Araştırma Makalesi
BibTex RIS Kaynak Göster

Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans ile Tespiti

Yıl 2023, Cilt: 26 Sayı: 1, 457 - 468, 27.03.2023
https://doi.org/10.2339/politeknik.992660

Öz

Metoksimetiltrifenilfosfonyum klorür (MOMTPPC) tek kristalleri Elektron Paramanyetik Rezonans (EPR) spektroskopi yöntemi ile analiz edilmiştir. MOMTPPC tek kristalleri, 60Co- kaynağı ile ışınlanarak paramanyetik bozukluklar oluşturulmuştur. MOMTPPC tek kristallerinin EPR spektrumları, 120 K sıcaklıkta üç dik eksen etrafında belirli açılarda döndürülerek EPR spektrumları alınmıştır. MOMTPPC'de ışınlama etkisiyle oluşan radikalin yapısı, EPR spektrumlarının detaylı incelenmesi ile elde edilmiştir. Radyasyonun etkisiyle C20-H24 bağı kopmuş ve bir paramanyetik merkez oluşmuştur. Kimyasal bağın kopması sonucu oluşan radikalin eşleşmemiş elektronunun C20 atomu üzerinde bulunduğu belirlenmiştir. Radyasyon hasar merkezine ait anizotropik g-faktörü ve aşırı ince yapı çiftlenim sabitleri belirlenmiştir. Spektroskopik yarılma faktörünün izotropik değeri g = 2,00764 olarak elde edilirken, aşırı ince yapı sabitlerinin izotropik değerleri ise sırasıyla, 〖(a_H)〗_α = 2,010 mT, 〖(a_P)〗_β = 3,196 mT ve 〖(a_(C_6 H_5 ))〗_γ= 〖(a_fenil)〗_γ = 0,472 mT olarak hesaplanmıştır. EPR parametrelerine ait yön kosinüsleri elde edilmiştir. Ayrıca, simülasyon çalışmaları ile deneysel verilerimizin doğruluğu desteklenmiştir.  

Destekleyen Kurum

Pamukkale Üniversitesi-BAP

Proje Numarası

The BAP of Pamukkale University [grant number 2012FBE037].

Teşekkür

2012FBE037 numaralı projeye desteklerinden dolayı Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkür ederiz.

