Deprem kaynaklı meydana gelmesi muhtemel zemin deplasman miktarının tahmin edilmesi hem üstyapılar hem de alt yapılar için önem arz etmektedir. Bu hareketin miktarını tahmin edebilmek için literatürde bazı yöntemler geliştirilmiştir. Bu yöntemlerin en önemlilerinden biri de Newmark Kayan Blok Modeli’dir. Bu yaklaşıma dayalı olarak birçok regresyon formülü üretilmiştir. Öncelikle daha önce ortaya konan bu formüllerin bu çalışmada kullanılan dünya genelindeki deprem verilerine göre yeniden analizi gerçekleştirilmiş ve elde edilen sonuçlar irdelenmiştir. Sonrasında bu makale kapsamında yeni bir regresyon denklemi elde edilmiştir. Regresyon analizlerinin karşılaştırılması sonucunda, yeni formülün standart sapma ve R2 açısından daha uygun sonuçlara sahip olduğu tespit edilmiştir.
Newmark, N.M.Effects of earthquakes on damsandembankments. Geotechnique 15, 139–159, 1965.
Siyahi B., Erdik M., Sesetyan K., Demircioğlu M.B., Akman H., Sıvılaşma ve şev stabilitesi hassaslığı ve potansiyeli haritaları: İstanbul örneği, Besinci Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs, İstanbul, 2003.
Wilson, R.C., Keefer, D.K., Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America 73, 863–877, 1983
Wieczorek, G.F., Wilson, R.C., Harp, E.L., Map showing slope stability during earthquakes in San Mateo County California: US Geological Survey Miscellaneous Investigations Map I-1257-E, scale 1:62,500, 1985
Houston, S.L., Houston, W.N., Padilla, J.M., Microcomputeraided evaluation of earthquake-induced permanent slope displacements. Microcomputers in Civil Engineering 2, 207–222, 1987
Jibson, R.W., Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record 1411, 9–17, 1993
Jibson, R.W., Keefer, D.K., Analysis of the seismic origin of landslides: examples from the NewMadrid seismic zone. Geological Society of America Bulletin 105, 521–536, 1993
California Division of Mines and Geology, Guidelines for evaluating and mitigating seismic hazards in California. California Division of Mines and Geology Special Publication vol. 117. 74 pp, 1997
Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area. US Geological Survey Open-File Report 98-113. . 17 pp, 1998
Mankelow, J.M.,Murphy,W., Using GIS in the probabilistic assessment of earthquake triggered landslide hazards. Journal of Earthquake Engineering 2, 593–623, 1998
Bray, J.D., Rathje, E.M., Earthquake-induced displacements of solid-wastelandfills. Journal of Geotechnical and Geoenvironmental Engineering 124, 242–253, 1998
Luzi, L., Pergalani, F., Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia — Italy). Natural Hazards 20, 57–82, 1999
Miles, S.B., Ho, C.L., Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation. Soil Dynamics and Earthquake Engineering 18, 305–323, 1999
Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology 58, 271–289, 2000
Miles, S.B., Keefer, D.K., Evaluation of seismic slope performance models using a regional case study. Environmental and Engineering Geoscience 6, 25–39, 2000
Miles, S.B., Keefer, D.K., Seismic Landslide Hazard for the City of Berkeley, California. US Geological Survey Miscellaneous Field Studies Map MF-2378, 2001
Del Gaudio, V., Pierri, P., Wasowski, J., An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bulletin. Seismological Society of America 93, 557–569, 2003
Pradel, D., Smith, P.M., Stewart, J.P., Raad, G., Case history of landslide movement during the Northridge earthquake. Journal of Geotechnical and Geoenvironmental Engineering 131, 1360–1369, 2005
Haneberg, W.C., Effects of digital elevation model errors on spatially distributed seismic slope stability calculations: an example from Seattle, Washington. Environmental and Engineering Geoscience 12, 247–260, 2006
Rathje, E., Saygili, G., A vector hazard approach for Newmark sliding block analysis. Proceedings, New Zealand Workshop on Geotechnical Earthquake Engineering Workshop, 20–23 November. University of Canterbury, Christchurch, New Zealand, pp. 205–216, 2006
Arias, A., A measure of earthquake intensity. In: Hansen, R.J. (Ed.), Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge,MA, pp. 438–483, 1970
Hesieh Shang-Yu, Chyi-Tyi Lee. Empirical estimation of the Newmark desplacement from the Arias intensity and critical acceleration. Engineering Geology 122, 34–42,2011
Yiğit, A., Lav, M.,A, Gedikli, A., Türkiye Deprem Verilerine Göre Newmark Yönteminin Uygulanması, 7. Uluslararası Katılımlı Geoteknik Sempozyumu, İstanbul , İMO, 2017.
Url-2 < https://deprem.afad.gov.tr/>
Url-3 < http://peer.berkeley.edu/>
Estimation of Ground Displacement According to Newmark Method
Prediction of the amount of possible ground displacement caused by an earthquake is important for both superstructures and infrastructures. In literature, some methods have been developed to estimate the amount of this movement. One of the most important models of these methods is Newmark Sliding Block Model. Many regression formulas have been produced based on this approximation. Primarily, these formulas have been re-analyzed according to world-wide earthquake data used in this study and the results have been examined. Then, a new regression equation has been obtained within the scope of this paper. In consequence of the comparison of the regression analyses, it has been determined that the new formula has more appropriate results in terms of the standart deviation and R2.
