Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis using Nickel Foil

Yıl 2021, Cilt: 24 Sayı: 3, 1181 - 1186, 01.09.2021
https://doi.org/10.2339/politeknik.869535

Öz

Graphene has been one of the most investigated nanomaterials in recent years due to its one atom thickness nature and its extraordinary properties such as high conductivity and excellent transmittance in visible range, bendability and high carrier mobility. Although there are many techniques to grow graphene, chemical vapor deposition technique is one of the best approach to synthesize homogeneous and commercial scale graphene in thin film form. Many parameters can affect the quality and homogeneity of the graphene film that is grown with this technique. In this study, two growth parameters which are methane flow rate and growth time were investigated to find out their effect on the quality of the graphene film, which is grown on nickel foil. Graphene film grown with different flow rates of methane (from 20 to 50 sccm) and growth time (50 to 20 mins.) were examined. We found that single layer graphene film could only be grown under 20 sccm methane flow in 20 mins. growth time as evidenced via Raman spectroscopy measurements. Furthermore, the single layer graphene film was found to be in high homogeneity as confirmed by Raman mapping. On the other hand, multi-layer graphene film was obtained by increasing both methane flow and growth time.

Kaynakça

  • [1] K. Geim and K. S. Novoselov, "The rise of graphene," Nature Journals, 5: 11-19, (2010).
  • [2] Rahul, Raveendran Nair., Peter, Blake., Alexander, Grigorenko., Konstantine, Novoselov., T. J. Booth., T. Stauber., N.M.R. Peres., Andrei, Geim., ‘’Fine structure constant defines visual transparency of graphene’’, Science, 320: 1308, (2008).
  • [3] Ohta, T., Bostwick, A., Seyller, T., Horn, K., and Rotenberg, E. ‘’Controlling the electronic structure of bilayer graphene’’, Science, 313(5789): 951-954, (2006).
  • [4] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., Dubonos, C.V. and Firsov, A. A. ‘’Two-dimensional gas of massless Dirac fermions in graphene’’, Nature, 438(7065): 197-200, (2005).
  • [5] Schwierz, ’’Graphene transistors’’,Nature nanotechnology, 5(7): 487, (2010).
  • [6] Avouris, P. and Xia, F. ‘’Graphene applications in electronics and photonics’’, Mrs Bulletin, 37(12):1225-1234, (2012).
  • [7] Weiran, Cao., Jian, Li., Hongzheng, Chen., , Xue,‘’Transparent electrodes for organic optoelectronic devices: a review’’, Journal of Photonics for Energy, 4: 040990-1-15, (2014).
  • [8] Alfonso, Reina., Xiaoting, Jia., John, Ho., Daniel, Nezich., Hyungbin, Son., Vladimir, Bulovic., Mildred, Dresselhaus., Jing, Kong, ‘’Large area, few layer graphene films on arbitrary substartes by chemical vapor deposition,’’ Nano Letters, 9: 30-35, (2008).
  • [9] Rebecca S., Edwards., Karl S., Coleman, ‘’graphene synthesis: relationship to applications’’, Royal Society of Chemistry, 5: 38-51, (2012).
  • [10] Yi, M. and Shen, Z. ‘’A review on mechanical exfoliation for the scalable production of graphene’’, Journal of Materials Chemistry A, 3(22): 11700-11715, (2015).
  • [11] Zheng, Q., Li, Z., Yang, J., & Kim, J. K. ‘’Graphene oxide-based transparent conductive films’’, Progress in Materials Science, 64: 200-247, (2014).
  • [12] Yı, Zhang., Luyao, Zhang., Chongwu, Zhou, ‘’review of chemical vapor deposition of graphene and related applications’’, Accounts of Chemical Research, 46: 2329-2339, (2013).
  • [13] Altuntepe A. and Zan, R. ‘’Permanent boron doped graphene with high homogeneity using phenylboronic acid’’, Journal of Molecular Structure, 1230: 0022-2860, (2021).
  • [14] Seo, Jihyung., Lee, Junghyun., Jang, A-Rang., Choi, Yunseong., Kim, Ungsoo., Suk Sin, Hyeon., Park, Hyesung, ‘’Study of cooling rate on the growth of graphene via chemical vapor deposition’’, Chemistry of Materials, 29: 4202-4208, (2017).
  • [15] Lee, H. C., Liu, W. W., Chai, S. P., Mohamed, A. R., Lai, C. W., Khe, C. S., Voon,C. H., Hashim, U. and Hidayah, N. M. S., ‘’Synthesis of single-layer graphene:A review of recent development’’, Procedia Chemistry, 19: 916-921, (2016).
  • [16] Qingkai, Yu., Jie, Lian., Sujitra, Siriponglert., Hao, Li., Yong P., Chen., Shin-Shem, Pei, ‘’Graphene segregated on nickel surfaces and transferred to insulators’’, Applied Physics Letters, 93: 113103-1-3, (2008).
  • [17] Peng, Z., Yan, Z., Sun, Z., & Tour, J. M. ‘’Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel’’, ACS nano, 5(10): 8241-8247, (2011).
  • [18] Xiangping, Chen., Lili, Zang., Shanshan, Chen, ‘’Large area CVD growth of graphene’’ ACS nano, 210: 95-108. (2015).
  • [19] Ahmad, Umair., Hassan, Raza, ‘’Controlled synthesis of bilayer graphene on nickel’’, Nanoscale Research Letters, 7: 437, (2012).
  • [20] Li, X., Cai, W., Colombo, L., & Ruoff, R. S. ‘’Evolution of graphene growth on Ni and Cu by carbon isotope labeling’’, Nano letters, 9(12): 4268-4272, (2009).
  • [21] Baraton, L., He, Z. B., Lee, C. S., Cojocaru, C. S., Châtelet, M., Maurice, J. L., Pribat, D. ‘’On the mechanisms of precipitation of graphene on nickel thin films’’, EPL Europhysics Letters, 96(4): 46003, (2011).
  • [22] Lavin-Lopez, M. P., Valverde, J. L., Ruiz-Enrique, M. I., Sanchez-Silva, L., Romero, A. ‘’Thickness control of graphene deposited over polycrystalline nickel’’, New Journal of Chemistry, 39(6): 4414-4423, (2015).
  • [23] Huang, L., Chang, Q. H., Guo, G. L., Liu, Y., Xie, Y. Q., Wang, T., Ling, B., Yang, H. F. ‘’Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition’’, Carbon, 50(2): 551-556, (2012).
  • [24] Altuntepe, A., Seyhan, A., & Zan, R. ‘’Graphene for Si-based solar cells’’, Journal of Molecular Structure, 1200: 127055, (2020).
  • [25] Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S. ‘’Raman spectroscopy in graphene’’, Physics reports, 473(5-6): 51-87. (2009).
  • [26] R. Zan, A. Altuntepe, S.J.P.E.L.-d.S. Erkan, “Substitutional Boron Doping of Graphene using Diborane in CVD’’, Journal of Molecular Structure 114629, (2021).
  • [27] Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K. S., Basko, D. M., Ferrari, A. C. ''Raman spectroscopy of graphene edges'', Nano letters, 9(4): 1433-1441, (2009).