Kaynakça

  • [1] Ingram D. J. E., ‘‘Free Radicals as Studied by Electron Spin Resonance’’, Butterworths Scientific Publications, London, (1958).
  • [2] Neese F., ‘‘Quantum chemical calculations of spectroscopic properties of metalloproteins and model compounds: EPR and Mössbauer properties’’, Curr. Opin. Chem. Biol., 7(1):125-135, (2003).
  • [3] Uşaklı A. B., ‘‘Fizyolojik sinyallerin askerî amaçlı kullanılabilirliği: elektroensefalografi ve yakın kızılaltı spektroskopisi örnekleri’’, Politeknik Dergisi, 21(4):895-900, (2018).
  • [4] Zilić D., Pajić D., Jurić M., Molčanov K., Rakvin B., Planinić P., Zadro K., ‘‘Single crystals of DPPH grown from diethyl ether and carbon disulfide solutions-crystal structures, IR, EPR and magnetization studies’’, J. Magn. Reson., 207(1):34-41, (2010).
  • [5] Çadırcı M., Demirci T., ‘‘Yüksek oranda eş parçacık boyutlu cdse kuantum noktaların sentezi ve optiksel özelliklerinin parçacık boyutlarına bağlılığı’’, Politeknik Dergisi, 24(1):25-30, (2021).
  • [6] Gamba A., Malatesta V., Morosi G., Oliva C. and Simonetta M., ‘‘Ultraviolet and electron spin resonance spectra of nitropyridines and nitropyridine N-oxides’’, J. Phys. Chem., 77(23): 2744-2752, (1973).
  • [7] Farmer J. B., Gerry M. C. L. and McDowell C. A., ‘‘The electron spin resonance spectrum of the NF2 radical trapped in inert matrices at 4·2 °K’’, Mol. Phys., 8(3): 253-264, (1964). [8] Tomter A. B., Zoppellaro G., Schmitzberger F., Andersen N. H., Barra A. L., Engman H., Nordlund P., Andersson K. K., ‘‘HF-EPR, Raman, UV/VIS light spectroscopic, and DFT studies of the ribonucleotide reductase R2 tyrosyl radical from Epstein-Barr virus’’, Plos One, 6(9): 1-11, (2011).
  • [9] Lurie D. J., Mäder K., ‘‘Monitoring drug delivery processes by EPR and related techniques-Principles and applications’’, Adv Drug Deliv Rev., 57(8): 1171-1190, (2005).
  • [10] Karunakaran C., Murugesan B., ‘‘Advances in Electron Paramagnetic Resonance’’, Spin Resonance Spectroscopy Principles and Applications, Elsevier, Online, 229-280, (2018).
  • [11] Çakır S., ‘‘UV Işınlarının Çeşitli Gıdalarda Oluşturduğu Serbest Radikallerin ESR ile İncelenmesi’, Doktora Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, (1991).
  • [12] Gopal N. G. S., Patel K. M., Sharma G., Bhalla H. L., Wills P. A., Hilmy N., ‘‘Guide for radiation sterilization of pharmaceuticals and decontamination of raw materials’’, Radiat. Phys. Chem., 32(4): 619-622, (1988).
  • [13] Gibella M., Crucq A. S., Tilquin B., Stocker P., Lesgards G., Raffi J., ‘‘Electron spin resonance studies of some irradiated pharmaceuticals’’, Radiat. Phys. Chem., 58(1): 69-76, (2000).
  • [14] Earle K. A., Budil D. E. and Freed J. H., ‘‘250-GHz EPR of nitroxides in the slow-motional regime: Models of rotational diffusion’’, J. Phys. Chem., 97: 13289-13297, (1993).
  • [15] Gräslund A., Ehrenberg A., Rupprecht A., Ström G. and Crespi H., ‘‘Ionic base radicals in γ-irradiated oriented non-deuterated and fully deuterated DNA’’, Int. J. Radiat. Biol., 28(4): 313-323, (1975).
  • [16] Imagawa H., ‘‘ESR studies of cupric ion in various oxide glasses’’, Phys. Status Solidi B, 30(2): 469-478, (1968).
  • [17] Wittig G., ‘‘From diyls to ylides to my idyll’’, Science, 210(4470): 600–604, (1980).
  • [18] Bergeron K. L., Murphy E. L., Majofodun O., Muñoz L. D., Williams J. C. and Almeida K. H., ‘‘Arylphosphonium salts interact with DNA to modulate cytotoxicity’’, Mutat. Res. / Genetic Toxicology and Environmental Mutagenesis, 673(2): 141-148, (2009).
  • [19] Kinnamon K. E., Steck E. A., Hanson W. L. and Chapman W. L., ‘‘In search of anti-Trypanosoma cruzi drugs: new leads from a mouse model’’, J. Med. Chem., 20(6), 741-744, (1977).
  • [20] Blank B., DiTullio N. W., Deviney L., Roberts J. T. and Saunders H. L., ‘‘Synthesis and hypoglycemic activity of phenacyltriphenylphosphoranes and phosphonium salts’’, J. Med. Chem., 18(9): 952-954, (1975).
  • [21] Rideout D. C., Calogeropoulou T., Jaworski J. S., Dagnino R. and McCarthy M. R., ‘‘Phosphonium salts exhibiting selective anti-carcinoma activity in vitro’’, Anticancer Drug Des., 4(4): 265-280, (1989).
  • [22] Denisov S. S., Kotova E. A., Plotnikov E. Y., Tikhonov A. A., Zorov D. B., Korshunova G. A. and Antonenko Y. N., ‘‘A mitochondria-targeted protonophoric uncoupler derived from fluorescein’’, Chem. Commun., 50(97): 15366-15369, (2014).
  • [23] Stoyanovsky D. A. , Jiang J., Murphy M. P., Epperly M., Zhang X., Li S., Greenberger J., Kagan V. and Bayır H., ‘‘Design and synthesis of a mitochondria-targeted mimic of glutathione peroxidase, MitoEbselen-2, as a radiation mitigator’’, ACS Med. Chem. Lett., 5(12): 1304-1307, (2014).
  • [24] Wang J., Yang C. T., Kim Y. S., Sreerama S. G., Cao Q., Li Z. B., He Z., Chen X. and Liu S., ‘‘64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents’’, J. Med. Chem., 50(21): 5057-5069, (2007).
  • [25] Alberto R., Braband H., Benz M., Felber M. and Imstepf S., ‘‘Organometallic technetium chemistry; past, present and future’’, Nucl. Med. Biol., 41(7): 613-613, (2014).
  • [26] Zheng Y., Ji S., Tomaselli E., Ernest C., Freiji and Liu S., ‘‘Effect of co-ligands on chemical and biological properties of 99mTc(III) complexes [99mTc(L)(CDO)(CDOH)2BMe] (L = Cl, F, SCN and N3; CDOH2 = cyclohexanedione dioxime)’’, Nucl. Med. Biol., 41(10): 813-824, (2014).
  • [27] Haslop A., Wells L., Gee A., Plisson C. and Long N., ‘‘One-pot multi-tracer synthesis of novel 18F-labeled PET imaging agents’’, Mol. Pharm., 11(11): 3818-3822, (2014).
  • [28] Kim D. Y., Kim H. S., Jang H. Y., Kim J. H., Bom H. S. and Min J. J., ‘‘Comparison of the cardiac microPET images obtained using [18F]FPTP and [13N]NH3 in rat myocardial infarction models’’, ACS Med. Chem. Lett., 5(10): 1124-1128, (2014).
