 Ağustos 2020.
  • [9] GE Türkiye Blog, “Tedarik zincirinde dijital ikiz devri”, https://geturkiyeblog.com/tedarik-zincirinde-dijital-ikiz-devri/. Yayınlanma Tarihi: Ekim 2018. Erişim Tarihi: Ağustos 2020.
  • [10] Tuegel E. J., Ingraffea A. R., Eason T. G. and Spottswood S. M., “Reengineering aircraft structural life prediction using a digital twin”. International Journal of Aerospace Engineering, 2011: 1-14, (2011).
  • [11] Tuegel E. J., “The airframe digital twin: some challenges to realization”. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural, Dynamics and Materials Conference, Honolulu, Hawai, 2012: 7177-7184, (2012).
  • [12] Reifsnider K. and Majumdar P.K., “Multi-physics stimulated simulation digital twin methods for fleet management”. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Co-located Conferences, Boston, Massachusetts, 2013:1578, (2013).
  • [13] Cerrone A., Hochhalter J., Heber G. and Ingraffea A., “On the effects of modeling as-manufactured geometry: toward digital twin”, Hindawi Publishing Corporation International Journal of Aerospace Engineering, 2014: 10, (2014).
  • [14] Boschert S. and Rosen R., “Digital twin—the simulation aspect”. Mechatronic Futures, Springer-Verlag, Berlin, (2016).
  • [15] DebRoy T., Zhang W., Turner J. and Babu S.S, “ Building digital twins of 3d printing machines”. Scripta Materalia, 135: 119-124, (2017).
  • [16] Stark R., Kind S. and Neumeyer S., “Innovations in digital modeling for next generation manufacturing system design”. CIRP Annals Manufacturing Technologies, 66(1): 169-172, (2017).
  • [17] Zhang H., Liu Q., Chen X., Zhang D. and Leng J., “A digital twin-based approach for designing and multi-objective optimization of hollow glass production line”. Special Section on Key Technologies for Smart Factory of Industry 4.0, 5(2017): 26901–26911, (2017).
  • [18] Tavares P., Silva J. A., Costa P., Veiga G. and Moreira A. P., “Flexible work cell simülatör using digital twin methodology for highly complex systems in Industry 4.0”, Iberian Robotics Conference, Sevilla, İspanya, 541–552, (2017).
  • [19] Gartner, “Prepare for the Impact of Digital Twins”, https://www.gartner.com/smarterwithgartner/prepare-for-the-impact-of-digital-twins/. Yayınlanma Tarihi: Eylül 2017. Erişim Tarihi: Temmuz 2020.
  • [20] Turing A. M., “Computing machinery and intelligence”, Mind, (59): 433-460, (1950).
  • [21] Klaus K., Rosemann R. and Gable G.G, “What is ERP?”. Information Systems Frontiers, 2(2): 141–176, (2000).
  • [22] Hozdić E., “Smart factory for Industry 4.0: a revıew”, International Journal of Modern Manufacturing Technologies, 7(1): 28-35, (2015).
  • [23] Zühlke D., “Smart factory towards a factory of things”. Annual Reviews in Control, 34(1): 129-138, (2010).
  • [24] Rajagopal P., “An innovation-diffusion view of implementation of erp systems and development of a research model”, Information & Management, Elsevier, 40(2): 87-114, (2002).
  • [25] Bayraktar E. and Efe M., “Kurumsal kaynak planlaması (ERP) ve yazılım seçim süreci”. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (15): 689-709, (2006).
  • [26] Niemann J. and Westkämper E., “Dynamic life cycle control of integrated manufacturing systems using planning processes based on experience”. 38th International Seminar on Manufacturing Systems, Brazil, (2005).
  • [27] Jucke D., Constantinescu C. and Westkämper E., “Smart factory – a step towards the next generation of manufacturing”. Manufacturing Systems and Technologies for the New Frontier The 41st CIRP Conference on Manufacturing System, Tokyo, 115-118, (2007).
  • [28] Ashton K., “That ‘internet of things’ thing”, RFID Journal, (2009). https://www.rfidjournal.com/that-internet-of-things-thing . Yayınlanma Tarihi: Haziran 2009. Erişim Tarihi: Ağustos 2020.