Nikel Folyo Üzerinde Büyüme Süresi ve Metan Akışının Grafen Sentezi Üzerindeki Etkisinin İncelenmesi

Yıl 2021, Cilt: 24 Sayı: 3, 1181 - 1186, 01.09.2021
https://doi.org/10.2339/politeknik.869535

Öz

Grafen, yüksek taşıyıcı mobilitesi, yüksek esneklik ve görünür bölgede yüksek ışık geçirgenliğinden dolayı en çok araştırılan nanomalzemelerden biri haline gelmiştir. Birçok üretim tekniği olmasına karşın kimyasal buhar biriktirme yöntemi, homojenlik, geniş ölçekli gafen sentezi gibi özellikleri sayesinde grafen üretiminde en çok kullanılan yaklaşım haline gelmiştir. Yüksek kalitede geniş ölçekli sentez için bu teknikte bir çok parametre etkili olmaktadır. Bu çalışmada, nikel folyo üzerinde büyütülen grafen için metan akış hızı ve büyüme süresi olmak üzere iki büyüme parametresi incelenmiştir. Farklı metan akış hızları (20 sccm’den 50 sccm) ve büyüme süresi (50 dakiakadan 20 dakikaya) ile büyütülen grafen filmler incelenmiştir. Tek katmanlı grafen filmin, Raman spektroskopi ölçümleriyle gösterildiği üzere, 20 dakika büyüme süresinde yalnızca 20 sccm metan akışı altında sentezlenebildiği belirlenmiştir. Ayrıca, tek katmanlı grafen filmin, Raman haritalaması ile teyit edildiği üzere yüksek homojenlikte olduğu belirlenmiştir. Öte yandan, hem metan akışını hem de büyüme süresini artırılarak çok katmanlı grafen filmi elde edilmiştir.

