Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Mukavemetli Çeliklerde Geri Esnemenin Kalınlık Azaltma Yöntemi ile Telafisi

Yıl 2022, Cilt: 25 Sayı: 3, 1359 - 1368, 01.10.2022
https://doi.org/10.2339/politeknik.1179079

Öz

Sac metal bükme işlemi sac metal üretiminde önemli bir rol oynar ve geri esneme bu işlemin istenmeyen bir sonucudur. Geri esneme miktarı bilinmeden bükme kalıbı işlemi yapılırsa, kabul edilebilir tolerans değerleri içinde parça üretmek zorlaşır. Bükülecek parçanın geri esneme davranışı da bükme kalıbının boyutunu etkiler. Özellikle 90° U bükme kalıbı söz konusu olduğunda, geri esneme kompanzasyonu yöntemiyle bükme kalıbının üretim maliyeti yüksektir. Bu nedenle, tasarım aşamasında geri esneme değerinin tahmin edilmesi önemlidir. Bu çalışmada, yüksek mukavemetli saclarda kalınlık azaltma yöntemi kullanılarak geri esneme değerini azaltmak için deformasyon miktarının tahmini yapılmıştır. Bu çalışmaya göre kalınlık azaltma yöntemi geri esneme kompanzasyonunda etkin bir şekilde kullanılabilir. Tasarım aşamasında ölçüm doğruluğunun tahmin edilmesi, bükme kalıbının maliyetini düşürür ve fazla deneye gerek kalmadan tolerans limitleri dahilinde parçalar üretmek mümkündür. Sonuçlar, 0,2 t değerindeki kalınlık azalmasının U-bükme işleminde geri esneme değerini ortadan kaldırmak için uygun olduğunu göstermiştir. Deneysel, ampirik ve sonlu elemanlar sonuçlarının birbirine yakın olduğu tespit edilmiştir.

