NIR Duyarlı NGKN-Fe3O4@PPy Nanokompozitinin Sentezi ve Fototermal Performansının İncelenmesi
Yıl 2024,
ERKEN GÖRÜNÜM, 1 - 1
Ceren Gökalp
,
Zafer Çıplak
,
Bengü Getiren
,
Nuray Yıldız
Öz
Bu çalışmada, yüksek fototermal aktiviteye sahip azot katkılı grafen kuantum nokta-demir oksit-polipirol (NGKN-Fe3O4@PPy) üçlü nanokompoziti sentezlenmiştir. UV-görünür bölge spektroskopisi (UV-vis), Fourier dönüşümlü kızıl ötesi spektroskopisi (FTIR), X-ışını kırınım yöntemi (XRD), yüksek çözünürlüklü geçirimli elektron mikroskobu (HRTEM), X-Ray fotoelektron spektroskopisi (XPS) ile sentezlenen yapıların morfolojik ve kimyasal yapıları karakterize edilmiştir. Ayrıca fototermal özelikleri farklı derişimlerdeki (0,025 – 0,1 mg/mL) sulu çözeltileri kullanılarak yakın kızılötesi (NIR) bölgesinde (808 nm) farklı lazer güç yoğunluklarında (1,5 – 2,5 W/cm2) incelenmiştir. 808 nm NIR lazer ile 10 dk uyarım sonucunda 0,1 mg/ml derişimli NGKN-Fe3O4@PPy kompozitinin maksimum sıcaklığının 1,5 ve 2,5 W/cm2 güç yoğunluklarında sırasıyla 54,3°C ve 83,1°C’ye ulaştığı saptanmıştır. Sergilediği yüksek fototermal performans ve fototermal kararlılık sayesinde sentezlenen NGKN-Fe3O4@PPy üçlü nanokompozitinin fototermal tedavi uygulamaları için önemli bir potansiyele sahip olduğu düşünülmektedir.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
Proje No: 117M232
Teşekkür
Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK; Proje No: 117M232) tarafından desteklenmiştir.
Kaynakça
- [1] Han, J.S., Lee, J.Y. dan Lee, D.S., ''A novel thermosensitive soluble polypyrrole composite'', Synthetic Metals, 124: 301-306, (2001).
- [2] Zhang, M., Wang, T., Zhang, L., Li, L. dan Wang, C., ''Near-Infrared Light and pH-Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo-Photothermal Cancer Therapy'', Chemistry - A European Journal, 21: 16162-16171, (2015).
- [3] Song, X., Gong, H., Yin, S., Cheng, L., Wang, C., Li, Z., and Liu, Z. ''Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided Photothermal therapy'', Advanced Functional Materials, 24: 1194-1201, (2014).
- [4] Kim, J., Kim, J., Jeong, C. dan Kim, W.J., ''Synergistic nanomedicine by combined gene and photothermal therapy'', Advanced Drug Delivery Reviews, 98: 99-112, (2016).
- [5] Karacif, K., Kıyak, T. Dan İnem, B., ''Alüminyumun İletken Polimer İle Kaplanması Ve Kaplama Mikroyapısına Korozyonun Etkisinin İncelenmesi'', J. Fac. Eng. Arch. Gazi Univ., 25: 235–241, (2010).
- [6] Zhou, L., Geng, J. dan Liu, B., ''Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe3+ and Hydrogen Peroxide'', Part. Part. Syst. Charact, 30: 1086–1092, (2013).
- [7] Lu, H., Li, W., Dong, H. dan Wei, M., ''Graphene Quantum Dots for Optical Bioimaging'', Small, 15: 1902136, (2019).
- [8] Zhang, W. dan Gan, J., ''Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for Fe(III) detection'', Applied Surface Science, 372: 145-151, (2016).
- [9] Sheikh Mohd Ghazali, S.A.I., Fatimah, I., Zamil, Z.N., Zulkifli, N.N. dan Adam, N., ''Graphene quantum dots: A comprehensive overview'', Open Chemistry, 21: 20220285, (2023).
- [10] Catanio, A. T., Bergmann, E. V., Kimura, N. M., Petrucci, T., Freitas, C. F., Herculano, L. S., Astrath, N. G. ''Spectroscopic and photothermal characterization of graphene quantum dots for antimicrobial applications'', Journal of Applied Physics, 131: 155102, (2022).