  • [29] Liu S., Li D., Shan H., Gabbai F. P., Li Z. and Conti P. S., ‘‘Evaluation of ¹⁸F-labeled BODIPY dye as potential PET agents for myocardial perfusion imaging’’, Nucl. Med. Biol., 41(1): 120-126, (2014).
  • [30] Maddahi J. and Packard R. R. S., ‘‘Cardiac PET perfusion tracers: Current status and future directions’’, Semin. Nucl. Med., 44(5): 333-343, (2014).
  • [31] Neves A. A. and Brindle K. M., ‘‘Imaging cell death’’, J. Nucl. Med., 55(1): 1-4, (2014).
  • [32] Ravert H. T., Holt D. P. and Dannals R. F., ‘‘A microwave radiosynthesis of the 4‐[18F]‐fluorobenzyltriphenylphosphonium ion’’, J. Labelled Cmpd. Radiopharm., 57(12): 695-698, (2014).
  • [33] Yeo D. C., Wiraja C., Mantalaris A. and Xu C., ‘‘Nanosensors for regenerative medicine’’, J. Biomed. Nanotechnol., 10(10): 2722-2746, (2014).
  • [34] Zhao G., Yu Y. M., Shoup T. M., Elmaleh D. R., Bonab A. A., Tompkins R. G. and Fischman A. J., ‘‘Membrane potential-dependent uptake of 18F-triphenylphosphonium-a new voltage sensor as an imaging agent for detecting burn-induced apoptosis’’, J. Surg. Res., 188(2): 473-479, (2014).
  • [35] Zhao Z., Yu Q., Mou T., Liu C., Yang W., Fang W., Peng C., Lu J., Liu Y. and Zhang X., ‘‘Highly efficient one-pot labeling of new phosphonium cations with fluorine-18 as potential PET agents for myocardial perfusion imaging’’, Mol. Pharm., 11(11): 3823-3831, (2014).
  • [36] Sogbein O. O., Pelletier-Galarneau M., Schindler T. H., Wei L., Wells R. G. and Ruddy T. D., ‘‘New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease’’, Biomed. Res. Int., 2014: 1-24, (2014).
  • [37]Ferraz R., Costa-Rodrigues J., Fernandes M. H., Santos M. M., Marrucho I. M., Rebelo L. P. N., Prudêncio C., Noronha J. P., Petrovski Ž. and Branco L. C., ‘‘Antitumor activity of ionic liquids based on ampicillin’’, ChemMedChem, 10(9): 1480-1483, (2015).
  • [38] Millard M., Pathania D., Shabaik Y., Taheri L., Deng J. and Neamati N., ‘‘Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity’’, Plos One, 5(10): 1-18, (2010).
  • [39] Spivak A. Y., Nedopekina D. A., Khalitova R. R., Gubaidullin R. R., Odinokov V. N., Bel’skii Y. P., Bel’skaya N. V. and Khazanov V. A., ‘‘Triphenylphosphonium cations of betulinic acid derivatives: Synthesis and antitumor activity’’, Med Chem Res, 26(3): 518-531, (2017).
  • [40] Caliskan B. and Caliskan A. C., ‘‘EPR study of free radical in gamma-irradiated bis(cyclopentadienyl)zirconium dichloride single crystal’’, Radiat. Eff. and Deff. in Sol., 172(5-6): 507-516,(2017). [41] Caliskan B., Caliskan A. C. and Yerli R., ‘‘Electron paramagnetic resonance study of radiation damage in isonipecotic acid single crystal’’, J. Mol. Struc., 1075: 12-16, (2014).
  • [42] Caliskan B. and Tokgoz H., ‘‘Electron paramagnetic resonance study of gamma-irradiated phenidone single crystal’’, Radiat. Eff. and Deff. in Sol., 169(3): 225-231, (2014).
  • [43] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of gamma-irradiated potassium hydroquinone monosulfonate single crystal’’, Radiat. Eff. and Deff. in Sol., 171(5-6): 440-450, (2016).
  • [44] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance analysis of gamma irradiated 4-nitropyridine N-oxide single crystal’’, Radiat. Eff. and Deff. in Sol., 161(5): 313-317, (2006).
  • [45] Caliskan B., Caliskan A. C., “Electron paramagnetic resonance study of the paramagnetic centers in gamma-irradiated oxalic acid dihydrate single crystal”, Radiat. Phys. Chem., 188: 1-6, (2021).
  • [46] Karakaş E., Türkkan E., Dereli Ö., Sayin Ü. and Tapramaz R., ‘‘EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal’’, Radiat. Eff. and Deff. in Sol., 166(12): 942-950, (2011).
  • [47] Aydin M., Baskan M. H. and Osmanoglu Y. E., ‘‘EPR study of gamma induced radicals in amino and iminodiacetic acid derivatives’’, Brazilian Journal of Physics, 39(3): 583-586, (2009).
  • [48] Çalışkan A. C. ve Çalışkan B., “Electron paramagnetic resonance study of the radiation damage centers in menadione single crystal”, Politeknik Dergisi, 25(1): 299-312, (2022).
  • [49] Begum A., Lyons A. R. and Symons M. C. R., ‘‘Unstable intermediates. Part XCVII. Electron spin resonance spectra and structures of radicals in γ-irradiated aluminium alkyls, trialkyl phosphines, and alkylphosphonium salts’’, J. Chem. Soc. A, 2388-2392. (1971).
  • [50] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance characterization of gamma irradiation damage centers in S-butyrylthiocholine iodide single crystal’’, Radiat. Eff. and Deff. in Sol., 162(2): 87-93, (2007).
  • [51] Caliskan B., ‘‘EPR study of gamma irradiated cholestanone single crystal’’, Acta Phys. Pol. A, 125(1): 135-138, (2014).
  • [52] Caliskan B., Aras E., Asik B., Buyum M. and Birey M., ‘‘EPR of gamma irradiated single crystals of cholesteryl benzoate’’, Radiat. Eff. and Deff. in Sol., 159(1): 1-5, (2004).
  • [53] Geoffroy M., Ginet L. and Lucken E .A. C., ‘‘E.S.R. spectra of X-irradiated methylene diphosphonic acid. I. Carbon-centred radicals’’, Mol. Phys., 28(5): 1289-1295, (1974).
  • [54] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in phosphoryethanolamine single crystal’’, J. Mol. Struc., 1173: 781-791, (2018).
  • [55] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the paramagnetic center in gamma-irradiated sulfanilic acid single crystal’’, Acta Phys. Pol. A, 135(3): 480-484, (2019).
  • [56] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal’’, J. Mol. Struc., 1144: 421-431, (2017).
  • [57] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in trans-chalcone single crystal’’, Acta Phys. Pol., A 136(1): 92-100, (2019).
  • [58] Caliskan B. and Caliskan A. C., ‘‘EPR study of radiation damage in gamma irradiated 3-nitroacetophenone single crystal’’, Radiat. Eff. and Deff. in Sol., 172(5-6): 398-410, (2017).