Kaynakça

  • [1]. Linga Reddy B., et al., “A review of springback in metal forming”, International Journal of Engineering Research&Technology 3(1): 646-651, (2014).
  • [2]. Kailun Z., et al.: “A review on forming techniques for manufacturing lightweight complexed shaped aluminium panel components”, Int. J. of Lightweight Materials and Manufacture 1(2): 55-80, (2018).
  • [3]. H. Ziegler, “A Modification of Prager’s Hardening Rule”, Quarterly of Applied Mathematics, 17: 55-65, (1959).
  • [4]. P.J. Armstrong, C.O. Frederick, “A Mathematical Representation of the Multi Axial Bauschinger Effect”, CEGB Report RD/B/N 731, Central Electricity Generating Board, The Report Is Reproduced as a Paper: 2007. Materials at High Temperatures, 24: 1-26, (1966).
  • [5]. J.L. Chaboche, “Time independent constitutive theories for cyclic plasticity”, International Journal of Plasticity, 2(2): 149–188, (1986).
  • [6]. L. Geng, R.H Wagoner, “Role of plastic anisotropy and its evolution on springback”, International Journal of Mechanical Sciences, 44: 123–148, (2002).
  • [7]. L. Sun, R.H. Wagoner, “Complex unloading behavior nature of the deformation and its consistent constitutive representation”, International Journal of Plasticity, 27(7): 1126–1144, (2011).
  • [8]. P.A. Eggertsen, K. Mattiasson, “On the modelling of the bending–unbendingbehaviour for accurate springback predictions” International Journal of Mechanical Sciences, 51(7): 547–563,(2006).
  • [9]. F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the bauschinger effect and workhardening stagnation, International Journal of Plasticity, 18(5–6): 661–686, (2002).
  • [10]. F. Yoshida, T. Uemori, K. Fujiwara, “Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, 18( 5–6): 633–659, (2002).
  • [11]. F. Yoshida, H. Hamasaki, T. Uemori, K. Fujiwara, “A user-friendly 3D yield function to describe anisotropy of steel sheets”, International Journal of Plasticity, 45: 119-139, (2013).
  • [12]. R. Hill, “A theory of yielding and plastic flow of anisotropic metals”, Proceedings of The Royal Society A 193: 281–297, (1948).
  • [13]. Cho, J.R., Moon S.J., Moon,Y.H., and Kang S.S., “Finite element investigation on springback characteristics in sheet metal U-die bending process”, Journal of Material Processing Technology, 141: 109-116, (2003).
  • [14]. B. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, S. Jirathearanat, “Springback prediction in sheet metal forming of high strength steels”, Materials and Design 50: 253–266, (2013).
  • [15]. Taylor L, Cao J, Karafillis AP, Boyce MC., “Numerical simulations of sheet metal forming”. Journal of Material Processing Technology, 50: 168–79, (1995).
  • [16]. Pourboghrat F, Chu E. “Prediction of springback and sidewall curl in 2D draw bending”, Journal of Material Processing Technology 50: 361–74, (1995).
  • [17]. Eggertsen PA, Mattiasson K., “On constitutive modeling of the bending-unbending behaviour for accurate springback predictions”, International Journal Mechanical Science 51: 547–63, (2009).
  • [18]. Huang Y-M, Leu D.-K, “Finite for element analysis of contact problems a sheet metal bending process”, Computer & Structures, 57: 15-21, (1995).
  • [19]. Huang Y-M., Leu D-K, “An elasto-plastic finite element analysis of sheet metal U-bending process”, Journal of Materials Processing Technology 48: 151-157 (1995).
  • [20]. Cho J.R., Moon S.J., Moon Y.H., Kang S.S., “Finite element investigation on spring-back characteristics in sheet metal U-bending process”, Journal of Materials Processing Technology 141: 109– 116, (2003).
  • [21]. Bakhshi-Jooybari M., Rahmani B., Daeezadeh V., Gorji A., “The study of spring-back of CK67 steel sheet in V-die and U-die bending processes”, Materials & Design 30: 2410–2419, (2009).
  • [22]. Kailun Zheng, Denis J. Politis, Liliang Wang, Jianguo Lin, “A review on forming techniques for manufacturing lightweight complexdshaped aluminium panel components”, International Journal of Lightweight Materials and Manufacture 1: 55-80, (2018).
  • [23]. H-J Jiang, H-L Dai, “A novel model to predict U-bending springback and time-dependent springback for a HSLA steel plate”, International Journal Advance Manufacturing Technology 81:1055–1066, (2015).
  • [24]. F. Gassara, R. Hambli, T. Bouraoui, F.E. Halouani, D. Soulat, “Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm”, International Journal Advance Manufacturing Technology 44: 61–67, (2009).
  • [25]. C.C. Kuo, B.T. Lin, Optimization of springback for AZ31 magnesium alloy sheets inthe L-bending process based on the Taguchi method, International Journal Advance Manufacturing Technology 58: 161–173, (2012).
  • [26]. B. Li, Z. McClelland, S.J. Horstemeyer, I. Aslam, P.T. Wang, M.F. Horstemeyer, “Time dependent springback of a magnesium alloy”, Materials & Design 66: 575–580, (2015).
  • [27]. Y. Zhao, L. Peng, X. Lai, “Influence of the electric pulse on springback during stretch U-bending of Ti6Al4V titanium alloy sheets” Journal of Material Processing Technology, 261: 12–23 (2018).
  • [28]. Y.E. Ling, H.P. Lee, B.T. Cheok, Finite element analysis of springback in L-bending of sheet metal, Journal of Material Processing Technology, 168: 296–302,(2005).
  • [29]. K. Dilip Kumar, K.K. Appukuttan, V.L. Neelakantha, P.S. Naik, “Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation”, Materials & Design 56: 613–619, (2014).
  • [30]. R. Kazan, M. Fırat, A.E. Tiryaki, “Prediction of springback in wipe-bending process of sheet metal using neural network”, Materials & Design 30: 418–423,(2009).
  • [31]. K. Yaman, M. Özcan, Z. Tekiner, “AISI 304 Paslanmaz Çeliğin Sıvama Parametrelerinin Sonlu Elemanlar Yöntemiyle Belirlenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Dergisi, 33(1): 418-423, (2018).
  • [32]. B Rahmani, G Alinejad, et al. “An investigation on springback/negative springback phenomena using finite element method and experimental approach”, Journal of Engineering Manufacture 223(7): 841-850. (2009).
  • [33]. Dametew AW, Gebresenbet T, “Study the Effects of Spring Back on Sheet Metal Bending using Mathematical Methods”, Journal of Material Sciences & Engineering 6: 382-389, (2017).
  • [34]. Papeleux L, Ponthot JP. “Finite element simulation of springback in sheet metal forming”, Journal of Material Processing Technology 125–126: 785–91, (2002).
  • [35]. W.Phanitwong, S.Thipprakmas, “Development of anew spring-back factor for a wiping die bending process”, Materials & Design 89: 749–758, (2016).
  • [36]. K Lawanwomg, H. Hamasaki, R. Hino, F. Yoshida, “A novel technology to eliminate U-bending springback of high strength steel sheet by using additional bending with counter punch”, Procedia Engineering 81: 957 – 962, (2014 ).
  • [37]. Z. Liu, R.O. Olivares, Y. Lei, C.I. Garcia, G. Wang, “Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium micro alloyed HSLA steels”, Journal of Alloys and Compounds 679: 293-301 (2016).
  • [38]. H-L Dai, H-J Jiang, T. Dai, W-L Xu, A-H Luo, “Investigation on the influence of damage to springback of U-shape HSLA steel plates”, Journal of Alloys and Compounds 708: 575-586, (2017).
  • [39]. H-J Jiang, H-L Dai, “A novel model to predict U-bending springback and time-dependent springback for a HSLA steel plate”, International Journal Advance Manufacturing Technology, 81: 1055–1066, (2015).
  • [40]. Carden WD, Geng LM, Matlock DK, Wagoner RH., 2002.Measurement of springback International Journal of Mechanical Sciences 44: 79–101, (2002).
  • [41]. A.W. Dametew, T. Gebresenbet, “Study the effects of spring back on sheet metal bending using mathematical methods”, Journal of Material Sciences & Engineering, 6(5): 382, (2016).
  • [42]. Leu, DK., Zhuang, ZW. “Springback prediction of the vee bending process for high-strength steel sheets”, Journal of Mechanical Science and Technology 30: 1077–1084, (2016).