  • [29] Ferguson T., “Have your objects call my object”. Harvard Business Review, https://hbr.org/2002/06/have-your-objects-call-my-objects Yayınlanma Tarihi: Haziran 2002. Erişim Tarihi: Ağustos 2020.
  • [30] Madakam S., Ramaswamy R. and Tripathi S., “Internet of things (IoT): a literature review”. Journal of Computer and Communications, 3 (3): 164-173, (2015).
  • [31] Rifkin J., “Nesnelerin interneti ve işbirliği çağı”. Optimist Yayınları, 401, İstanbul, (2015).
  • [32] Weiser M., “Some computer science issues in ubiquitous computing”. Communications of the ACM, 36(7), (1993).
  • [33] Westkämper E., Constantinescu C. and Hummel V., “New paradigms in manufacturing engineering: factory life cycle”. Production Engineering, 13 (1): 143-146, (2006).
  • [34] Demirel M. Y. and Karaağaç İ., “Bilgisayar destekli üretim süreçlerine genel bir bakış”. Mühendis ve Makina, 55 (652): 51-61, (2014).
  • [35] Jain S., Choong N. F., Aye K. M. and Luo M., “Virtual factory: an integrated approach to manufacturing systems modeling”. International Journal of Operations & Production Management, 21 (5/6): 594-608, (2001).
  • [36] Georgia Institute of Technology, The Virtual Factory Lab (VFL), 20.07.2020 tarihinde https://factory.isye.gatech.edu/ adresinden erişildi.
  • [37] Upton D. M. and A. P. McAfee, ‘‘The real virtual factory’’. Harvard Business Review, (1996). https://hbr.org/1996/07/the-real-virtual-factory . Yayınlanma Tarihi: Temmuz 1996. Erişim Tarihi: Temmuz 2020.
  • [38] Kelsick J. and Vance, J. M., ‘‘The VR factory: discrete event simulation implemented in a virtual environment’’. Proceedings, Proceedings of DETC'98 ASME Design Engineering Technical Conference, Georgia, (1998).
  • [39] Chakravarthy S. and Tufekci S., “Flexible manufacturing system simulation using Sentinel — an active object oriented database management system”. Cooperative Knowledge Processing for Engineering Design, Springer, Boston, (1998).
  • [40] Nikolakis N, Maratos V. and Makris S., “A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace”. Robotics and Computer-Integrated Manufacturing, (56): 233–243, (2019).
  • [41] Blossey R., “Self-cleaning surfaces—virtual realities”. Nature Materials, 2 (5): 301–306, (2003).
  • [42] Stone R. J., "Virtual reality and cyberspace: from science fiction to science fact". Information Services and Use, 11(5-6): 283-300, (1991).
  • [43] Carter R., “Information technology”. Made Simple Books, Oxford, (1991).
  • [44] Burdea C. G. and P. Coiffet. “Virtual reality technology”. John Wiley & Sons: New York, USA, (2003).
  • [45] Azuma R.T., “A survey of augmented reality”. Presence: Teleoperators and Virtual Environments, 6 (4) 355 – 385, (1997).
  • [46] Lee J., “Smart factory systems”. Informatik Spektrum, Springer-Verlag, 38(3), Berlin, (2015).
  • [47] Wellener P., “2019 Deloitte and mapi smart factory study: capturing value through the digital journey”. Deloitte Insights and MAPI, Deloitte, USA, (2019).
  • [48] Lichtblau K., Stich V., Bertenrath R., Blum M., Bleider M., Millack A., Schmitt K., Schmitz E. and Schröter M., “Industrie 4.0 readiness IMPULS-stiftung”. VDMA, Almanya, (2015).
  • [49] Yao X., Zhou J., Zhang C. and Liu M., “Smart manufacturing based on cyber-physical systems and beyond”. Journal of Intelligent Manufacturing, 30: 2805–2817, (2017).
  • [50] Yao X., Zhou J., Lin Y., Li Y., Yu H. and Liu M., “Proactive manufacturing—a big-data driven emerging manufacturing paradigm”. Computer Integrated Manufacturing Systems, 23(1): 172–185, (2017).
  • [51] Zhuang C., Liu Q., Zhang D. and Leng J., “A digital twin-based approach for designing and multi-objective optimization of hollow glass production line”. Special Section on Key Technologies for Smart Factory of Industry 4.0, 5: 26901-26911, (2017).