Newmark, N.M.Effects of earthquakes on damsandembankments. Geotechnique 15, 139–159, 1965.
Siyahi B., Erdik M., Sesetyan K., Demircioğlu M.B., Akman H., Sıvılaşma ve şev stabilitesi hassaslığı ve potansiyeli haritaları: İstanbul örneği, Besinci Ulusal Deprem Mühendisliği Konferansı, 26-30 Mayıs, İstanbul, 2003.
Wilson, R.C., Keefer, D.K., Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America 73, 863–877, 1983
Wieczorek, G.F., Wilson, R.C., Harp, E.L., Map showing slope stability during earthquakes in San Mateo County California: US Geological Survey Miscellaneous Investigations Map I-1257-E, scale 1:62,500, 1985
Houston, S.L., Houston, W.N., Padilla, J.M., Microcomputeraided evaluation of earthquake-induced permanent slope displacements. Microcomputers in Civil Engineering 2, 207–222, 1987
Jibson, R.W., Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record 1411, 9–17, 1993
Jibson, R.W., Keefer, D.K., Analysis of the seismic origin of landslides: examples from the NewMadrid seismic zone. Geological Society of America Bulletin 105, 521–536, 1993
California Division of Mines and Geology, Guidelines for evaluating and mitigating seismic hazards in California. California Division of Mines and Geology Special Publication vol. 117. 74 pp, 1997
Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area. US Geological Survey Open-File Report 98-113. . 17 pp, 1998
Mankelow, J.M.,Murphy,W., Using GIS in the probabilistic assessment of earthquake triggered landslide hazards. Journal of Earthquake Engineering 2, 593–623, 1998
Bray, J.D., Rathje, E.M., Earthquake-induced displacements of solid-wastelandfills. Journal of Geotechnical and Geoenvironmental Engineering 124, 242–253, 1998
Luzi, L., Pergalani, F., Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia — Italy). Natural Hazards 20, 57–82, 1999
Miles, S.B., Ho, C.L., Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation. Soil Dynamics and Earthquake Engineering 18, 305–323, 1999
Jibson, R.W., Harp, E.L., Michael, J.M., A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology 58, 271–289, 2000
Miles, S.B., Keefer, D.K., Evaluation of seismic slope performance models using a regional case study. Environmental and Engineering Geoscience 6, 25–39, 2000
Miles, S.B., Keefer, D.K., Seismic Landslide Hazard for the City of Berkeley, California. US Geological Survey Miscellaneous Field Studies Map MF-2378, 2001
Del Gaudio, V., Pierri, P., Wasowski, J., An approach to time-probabilistic evaluation of seismically induced landslide hazard. Bulletin. Seismological Society of America 93, 557–569, 2003
Pradel, D., Smith, P.M., Stewart, J.P., Raad, G., Case history of landslide movement during the Northridge earthquake. Journal of Geotechnical and Geoenvironmental Engineering 131, 1360–1369, 2005
Haneberg, W.C., Effects of digital elevation model errors on spatially distributed seismic slope stability calculations: an example from Seattle, Washington. Environmental and Engineering Geoscience 12, 247–260, 2006
Rathje, E., Saygili, G., A vector hazard approach for Newmark sliding block analysis. Proceedings, New Zealand Workshop on Geotechnical Earthquake Engineering Workshop, 20–23 November. University of Canterbury, Christchurch, New Zealand, pp. 205–216, 2006
Arias, A., A measure of earthquake intensity. In: Hansen, R.J. (Ed.), Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge,MA, pp. 438–483, 1970
Hesieh Shang-Yu, Chyi-Tyi Lee. Empirical estimation of the Newmark desplacement from the Arias intensity and critical acceleration. Engineering Geology 122, 34–42,2011
Yiğit, A., Lav, M.,A, Gedikli, A., Türkiye Deprem Verilerine Göre Newmark Yönteminin Uygulanması, 7. Uluslararası Katılımlı Geoteknik Sempozyumu, İstanbul , İMO, 2017.
Yiğit, A. (2021). Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi, 24(3), 943-952. https://doi.org/10.2339/politeknik.665258
AMA
Yiğit A. Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi. Eylül 2021;24(3):943-952. doi:10.2339/politeknik.665258
Chicago
Yiğit, Adil. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi 24, sy. 3 (Eylül 2021): 943-52. https://doi.org/10.2339/politeknik.665258.
EndNote
Yiğit A (01 Eylül 2021) Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi 24 3 943–952.
IEEE
A. Yiğit, “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”, Politeknik Dergisi, c. 24, sy. 3, ss. 943–952, 2021, doi: 10.2339/politeknik.665258.
ISNAD
Yiğit, Adil. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi 24/3 (Eylül 2021), 943-952. https://doi.org/10.2339/politeknik.665258.
JAMA
Yiğit A. Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi. 2021;24:943–952.
MLA
Yiğit, Adil. “Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi”. Politeknik Dergisi, c. 24, sy. 3, 2021, ss. 943-52, doi:10.2339/politeknik.665258.
Vancouver
Yiğit A. Newmark Yöntemine Göre Zemin Deplasmanının Tahmin Edilmesi. Politeknik Dergisi. 2021;24(3):943-52.