Compensation of Springback for High Strength Steels by Thickness Reduction Method

Yıl 2022, Cilt: 25 Sayı: 3, 1359 - 1368, 01.10.2022
https://doi.org/10.2339/politeknik.1179079

Öz

The sheet metal bending process plays an important role in sheet metal production and springback is an unintended consequence of this operation. If the bending die process is performed without knowing the amount of springback, it is difficult to produce parts within acceptable tolerance values. The springback behavior of the part to be bent also affects the size of the bending die. In particular, in the case of a 90° U bend die, the manufacturing cost of the bending die with the springback compensation method is high. Therefore, it is important to estimate the springback value at the design stage. In this work, the estimation of the amount of deformation to avoid springback value was performed using the thickness reduction method for high strength sheet metal. According to this study, the thickness reduction method can be used effectively in springback compensation. The estimation of the measurement accuracy at the design stage reduces the cost of the bending die and it is possible to produce parts within tolerance limits without much experimentation. The results showed that thickness reduction at the 0,2 t value was suitable to eliminate the springback value in the U-bending process. It has been found that experimental, empirical and finite element results are close to each other.

Kaynakça

  • [1]. Linga Reddy B., et al., “A review of springback in metal forming”, International Journal of Engineering Research&Technology 3(1): 646-651, (2014).
  • [2]. Kailun Z., et al.: “A review on forming techniques for manufacturing lightweight complexed shaped aluminium panel components”, Int. J. of Lightweight Materials and Manufacture 1(2): 55-80, (2018).
  • [3]. H. Ziegler, “A Modification of Prager’s Hardening Rule”, Quarterly of Applied Mathematics, 17: 55-65, (1959).
  • [4]. P.J. Armstrong, C.O. Frederick, “A Mathematical Representation of the Multi Axial Bauschinger Effect”, CEGB Report RD/B/N 731, Central Electricity Generating Board, The Report Is Reproduced as a Paper: 2007. Materials at High Temperatures, 24: 1-26, (1966).
  • [5]. J.L. Chaboche, “Time independent constitutive theories for cyclic plasticity”, International Journal of Plasticity, 2(2): 149–188, (1986).
  • [6]. L. Geng, R.H Wagoner, “Role of plastic anisotropy and its evolution on springback”, International Journal of Mechanical Sciences, 44: 123–148, (2002).
  • [7]. L. Sun, R.H. Wagoner, “Complex unloading behavior nature of the deformation and its consistent constitutive representation”, International Journal of Plasticity, 27(7): 1126–1144, (2011).
  • [8]. P.A. Eggertsen, K. Mattiasson, “On the modelling of the bending–unbendingbehaviour for accurate springback predictions” International Journal of Mechanical Sciences, 51(7): 547–563,(2006).
  • [9]. F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the bauschinger effect and workhardening stagnation, International Journal of Plasticity, 18(5–6): 661–686, (2002).
  • [10]. F. Yoshida, T. Uemori, K. Fujiwara, “Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, 18( 5–6): 633–659, (2002).
  • [11]. F. Yoshida, H. Hamasaki, T. Uemori, K. Fujiwara, “A user-friendly 3D yield function to describe anisotropy of steel sheets”, International Journal of Plasticity, 45: 119-139, (2013).
  • [12]. R. Hill, “A theory of yielding and plastic flow of anisotropic metals”, Proceedings of The Royal Society A 193: 281–297, (1948).
  • [13]. Cho, J.R., Moon S.J., Moon,Y.H., and Kang S.S., “Finite element investigation on springback characteristics in sheet metal U-die bending process”, Journal of Material Processing Technology, 141: 109-116, (2003).
  • [14]. B. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, S. Jirathearanat, “Springback prediction in sheet metal forming of high strength steels”, Materials and Design 50: 253–266, (2013).
  • [15]. Taylor L, Cao J, Karafillis AP, Boyce MC., “Numerical simulations of sheet metal forming”. Journal of Material Processing Technology, 50: 168–79, (1995).
  • [16]. Pourboghrat F, Chu E. “Prediction of springback and sidewall curl in 2D draw bending”, Journal of Material Processing Technology 50: 361–74, (1995).
  • [17]. Eggertsen PA, Mattiasson K., “On constitutive modeling of the bending-unbending behaviour for accurate springback predictions”, International Journal Mechanical Science 51: 547–63, (2009).
  • [18]. Huang Y-M, Leu D.-K, “Finite for element analysis of contact problems a sheet metal bending process”, Computer & Structures, 57: 15-21, (1995).