Digital Twins as Key Technology in Industry 4.0

Yıl 2021, Cilt: 24 Sayı: 2, 691 - 701, 01.06.2021

Öz

Technological inventions are combinations of an intellectual past with socia-economic and functional future. Production is constantly improved thanks to advances in technology and technological innovations and there have been three major revolutions in this development process. The technologies underlying these revolutions have taken the task of catalyst in progress of production. When the progress in technology has accelerated, it was caused technological pressures in production field and it has led to revolutions in these pressure. New technologies, such as cyber-physical systems, cloud technologies, the internet of things, autonomous systems, big data, virtual reality and 3D printer technologies have also become the elements of pressure that they have led to an industrial revolution. Each of these technologies has devoloped independently and have different application areas but thanks to synergy obtained when used together, they achieved to move production from traditional structure to smarter production level. Physical factories which were firstly became digitized and than secondly virtualized, turned into "smart factories" with this synergy. Starting at the idea stage of a physical product and based on the idea of obtaining a virtual copy with real-time data throughout the life of the product, the Digital Twins managed to become a key technology that brings out synergy by using the technologies mentioned in the realization of smart factories. The purpose of this article is contribute to the literature to understand the place, importance and future potential of the Digital Twin concept in smart production systems and processes and also develop a reference point in the context of Industry 4.0.