Kaynakça

  • [1] K. Geim and K. S. Novoselov, "The rise of graphene," Nature Journals, 5: 11-19, (2010).
  • [2] Rahul, Raveendran Nair., Peter, Blake., Alexander, Grigorenko., Konstantine, Novoselov., T. J. Booth., T. Stauber., N.M.R. Peres., Andrei, Geim., ‘’Fine structure constant defines visual transparency of graphene’’, Science, 320: 1308, (2008).
  • [3] Ohta, T., Bostwick, A., Seyller, T., Horn, K., and Rotenberg, E. ‘’Controlling the electronic structure of bilayer graphene’’, Science, 313(5789): 951-954, (2006).
  • [4] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., Dubonos, C.V. and Firsov, A. A. ‘’Two-dimensional gas of massless Dirac fermions in graphene’’, Nature, 438(7065): 197-200, (2005).
  • [5] Schwierz, ’’Graphene transistors’’,Nature nanotechnology, 5(7): 487, (2010).
  • [6] Avouris, P. and Xia, F. ‘’Graphene applications in electronics and photonics’’, Mrs Bulletin, 37(12):1225-1234, (2012).
  • [7] Weiran, Cao., Jian, Li., Hongzheng, Chen., , Xue,‘’Transparent electrodes for organic optoelectronic devices: a review’’, Journal of Photonics for Energy, 4: 040990-1-15, (2014).
  • [8] Alfonso, Reina., Xiaoting, Jia., John, Ho., Daniel, Nezich., Hyungbin, Son., Vladimir, Bulovic., Mildred, Dresselhaus., Jing, Kong, ‘’Large area, few layer graphene films on arbitrary substartes by chemical vapor deposition,’’ Nano Letters, 9: 30-35, (2008).
  • [9] Rebecca S., Edwards., Karl S., Coleman, ‘’graphene synthesis: relationship to applications’’, Royal Society of Chemistry, 5: 38-51, (2012).
  • [10] Yi, M. and Shen, Z. ‘’A review on mechanical exfoliation for the scalable production of graphene’’, Journal of Materials Chemistry A, 3(22): 11700-11715, (2015).
  • [11] Zheng, Q., Li, Z., Yang, J., & Kim, J. K. ‘’Graphene oxide-based transparent conductive films’’, Progress in Materials Science, 64: 200-247, (2014).
  • [12] Yı, Zhang., Luyao, Zhang., Chongwu, Zhou, ‘’review of chemical vapor deposition of graphene and related applications’’, Accounts of Chemical Research, 46: 2329-2339, (2013).
  • [13] Altuntepe A. and Zan, R. ‘’Permanent boron doped graphene with high homogeneity using phenylboronic acid’’, Journal of Molecular Structure, 1230: 0022-2860, (2021).
  • [14] Seo, Jihyung., Lee, Junghyun., Jang, A-Rang., Choi, Yunseong., Kim, Ungsoo., Suk Sin, Hyeon., Park, Hyesung, ‘’Study of cooling rate on the growth of graphene via chemical vapor deposition’’, Chemistry of Materials, 29: 4202-4208, (2017).
  • [15] Lee, H. C., Liu, W. W., Chai, S. P., Mohamed, A. R., Lai, C. W., Khe, C. S., Voon,C. H., Hashim, U. and Hidayah, N. M. S., ‘’Synthesis of single-layer graphene:A review of recent development’’, Procedia Chemistry, 19: 916-921, (2016).
  • [16] Qingkai, Yu., Jie, Lian., Sujitra, Siriponglert., Hao, Li., Yong P., Chen., Shin-Shem, Pei, ‘’Graphene segregated on nickel surfaces and transferred to insulators’’, Applied Physics Letters, 93: 113103-1-3, (2008).
  • [17] Peng, Z., Yan, Z., Sun, Z., & Tour, J. M. ‘’Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel’’, ACS nano, 5(10): 8241-8247, (2011).
  • [18] Xiangping, Chen., Lili, Zang., Shanshan, Chen, ‘’Large area CVD growth of graphene’’ ACS nano, 210: 95-108. (2015).
  • [19] Ahmad, Umair., Hassan, Raza, ‘’Controlled synthesis of bilayer graphene on nickel’’, Nanoscale Research Letters, 7: 437, (2012).
  • [20] Li, X., Cai, W., Colombo, L., & Ruoff, R. S. ‘’Evolution of graphene growth on Ni and Cu by carbon isotope labeling’’, Nano letters, 9(12): 4268-4272, (2009).
  • [21] Baraton, L., He, Z. B., Lee, C. S., Cojocaru, C. S., Châtelet, M., Maurice, J. L., Pribat, D. ‘’On the mechanisms of precipitation of graphene on nickel thin films’’, EPL Europhysics Letters, 96(4): 46003, (2011).
  • [22] Lavin-Lopez, M. P., Valverde, J. L., Ruiz-Enrique, M. I., Sanchez-Silva, L., Romero, A. ‘’Thickness control of graphene deposited over polycrystalline nickel’’, New Journal of Chemistry, 39(6): 4414-4423, (2015).
  • [23] Huang, L., Chang, Q. H., Guo, G. L., Liu, Y., Xie, Y. Q., Wang, T., Ling, B., Yang, H. F. ‘’Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition’’, Carbon, 50(2): 551-556, (2012).
  • [24] Altuntepe, A., Seyhan, A., & Zan, R. ‘’Graphene for Si-based solar cells’’, Journal of Molecular Structure, 1200: 127055, (2020).
  • [25] Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S. ‘’Raman spectroscopy in graphene’’, Physics reports, 473(5-6): 51-87. (2009).
  • [26] R. Zan, A. Altuntepe, S.J.P.E.L.-d.S. Erkan, “Substitutional Boron Doping of Graphene using Diborane in CVD’’, Journal of Molecular Structure 114629, (2021).
  • [27] Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K. S., Basko, D. M., Ferrari, A. C. ''Raman spectroscopy of graphene edges'', Nano letters, 9(4): 1433-1441, (2009).
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Meryem Bozkaya Bu kişi benim 0000-0001-5711-9369