  • [19]. Huang Y-M., Leu D-K, “An elasto-plastic finite element analysis of sheet metal U-bending process”, Journal of Materials Processing Technology 48: 151-157 (1995).
  • [20]. Cho J.R., Moon S.J., Moon Y.H., Kang S.S., “Finite element investigation on spring-back characteristics in sheet metal U-bending process”, Journal of Materials Processing Technology 141: 109– 116, (2003).
  • [21]. Bakhshi-Jooybari M., Rahmani B., Daeezadeh V., Gorji A., “The study of spring-back of CK67 steel sheet in V-die and U-die bending processes”, Materials & Design 30: 2410–2419, (2009).
  • [22]. Kailun Zheng, Denis J. Politis, Liliang Wang, Jianguo Lin, “A review on forming techniques for manufacturing lightweight complexdshaped aluminium panel components”, International Journal of Lightweight Materials and Manufacture 1: 55-80, (2018).
  • [23]. H-J Jiang, H-L Dai, “A novel model to predict U-bending springback and time-dependent springback for a HSLA steel plate”, International Journal Advance Manufacturing Technology 81:1055–1066, (2015).
  • [24]. F. Gassara, R. Hambli, T. Bouraoui, F.E. Halouani, D. Soulat, “Optimization of springback in L-bending process using a coupled Abaqus/Python algorithm”, International Journal Advance Manufacturing Technology 44: 61–67, (2009).
  • [25]. C.C. Kuo, B.T. Lin, Optimization of springback for AZ31 magnesium alloy sheets inthe L-bending process based on the Taguchi method, International Journal Advance Manufacturing Technology 58: 161–173, (2012).
  • [26]. B. Li, Z. McClelland, S.J. Horstemeyer, I. Aslam, P.T. Wang, M.F. Horstemeyer, “Time dependent springback of a magnesium alloy”, Materials & Design 66: 575–580, (2015).
  • [27]. Y. Zhao, L. Peng, X. Lai, “Influence of the electric pulse on springback during stretch U-bending of Ti6Al4V titanium alloy sheets” Journal of Material Processing Technology, 261: 12–23 (2018).
  • [28]. Y.E. Ling, H.P. Lee, B.T. Cheok, Finite element analysis of springback in L-bending of sheet metal, Journal of Material Processing Technology, 168: 296–302,(2005).
  • [29]. K. Dilip Kumar, K.K. Appukuttan, V.L. Neelakantha, P.S. Naik, “Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation”, Materials & Design 56: 613–619, (2014).
  • [30]. R. Kazan, M. Fırat, A.E. Tiryaki, “Prediction of springback in wipe-bending process of sheet metal using neural network”, Materials & Design 30: 418–423,(2009).
  • [31]. K. Yaman, M. Özcan, Z. Tekiner, “AISI 304 Paslanmaz Çeliğin Sıvama Parametrelerinin Sonlu Elemanlar Yöntemiyle Belirlenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Dergisi, 33(1): 418-423, (2018).
  • [32]. B Rahmani, G Alinejad, et al. “An investigation on springback/negative springback phenomena using finite element method and experimental approach”, Journal of Engineering Manufacture 223(7): 841-850. (2009).
  • [33]. Dametew AW, Gebresenbet T, “Study the Effects of Spring Back on Sheet Metal Bending using Mathematical Methods”, Journal of Material Sciences & Engineering 6: 382-389, (2017).
  • [34]. Papeleux L, Ponthot JP. “Finite element simulation of springback in sheet metal forming”, Journal of Material Processing Technology 125–126: 785–91, (2002).
  • [35]. W.Phanitwong, S.Thipprakmas, “Development of anew spring-back factor for a wiping die bending process”, Materials & Design 89: 749–758, (2016).
  • [36]. K Lawanwomg, H. Hamasaki, R. Hino, F. Yoshida, “A novel technology to eliminate U-bending springback of high strength steel sheet by using additional bending with counter punch”, Procedia Engineering 81: 957 – 962, (2014 ).
  • [37]. Z. Liu, R.O. Olivares, Y. Lei, C.I. Garcia, G. Wang, “Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium micro alloyed HSLA steels”, Journal of Alloys and Compounds 679: 293-301 (2016).
  • [38]. H-L Dai, H-J Jiang, T. Dai, W-L Xu, A-H Luo, “Investigation on the influence of damage to springback of U-shape HSLA steel plates”, Journal of Alloys and Compounds 708: 575-586, (2017).
  • [39]. H-J Jiang, H-L Dai, “A novel model to predict U-bending springback and time-dependent springback for a HSLA steel plate”, International Journal Advance Manufacturing Technology, 81: 1055–1066, (2015).
  • [40]. Carden WD, Geng LM, Matlock DK, Wagoner RH., 2002.Measurement of springback International Journal of Mechanical Sciences 44: 79–101, (2002).
  • [41]. A.W. Dametew, T. Gebresenbet, “Study the effects of spring back on sheet metal bending using mathematical methods”, Journal of Material Sciences & Engineering, 6(5): 382, (2016).
  • [42]. Leu, DK., Zhuang, ZW. “Springback prediction of the vee bending process for high-strength steel sheets”, Journal of Mechanical Science and Technology 30: 1077–1084, (2016).
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ayşegül Gültekin Toroslu 0000-0002-7380-3109