Detection of Structural Defect in Methoxymethyltriphenylphosphonium Chloride Single Crystal by Electron Paramagnetic Resonance

Yıl 2023, Cilt: 26 Sayı: 1, 457 - 468, 27.03.2023
https://doi.org/10.2339/politeknik.992660

Öz

Single crystals of methoxymethyltriphenylphosphonium chloride (MOMTPPC) were analyzed by Electron Paramagnetic Resonance (EPR) spectroscopy method. Gamma radiation from 60Co was used to create paramagnetic defects in MOMTPPC single crystal. EPR spectra of MOMTPPC single crystals were obtained at 120 K temperature by rotating around three orthogonal axes. The structure of the radical formed by the irradiation effect in MOMTPPC was found by detailed examination of the EPR spectra. With the effect of radiation, the C20-H24 bond was broken and a paramagnetic center was formed. It has been determined that the unpaired electron of the radical formed as a result of the breaking of the chemical bond is located mainly on the C20 atom. The anisotropic g-factor and hyperfine coupling constants of the radiation damage center were determined. While the isotropic value of the spectroscopic splitting factor is obtained as g = 2.00764, the isotropic values of the hyperfine structure constants are 〖(a_H)〗_α = 2.010 mT, 〖(a_P)〗_β = 3.196 mT and 〖(a_(C_6 H_5 ))〗_γ= 〖(a_fenil)〗_γ = 0.472 mT. Direction cosines of EPR parameters were obtained. Simulation was also carried out to prove the accuracy of our experimental data.