Kaynakça

  • [1] Zhuang C., Liu J. and Xiong H., “Digital twin-based smart production management and control framework for the complex product assembly shop-floor”. The International Journal of Advanced Manufacturing Technology, 96: 1149–1163, (2018).
  • [2] Grieves M., “Origins of the digital twin concept”. Working Paper, Florida Institute of Technology, (2016). https://www.researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept Yayınlanma Tarihi: Ağustos 2016. Erişim Tarihi Ağustos 2020
  • [3] Grieves M., “Product lifecycle management: driving the next generation of lean thinking”. McGraw-Hill Education, NewYork, (2006).
  • [4] National Aeronautics and Space Administration (NASA), “Technology area 12: materials, structures, mechanical systems and manufacturing road map”. USA, (2010). Yayınlanma Tarihi: Kasım 2010. Erişim Tarihi: Ağustos 2020.
  • [5] Glaessgen E. H. and Stargel D.S., “The digital twin paradigm for future NASA and US air force vehicles”. 53rd Structures, Structural Dynamics and Materials Conference: Special Session On Digital Twin, Hawaii, 1818-1832, (2012).
  • [6] Grieves M. and Vickers J., “Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems”. Transdisciplinary Perspectives on Complex Systems, Springer International Publishing, Switzerland, (2017).
  • [7] Rayes A. and Salam S., “Internet of things from hype to reality the road to digitization”, Springer Nature, Switzerland, (2017).
  • [8] GE Türkiye Blog, “Öngörü ve verimliliğin adı: dijital ikiz”. https://geturkiyeblog.com/ongoru-ve-verimliligin-adi-dijital-ikiz/. Yayınlanma Tarihi: Haziran 2018. Erişim Tarihi: 20 Ağustos 2020.
  • [9] GE Türkiye Blog, “Tedarik zincirinde dijital ikiz devri”, https://geturkiyeblog.com/tedarik-zincirinde-dijital-ikiz-devri/. Yayınlanma Tarihi: Ekim 2018. Erişim Tarihi: Ağustos 2020.
  • [10] Tuegel E. J., Ingraffea A. R., Eason T. G. and Spottswood S. M., “Reengineering aircraft structural life prediction using a digital twin”. International Journal of Aerospace Engineering, 2011: 1-14, (2011).
  • [11] Tuegel E. J., “The airframe digital twin: some challenges to realization”. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural, Dynamics and Materials Conference, Honolulu, Hawai, 2012: 7177-7184, (2012).
  • [12] Reifsnider K. and Majumdar P.K., “Multi-physics stimulated simulation digital twin methods for fleet management”. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Co-located Conferences, Boston, Massachusetts, 2013:1578, (2013).
  • [13] Cerrone A., Hochhalter J., Heber G. and Ingraffea A., “On the effects of modeling as-manufactured geometry: toward digital twin”, Hindawi Publishing Corporation International Journal of Aerospace Engineering, 2014: 10, (2014).
  • [14] Boschert S. and Rosen R., “Digital twin—the simulation aspect”. Mechatronic Futures, Springer-Verlag, Berlin, (2016).
  • [15] DebRoy T., Zhang W., Turner J. and Babu S.S, “ Building digital twins of 3d printing machines”. Scripta Materalia, 135: 119-124, (2017).
  • [16] Stark R., Kind S. and Neumeyer S., “Innovations in digital modeling for next generation manufacturing system design”. CIRP Annals Manufacturing Technologies, 66(1): 169-172, (2017).
  • [17] Zhang H., Liu Q., Chen X., Zhang D. and Leng J., “A digital twin-based approach for designing and multi-objective optimization of hollow glass production line”. Special Section on Key Technologies for Smart Factory of Industry 4.0, 5(2017): 26901–26911, (2017).
  • [18] Tavares P., Silva J. A., Costa P., Veiga G. and Moreira A. P., “Flexible work cell simülatör using digital twin methodology for highly complex systems in Industry 4.0”, Iberian Robotics Conference, Sevilla, İspanya, 541–552, (2017).
  • [19] Gartner, “Prepare for the Impact of Digital Twins”, https://www.gartner.com/smarterwithgartner/prepare-for-the-impact-of-digital-twins/. Yayınlanma Tarihi: Eylül 2017. Erişim Tarihi: Temmuz 2020.
  • [20] Turing A. M., “Computing machinery and intelligence”, Mind, (59): 433-460, (1950).
  • [21] Klaus K., Rosemann R. and Gable G.G, “What is ERP?”. Information Systems Frontiers, 2(2): 141–176, (2000).
  • [22] Hozdić E., “Smart factory for Industry 4.0: a revıew”, International Journal of Modern Manufacturing Technologies, 7(1): 28-35, (2015).
  • [23] Zühlke D., “Smart factory towards a factory of things”. Annual Reviews in Control, 34(1): 129-138, (2010).
  • [24] Rajagopal P., “An innovation-diffusion view of implementation of erp systems and development of a research model”, Information & Management, Elsevier, 40(2): 87-114, (2002).
  • [25] Bayraktar E. and Efe M., “Kurumsal kaynak planlaması (ERP) ve yazılım seçim süreci”. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (15): 689-709, (2006).
  • [26] Niemann J. and Westkämper E., “Dynamic life cycle control of integrated manufacturing systems using planning processes based on experience”. 38th International Seminar on Manufacturing Systems, Brazil, (2005).
  • [27] Jucke D., Constantinescu C. and Westkämper E., “Smart factory – a step towards the next generation of manufacturing”. Manufacturing Systems and Technologies for the New Frontier The 41st CIRP Conference on Manufacturing System, Tokyo, 115-118, (2007).