- [11] Kundu, S., Yadav, R. M., Narayanan, T. N., Shelke, M. V., Vajtai, R., Ajayan, P. M., and Pillai, V. K. ''Synthesis of N, F and S co-doped graphene quantum dots'', Nanoscale, 7: 11515-11519, (2015).
- [12] Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., and Sun, Z. ''Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts'', Nanoscale, 5: 12272-12277, (2013).
- [13] Tam, T. Van, Trung, N.B., Kim, H.R., Chung, J.S. dan Choi, W.M., ''One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection'', Sensors and Actuators, B: Chemical, 202: 568-573, (2014).
- [14] Xuan, Y., Zhang, R. Y., Zhang, X. S., An, J., Cheng, K., Li, C., and Zhao, Y. D. Targeting ''N-doped graphene quantum dot with high photothermal conversion efficiency for dual-mode imaging and therapy in vitro'', Nanotechnology, 29: 355101, (2018).
- [15] Figuerola, A., Di Corato, R., Manna, L. dan Pellegrino, T., ''From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications'', Pharmacological Research, 62: 126-43, (2010).
- [16] Gökalp, C., Çıplak, Z., Getiren, B. dan Yıldız, N., ''Photoluminescence, photothermal and magnetic properties of nitrogen doped graphene quantum dots based ternary nanocomposite'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605: 125370, (2020).
- [17] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots'', Scientific Reports, 4: 5294, (2014).
- [18] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''NIR photothermal therapy using polyaniline nanoparticles'', Biomaterials, 4: 5294, (2013).
- [19] Iannazzo, D., Pistone, A., Salamò, M., Galvagno, S., Romeo, R., Giofré, S. V., and Di Pietro, A. ''Graphene quantum dots for cancer targeted drug delivery'', International Journal of Pharmaceutics, 518: 185-192, (2017).
- [20] Pan, D., Zhang, J., Li, Z. dan Wu, M., ''Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots'', Advanced Materials, 22:734-738, (2010).
- [21] UrRahman, O., Chandra Mohapatra, S. dan Ahmad, S., ''Fe3O4 inverse spinal super paramagnetic nanoparticles'', Materials Chemistry and Physics, 132: 196–202, (2012).
- [22] Radoń, A., Drygała, A., Hawełek, Ł. dan Łukowiec, D., ''Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers'', Materials Characterization, 131: 148-156, (2017).
- [23] Alvand, M. dan Shemirani, F., ''A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion'', Microchimica Acta, 184: 1621-1629, (2017).
- [24] Ju, J. dan Chen, W., ''Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media'', Biosensors and Bioelectronics, 58: 219-225, (2014).
- [25] Keshipour, S. dan Adak, K., ''Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics'', RSC Advances, 6: 89407-89412, (2016).
- [26] Ganganboina, A.B., Chowdhury, A.D. dan Doong, R. an, ''Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor'', Electrochimica Acta, 245: 912-923, (2017).
- [27] Ke, K., Lin, L., Liang, H., Chen, X., Han, C., Li, J., and Yang, H. H., ''Polypyrrole nanoprobes with low non-specific protein adsorption for intracellular mRNA detection and photothermal therapy'', Chemical Communications, 51: 6800-6803, (2015).
- [28] Lee, B., Stokes, G. A., Valimukhametova, A., Nguyen, S., Gonzalez-Rodriguez, R., Bhaloo, A., and Naumov, A. V., ''Automated Approach to In Vitro Image-Guided Photothermal Therapy with Top-Down and Bottom-Up-Synthesized Graphene Quantum Dots'', Nanomaterials, 13: 805, (2023).
- [29] Zhang, K., Zhang, J. dan Yang, A., ''Photoheating Effects of CuS@PEI_GQDs Nanoshells under Near-Infrared Laser and Sunlight Irradiation'', Crystal Growth and Design, 23: 1697-1708, (2023).
- [30] Sheini, A., Taherpour, A. A., Maghsudi, M., Farajmand-Amirabadi, S., Kouchak, M., Rahbar, N., and Alidadi, H., ''N-doped graphene quantum dots from graphene oxide and dendrimer and application in photothermal therapy: An experimental and theoretical study'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636: 128066, (2022).