Proje Numarası

The BAP of Pamukkale University [grant number 2012FBE037].

Kaynakça

  • [1] Ingram D. J. E., ‘‘Free Radicals as Studied by Electron Spin Resonance’’, Butterworths Scientific Publications, London, (1958).
  • [2] Neese F., ‘‘Quantum chemical calculations of spectroscopic properties of metalloproteins and model compounds: EPR and Mössbauer properties’’, Curr. Opin. Chem. Biol., 7(1):125-135, (2003).
  • [3] Uşaklı A. B., ‘‘Fizyolojik sinyallerin askerî amaçlı kullanılabilirliği: elektroensefalografi ve yakın kızılaltı spektroskopisi örnekleri’’, Politeknik Dergisi, 21(4):895-900, (2018).
  • [4] Zilić D., Pajić D., Jurić M., Molčanov K., Rakvin B., Planinić P., Zadro K., ‘‘Single crystals of DPPH grown from diethyl ether and carbon disulfide solutions-crystal structures, IR, EPR and magnetization studies’’, J. Magn. Reson., 207(1):34-41, (2010).
  • [5] Çadırcı M., Demirci T., ‘‘Yüksek oranda eş parçacık boyutlu cdse kuantum noktaların sentezi ve optiksel özelliklerinin parçacık boyutlarına bağlılığı’’, Politeknik Dergisi, 24(1):25-30, (2021).
  • [6] Gamba A., Malatesta V., Morosi G., Oliva C. and Simonetta M., ‘‘Ultraviolet and electron spin resonance spectra of nitropyridines and nitropyridine N-oxides’’, J. Phys. Chem., 77(23): 2744-2752, (1973).
  • [7] Farmer J. B., Gerry M. C. L. and McDowell C. A., ‘‘The electron spin resonance spectrum of the NF2 radical trapped in inert matrices at 4·2 °K’’, Mol. Phys., 8(3): 253-264, (1964). [8] Tomter A. B., Zoppellaro G., Schmitzberger F., Andersen N. H., Barra A. L., Engman H., Nordlund P., Andersson K. K., ‘‘HF-EPR, Raman, UV/VIS light spectroscopic, and DFT studies of the ribonucleotide reductase R2 tyrosyl radical from Epstein-Barr virus’’, Plos One, 6(9): 1-11, (2011).
  • [9] Lurie D. J., Mäder K., ‘‘Monitoring drug delivery processes by EPR and related techniques-Principles and applications’’, Adv Drug Deliv Rev., 57(8): 1171-1190, (2005).
  • [10] Karunakaran C., Murugesan B., ‘‘Advances in Electron Paramagnetic Resonance’’, Spin Resonance Spectroscopy Principles and Applications, Elsevier, Online, 229-280, (2018).
  • [11] Çakır S., ‘‘UV Işınlarının Çeşitli Gıdalarda Oluşturduğu Serbest Radikallerin ESR ile İncelenmesi’, Doktora Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, (1991).
  • [12] Gopal N. G. S., Patel K. M., Sharma G., Bhalla H. L., Wills P. A., Hilmy N., ‘‘Guide for radiation sterilization of pharmaceuticals and decontamination of raw materials’’, Radiat. Phys. Chem., 32(4): 619-622, (1988).
  • [13] Gibella M., Crucq A. S., Tilquin B., Stocker P., Lesgards G., Raffi J., ‘‘Electron spin resonance studies of some irradiated pharmaceuticals’’, Radiat. Phys. Chem., 58(1): 69-76, (2000).
  • [14] Earle K. A., Budil D. E. and Freed J. H., ‘‘250-GHz EPR of nitroxides in the slow-motional regime: Models of rotational diffusion’’, J. Phys. Chem., 97: 13289-13297, (1993).
  • [15] Gräslund A., Ehrenberg A., Rupprecht A., Ström G. and Crespi H., ‘‘Ionic base radicals in γ-irradiated oriented non-deuterated and fully deuterated DNA’’, Int. J. Radiat. Biol., 28(4): 313-323, (1975).
  • [16] Imagawa H., ‘‘ESR studies of cupric ion in various oxide glasses’’, Phys. Status Solidi B, 30(2): 469-478, (1968).
  • [17] Wittig G., ‘‘From diyls to ylides to my idyll’’, Science, 210(4470): 600–604, (1980).
  • [18] Bergeron K. L., Murphy E. L., Majofodun O., Muñoz L. D., Williams J. C. and Almeida K. H., ‘‘Arylphosphonium salts interact with DNA to modulate cytotoxicity’’, Mutat. Res. / Genetic Toxicology and Environmental Mutagenesis, 673(2): 141-148, (2009).
  • [19] Kinnamon K. E., Steck E. A., Hanson W. L. and Chapman W. L., ‘‘In search of anti-Trypanosoma cruzi drugs: new leads from a mouse model’’, J. Med. Chem., 20(6), 741-744, (1977).
  • [20] Blank B., DiTullio N. W., Deviney L., Roberts J. T. and Saunders H. L., ‘‘Synthesis and hypoglycemic activity of phenacyltriphenylphosphoranes and phosphonium salts’’, J. Med. Chem., 18(9): 952-954, (1975).