Ali Altuntepe 0000-0002-6366-4125

Hakan Ateş 0000-0002-5132-4107

Recep Zan 0000-0001-6739-4348

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 28 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 24 Sayı: 3

Kaynak Göster

APA Bozkaya, M., Altuntepe, A., Ateş, H., Zan, R. (2021). Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis using Nickel Foil. Politeknik Dergisi, 24(3), 1181-1186. https://doi.org/10.2339/politeknik.869535
AMA Bozkaya M, Altuntepe A, Ateş H, Zan R. Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis using Nickel Foil. Politeknik Dergisi. Eylül 2021;24(3):1181-1186. doi:10.2339/politeknik.869535
Chicago Bozkaya, Meryem, Ali Altuntepe, Hakan Ateş, ve Recep Zan. “Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis Using Nickel Foil”. Politeknik Dergisi 24, sy. 3 (Eylül 2021): 1181-86. https://doi.org/10.2339/politeknik.869535.
EndNote Bozkaya M, Altuntepe A, Ateş H, Zan R (01 Eylül 2021) Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis using Nickel Foil. Politeknik Dergisi 24 3 1181–1186.
IEEE M. Bozkaya, A. Altuntepe, H. Ateş, ve R. Zan, “Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis using Nickel Foil”, Politeknik Dergisi, c. 24, sy. 3, ss. 1181–1186, 2021, doi: 10.2339/politeknik.869535.
ISNAD Bozkaya, Meryem vd. “Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis Using Nickel Foil”. Politeknik Dergisi 24/3 (Eylül 2021), 1181-1186. https://doi.org/10.2339/politeknik.869535.
JAMA Bozkaya M, Altuntepe A, Ateş H, Zan R. Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis using Nickel Foil. Politeknik Dergisi. 2021;24:1181–1186.
MLA Bozkaya, Meryem vd. “Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis Using Nickel Foil”. Politeknik Dergisi, c. 24, sy. 3, 2021, ss. 1181-6, doi:10.2339/politeknik.869535.
Vancouver Bozkaya M, Altuntepe A, Ateş H, Zan R. Investigating the Impact of Growth Time and Methane Flow on Graphene Synthesis using Nickel Foil. Politeknik Dergisi. 2021;24(3):1181-6.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.