Yayımlanma Tarihi 1 Ekim 2022
Gönderilme Tarihi 22 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 25 Sayı: 3

Kaynak Göster

APA Gültekin Toroslu, A. (2022). Compensation of Springback for High Strength Steels by Thickness Reduction Method. Politeknik Dergisi, 25(3), 1359-1368. https://doi.org/10.2339/politeknik.1179079
AMA Gültekin Toroslu A. Compensation of Springback for High Strength Steels by Thickness Reduction Method. Politeknik Dergisi. Ekim 2022;25(3):1359-1368. doi:10.2339/politeknik.1179079
Chicago Gültekin Toroslu, Ayşegül. “Compensation of Springback for High Strength Steels by Thickness Reduction Method”. Politeknik Dergisi 25, sy. 3 (Ekim 2022): 1359-68. https://doi.org/10.2339/politeknik.1179079.
EndNote Gültekin Toroslu A (01 Ekim 2022) Compensation of Springback for High Strength Steels by Thickness Reduction Method. Politeknik Dergisi 25 3 1359–1368.
IEEE A. Gültekin Toroslu, “Compensation of Springback for High Strength Steels by Thickness Reduction Method”, Politeknik Dergisi, c. 25, sy. 3, ss. 1359–1368, 2022, doi: 10.2339/politeknik.1179079.
ISNAD Gültekin Toroslu, Ayşegül. “Compensation of Springback for High Strength Steels by Thickness Reduction Method”. Politeknik Dergisi 25/3 (Ekim 2022), 1359-1368. https://doi.org/10.2339/politeknik.1179079.
JAMA Gültekin Toroslu A. Compensation of Springback for High Strength Steels by Thickness Reduction Method. Politeknik Dergisi. 2022;25:1359–1368.
MLA Gültekin Toroslu, Ayşegül. “Compensation of Springback for High Strength Steels by Thickness Reduction Method”. Politeknik Dergisi, c. 25, sy. 3, 2022, ss. 1359-68, doi:10.2339/politeknik.1179079.
Vancouver Gültekin Toroslu A. Compensation of Springback for High Strength Steels by Thickness Reduction Method. Politeknik Dergisi. 2022;25(3):1359-68.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.