  • [21] Rideout D. C., Calogeropoulou T., Jaworski J. S., Dagnino R. and McCarthy M. R., ‘‘Phosphonium salts exhibiting selective anti-carcinoma activity in vitro’’, Anticancer Drug Des., 4(4): 265-280, (1989).
  • [22] Denisov S. S., Kotova E. A., Plotnikov E. Y., Tikhonov A. A., Zorov D. B., Korshunova G. A. and Antonenko Y. N., ‘‘A mitochondria-targeted protonophoric uncoupler derived from fluorescein’’, Chem. Commun., 50(97): 15366-15369, (2014).
  • [23] Stoyanovsky D. A. , Jiang J., Murphy M. P., Epperly M., Zhang X., Li S., Greenberger J., Kagan V. and Bayır H., ‘‘Design and synthesis of a mitochondria-targeted mimic of glutathione peroxidase, MitoEbselen-2, as a radiation mitigator’’, ACS Med. Chem. Lett., 5(12): 1304-1307, (2014).
  • [24] Wang J., Yang C. T., Kim Y. S., Sreerama S. G., Cao Q., Li Z. B., He Z., Chen X. and Liu S., ‘‘64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents’’, J. Med. Chem., 50(21): 5057-5069, (2007).
  • [25] Alberto R., Braband H., Benz M., Felber M. and Imstepf S., ‘‘Organometallic technetium chemistry; past, present and future’’, Nucl. Med. Biol., 41(7): 613-613, (2014).
  • [26] Zheng Y., Ji S., Tomaselli E., Ernest C., Freiji and Liu S., ‘‘Effect of co-ligands on chemical and biological properties of 99mTc(III) complexes [99mTc(L)(CDO)(CDOH)2BMe] (L = Cl, F, SCN and N3; CDOH2 = cyclohexanedione dioxime)’’, Nucl. Med. Biol., 41(10): 813-824, (2014).
  • [27] Haslop A., Wells L., Gee A., Plisson C. and Long N., ‘‘One-pot multi-tracer synthesis of novel 18F-labeled PET imaging agents’’, Mol. Pharm., 11(11): 3818-3822, (2014).
  • [28] Kim D. Y., Kim H. S., Jang H. Y., Kim J. H., Bom H. S. and Min J. J., ‘‘Comparison of the cardiac microPET images obtained using [18F]FPTP and [13N]NH3 in rat myocardial infarction models’’, ACS Med. Chem. Lett., 5(10): 1124-1128, (2014).
  • [29] Liu S., Li D., Shan H., Gabbai F. P., Li Z. and Conti P. S., ‘‘Evaluation of ¹⁸F-labeled BODIPY dye as potential PET agents for myocardial perfusion imaging’’, Nucl. Med. Biol., 41(1): 120-126, (2014).
  • [30] Maddahi J. and Packard R. R. S., ‘‘Cardiac PET perfusion tracers: Current status and future directions’’, Semin. Nucl. Med., 44(5): 333-343, (2014).
  • [31] Neves A. A. and Brindle K. M., ‘‘Imaging cell death’’, J. Nucl. Med., 55(1): 1-4, (2014).
  • [32] Ravert H. T., Holt D. P. and Dannals R. F., ‘‘A microwave radiosynthesis of the 4‐[18F]‐fluorobenzyltriphenylphosphonium ion’’, J. Labelled Cmpd. Radiopharm., 57(12): 695-698, (2014).
  • [33] Yeo D. C., Wiraja C., Mantalaris A. and Xu C., ‘‘Nanosensors for regenerative medicine’’, J. Biomed. Nanotechnol., 10(10): 2722-2746, (2014).
  • [34] Zhao G., Yu Y. M., Shoup T. M., Elmaleh D. R., Bonab A. A., Tompkins R. G. and Fischman A. J., ‘‘Membrane potential-dependent uptake of 18F-triphenylphosphonium-a new voltage sensor as an imaging agent for detecting burn-induced apoptosis’’, J. Surg. Res., 188(2): 473-479, (2014).
  • [35] Zhao Z., Yu Q., Mou T., Liu C., Yang W., Fang W., Peng C., Lu J., Liu Y. and Zhang X., ‘‘Highly efficient one-pot labeling of new phosphonium cations with fluorine-18 as potential PET agents for myocardial perfusion imaging’’, Mol. Pharm., 11(11): 3823-3831, (2014).
  • [36] Sogbein O. O., Pelletier-Galarneau M., Schindler T. H., Wei L., Wells R. G. and Ruddy T. D., ‘‘New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease’’, Biomed. Res. Int., 2014: 1-24, (2014).
  • [37]Ferraz R., Costa-Rodrigues J., Fernandes M. H., Santos M. M., Marrucho I. M., Rebelo L. P. N., Prudêncio C., Noronha J. P., Petrovski Ž. and Branco L. C., ‘‘Antitumor activity of ionic liquids based on ampicillin’’, ChemMedChem, 10(9): 1480-1483, (2015).
  • [38] Millard M., Pathania D., Shabaik Y., Taheri L., Deng J. and Neamati N., ‘‘Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity’’, Plos One, 5(10): 1-18, (2010).