  • [28] Ashton K., “That ‘internet of things’ thing”, RFID Journal, (2009). https://www.rfidjournal.com/that-internet-of-things-thing . Yayınlanma Tarihi: Haziran 2009. Erişim Tarihi: Ağustos 2020.
  • [29] Ferguson T., “Have your objects call my object”. Harvard Business Review, https://hbr.org/2002/06/have-your-objects-call-my-objects Yayınlanma Tarihi: Haziran 2002. Erişim Tarihi: Ağustos 2020.
  • [30] Madakam S., Ramaswamy R. and Tripathi S., “Internet of things (IoT): a literature review”. Journal of Computer and Communications, 3 (3): 164-173, (2015).
  • [31] Rifkin J., “Nesnelerin interneti ve işbirliği çağı”. Optimist Yayınları, 401, İstanbul, (2015).
  • [32] Weiser M., “Some computer science issues in ubiquitous computing”. Communications of the ACM, 36(7), (1993).
  • [33] Westkämper E., Constantinescu C. and Hummel V., “New paradigms in manufacturing engineering: factory life cycle”. Production Engineering, 13 (1): 143-146, (2006).
  • [34] Demirel M. Y. and Karaağaç İ., “Bilgisayar destekli üretim süreçlerine genel bir bakış”. Mühendis ve Makina, 55 (652): 51-61, (2014).
  • [35] Jain S., Choong N. F., Aye K. M. and Luo M., “Virtual factory: an integrated approach to manufacturing systems modeling”. International Journal of Operations & Production Management, 21 (5/6): 594-608, (2001).
  • [36] Georgia Institute of Technology, The Virtual Factory Lab (VFL), 20.07.2020 tarihinde https://factory.isye.gatech.edu/ adresinden erişildi.
  • [37] Upton D. M. and A. P. McAfee, ‘‘The real virtual factory’’. Harvard Business Review, (1996). https://hbr.org/1996/07/the-real-virtual-factory . Yayınlanma Tarihi: Temmuz 1996. Erişim Tarihi: Temmuz 2020.
  • [38] Kelsick J. and Vance, J. M., ‘‘The VR factory: discrete event simulation implemented in a virtual environment’’. Proceedings, Proceedings of DETC'98 ASME Design Engineering Technical Conference, Georgia, (1998).
  • [39] Chakravarthy S. and Tufekci S., “Flexible manufacturing system simulation using Sentinel — an active object oriented database management system”. Cooperative Knowledge Processing for Engineering Design, Springer, Boston, (1998).
  • [40] Nikolakis N, Maratos V. and Makris S., “A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace”. Robotics and Computer-Integrated Manufacturing, (56): 233–243, (2019).
  • [41] Blossey R., “Self-cleaning surfaces—virtual realities”. Nature Materials, 2 (5): 301–306, (2003).
  • [42] Stone R. J., "Virtual reality and cyberspace: from science fiction to science fact". Information Services and Use, 11(5-6): 283-300, (1991).
  • [43] Carter R., “Information technology”. Made Simple Books, Oxford, (1991).
  • [44] Burdea C. G. and P. Coiffet. “Virtual reality technology”. John Wiley & Sons: New York, USA, (2003).
  • [45] Azuma R.T., “A survey of augmented reality”. Presence: Teleoperators and Virtual Environments, 6 (4) 355 – 385, (1997).
  • [46] Lee J., “Smart factory systems”. Informatik Spektrum, Springer-Verlag, 38(3), Berlin, (2015).
  • [47] Wellener P., “2019 Deloitte and mapi smart factory study: capturing value through the digital journey”. Deloitte Insights and MAPI, Deloitte, USA, (2019).
  • [48] Lichtblau K., Stich V., Bertenrath R., Blum M., Bleider M., Millack A., Schmitt K., Schmitz E. and Schröter M., “Industrie 4.0 readiness IMPULS-stiftung”. VDMA, Almanya, (2015).
  • [49] Yao X., Zhou J., Zhang C. and Liu M., “Smart manufacturing based on cyber-physical systems and beyond”. Journal of Intelligent Manufacturing, 30: 2805–2817, (2017).
  • [50] Yao X., Zhou J., Lin Y., Li Y., Yu H. and Liu M., “Proactive manufacturing—a big-data driven emerging manufacturing paradigm”. Computer Integrated Manufacturing Systems, 23(1): 172–185, (2017).
  • [51] Zhuang C., Liu Q., Zhang D. and Leng J., “A digital twin-based approach for designing and multi-objective optimization of hollow glass production line”. Special Section on Key Technologies for Smart Factory of Industry 4.0, 5: 26901-26911, (2017).
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Esra Kumaş 0000-0003-3792-1295

Serpil Erol

Yayımlanma Tarihi 1 Haziran 2021
Gönderilme Tarihi 10 Ağustos 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 24 Sayı: 2

Kaynak Göster

APA Kumaş, E., & Erol, S. (2021). Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi, 24(2), 691-701.
AMA Kumaş E, Erol S. Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi. Haziran 2021;24(2):691-701.
Chicago Kumaş, Esra, ve Serpil Erol. “Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler”. Politeknik Dergisi 24, sy. 2 (Haziran 2021): 691-701.
EndNote Kumaş E, Erol S (01 Haziran 2021) Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi 24 2 691–701.
IEEE E. Kumaş ve S. Erol, “Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler”, Politeknik Dergisi, c. 24, sy. 2, ss. 691–701, 2021.
ISNAD Kumaş, Esra - Erol, Serpil. “Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler”. Politeknik Dergisi 24/2 (Haziran 2021), 691-701.
JAMA Kumaş E, Erol S. Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi. 2021;24:691–701.
MLA Kumaş, Esra ve Serpil Erol. “Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler”. Politeknik Dergisi, c. 24, sy. 2, 2021, ss. 691-0.
Vancouver Kumaş E, Erol S. Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi. 2021;24(2):691-70.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.