  • [39] Spivak A. Y., Nedopekina D. A., Khalitova R. R., Gubaidullin R. R., Odinokov V. N., Bel’skii Y. P., Bel’skaya N. V. and Khazanov V. A., ‘‘Triphenylphosphonium cations of betulinic acid derivatives: Synthesis and antitumor activity’’, Med Chem Res, 26(3): 518-531, (2017).
  • [40] Caliskan B. and Caliskan A. C., ‘‘EPR study of free radical in gamma-irradiated bis(cyclopentadienyl)zirconium dichloride single crystal’’, Radiat. Eff. and Deff. in Sol., 172(5-6): 507-516,(2017). [41] Caliskan B., Caliskan A. C. and Yerli R., ‘‘Electron paramagnetic resonance study of radiation damage in isonipecotic acid single crystal’’, J. Mol. Struc., 1075: 12-16, (2014).
  • [42] Caliskan B. and Tokgoz H., ‘‘Electron paramagnetic resonance study of gamma-irradiated phenidone single crystal’’, Radiat. Eff. and Deff. in Sol., 169(3): 225-231, (2014).
  • [43] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of gamma-irradiated potassium hydroquinone monosulfonate single crystal’’, Radiat. Eff. and Deff. in Sol., 171(5-6): 440-450, (2016).
  • [44] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance analysis of gamma irradiated 4-nitropyridine N-oxide single crystal’’, Radiat. Eff. and Deff. in Sol., 161(5): 313-317, (2006).
  • [45] Caliskan B., Caliskan A. C., “Electron paramagnetic resonance study of the paramagnetic centers in gamma-irradiated oxalic acid dihydrate single crystal”, Radiat. Phys. Chem., 188: 1-6, (2021).
  • [46] Karakaş E., Türkkan E., Dereli Ö., Sayin Ü. and Tapramaz R., ‘‘EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal’’, Radiat. Eff. and Deff. in Sol., 166(12): 942-950, (2011).
  • [47] Aydin M., Baskan M. H. and Osmanoglu Y. E., ‘‘EPR study of gamma induced radicals in amino and iminodiacetic acid derivatives’’, Brazilian Journal of Physics, 39(3): 583-586, (2009).
  • [48] Çalışkan A. C. ve Çalışkan B., “Electron paramagnetic resonance study of the radiation damage centers in menadione single crystal”, Politeknik Dergisi, 25(1): 299-312, (2022).
  • [49] Begum A., Lyons A. R. and Symons M. C. R., ‘‘Unstable intermediates. Part XCVII. Electron spin resonance spectra and structures of radicals in γ-irradiated aluminium alkyls, trialkyl phosphines, and alkylphosphonium salts’’, J. Chem. Soc. A, 2388-2392. (1971).
  • [50] Caliskan B., Civi M. and Birey M., ‘‘Electron paramagnetic resonance characterization of gamma irradiation damage centers in S-butyrylthiocholine iodide single crystal’’, Radiat. Eff. and Deff. in Sol., 162(2): 87-93, (2007).
  • [51] Caliskan B., ‘‘EPR study of gamma irradiated cholestanone single crystal’’, Acta Phys. Pol. A, 125(1): 135-138, (2014).
  • [52] Caliskan B., Aras E., Asik B., Buyum M. and Birey M., ‘‘EPR of gamma irradiated single crystals of cholesteryl benzoate’’, Radiat. Eff. and Deff. in Sol., 159(1): 1-5, (2004).
  • [53] Geoffroy M., Ginet L. and Lucken E .A. C., ‘‘E.S.R. spectra of X-irradiated methylene diphosphonic acid. I. Carbon-centred radicals’’, Mol. Phys., 28(5): 1289-1295, (1974).
  • [54] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in phosphoryethanolamine single crystal’’, J. Mol. Struc., 1173: 781-791, (2018).
  • [55] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the paramagnetic center in gamma-irradiated sulfanilic acid single crystal’’, Acta Phys. Pol. A, 135(3): 480-484, (2019).
  • [56] Caliskan B., Caliskan A. C. and Er E., ‘‘Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal’’, J. Mol. Struc., 1144: 421-431, (2017).
  • [57] Caliskan B. and Caliskan A. C., ‘‘Electron paramagnetic resonance study of the radiation damage in trans-chalcone single crystal’’, Acta Phys. Pol., A 136(1): 92-100, (2019).
  • [58] Caliskan B. and Caliskan A. C., ‘‘EPR study of radiation damage in gamma irradiated 3-nitroacetophenone single crystal’’, Radiat. Eff. and Deff. in Sol., 172(5-6): 398-410, (2017).
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ali Cengiz Çalışkan 0000-0001-9627-8768

Betül Çalışkan 0000-0001-6748-1169

Proje Numarası The BAP of Pamukkale University [grant number 2012FBE037].
Yayımlanma Tarihi 27 Mart 2023
Gönderilme Tarihi 8 Eylül 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 26 Sayı: 1

Kaynak Göster

APA Çalışkan, A. C., & Çalışkan, B. (2023). Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans ile Tespiti. Politeknik Dergisi, 26(1), 457-468. https://doi.org/10.2339/politeknik.992660
AMA Çalışkan AC, Çalışkan B. Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans ile Tespiti. Politeknik Dergisi. Mart 2023;26(1):457-468. doi:10.2339/politeknik.992660
Chicago Çalışkan, Ali Cengiz, ve Betül Çalışkan. “Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans Ile Tespiti”. Politeknik Dergisi 26, sy. 1 (Mart 2023): 457-68. https://doi.org/10.2339/politeknik.992660.
EndNote Çalışkan AC, Çalışkan B (01 Mart 2023) Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans ile Tespiti. Politeknik Dergisi 26 1 457–468.
IEEE A. C. Çalışkan ve B. Çalışkan, “Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans ile Tespiti”, Politeknik Dergisi, c. 26, sy. 1, ss. 457–468, 2023, doi: 10.2339/politeknik.992660.
ISNAD Çalışkan, Ali Cengiz - Çalışkan, Betül. “Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans Ile Tespiti”. Politeknik Dergisi 26/1 (Mart 2023), 457-468. https://doi.org/10.2339/politeknik.992660.
JAMA Çalışkan AC, Çalışkan B. Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans ile Tespiti. Politeknik Dergisi. 2023;26:457–468.
MLA Çalışkan, Ali Cengiz ve Betül Çalışkan. “Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans Ile Tespiti”. Politeknik Dergisi, c. 26, sy. 1, 2023, ss. 457-68, doi:10.2339/politeknik.992660.
Vancouver Çalışkan AC, Çalışkan B. Metoksimetiltrifenilfosfonyum Klorür Tek Kristalinde Oluşturulan Yapısal Bozukluğun Elektron Paramanyetik Rezonans ile Tespiti. Politeknik Dergisi. 2023;26(1):457-68.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.