- [31] Kim, T. E., Jang, H. J., Park, S. W., Wei, J., Cho, S., Park, W. I., and Jung, Y. K. ''Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy'', ACS Applied Bio Materials, 4: 3453-3461, (2021).
- [32] Guo, M., Xiang, H. J., Wang, Y., Zhang, Q. L., An, L., Yang, S. P., and Liu, J. G.''Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy'', Chemical Communications, 53: 3253-3256, (2017).
- [33] Zhang, X., Xu, X., Li, T., Lin, M., Lin, X., Zhang, H., and Yang, B.., ''Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures'', ACS Applied Materials and Interfaces, 6: 14552-14561, (2014).
- [34] Chen, M., Fang, X., Tang, S. dan Zheng, N., ''Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy'', Chemical Communications, 48: 8934-8936, (2012).
Synthesis of NIR Responsive NGQDs-Fe3O4@PPy Nanocomposite and Investigation of Its Photothermal Performance
Yıl 2024,
ERKEN GÖRÜNÜM, 1 - 1
Ceren Gökalp
,
Zafer Çıplak
,
Bengü Getiren
,
Nuray Yıldız
Öz
In this work, magnetic nitrogen doped graphene quantum dots iron oxide-polypyrrole (NGQDs-Fe3O4@PPy) ternary nanocomposite having perfect photothermal activity was synthesized. The chemical structure and morphological of the synthesized nanocomposites were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction spectroscopy (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS). Photothermal properties of the synthesized nanocomposites were examined at different laser power densities (1.5 - 2.5 W/cm2) in the near infrared (NIR) region (808 nm) using aqueous solutions of different concentrations (0.025 - 0.1 mg / mL). The maximum temperature (Tmax) of NGQDs-Fe3O4@PPy composite reached up to 54.3°C and 83.1°C under irradiation of the 808 nm NIR laser at 1.5 and 2.5 W/cm2 power density for 10 min at 0.1 mg/ml concentration. The synthesized NGQDs-Fe3O4@PPy triple nanocomposite with high photothermal performance and photothermal stability is thought to have an important potential for photothermal treatment applications.
Proje Numarası
Proje No: 117M232
Kaynakça
- [1] Han, J.S., Lee, J.Y. dan Lee, D.S., ''A novel thermosensitive soluble polypyrrole composite'', Synthetic Metals, 124: 301-306, (2001).
- [2] Zhang, M., Wang, T., Zhang, L., Li, L. dan Wang, C., ''Near-Infrared Light and pH-Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo-Photothermal Cancer Therapy'', Chemistry - A European Journal, 21: 16162-16171, (2015).
- [3] Song, X., Gong, H., Yin, S., Cheng, L., Wang, C., Li, Z., and Liu, Z. ''Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided Photothermal therapy'', Advanced Functional Materials, 24: 1194-1201, (2014).
- [4] Kim, J., Kim, J., Jeong, C. dan Kim, W.J., ''Synergistic nanomedicine by combined gene and photothermal therapy'', Advanced Drug Delivery Reviews, 98: 99-112, (2016).
- [5] Karacif, K., Kıyak, T. Dan İnem, B., ''Alüminyumun İletken Polimer İle Kaplanması Ve Kaplama Mikroyapısına Korozyonun Etkisinin İncelenmesi'', J. Fac. Eng. Arch. Gazi Univ., 25: 235–241, (2010).
- [6] Zhou, L., Geng, J. dan Liu, B., ''Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe3+ and Hydrogen Peroxide'', Part. Part. Syst. Charact, 30: 1086–1092, (2013).
- [7] Lu, H., Li, W., Dong, H. dan Wei, M., ''Graphene Quantum Dots for Optical Bioimaging'', Small, 15: 1902136, (2019).
- [8] Zhang, W. dan Gan, J., ''Synthesis of blue-photoluminescent graphene quantum dots/polystyrenic anion-exchange resin for Fe(III) detection'', Applied Surface Science, 372: 145-151, (2016).
- [9] Sheikh Mohd Ghazali, S.A.I., Fatimah, I., Zamil, Z.N., Zulkifli, N.N. dan Adam, N., ''Graphene quantum dots: A comprehensive overview'', Open Chemistry, 21: 20220285, (2023).
- [10] Catanio, A. T., Bergmann, E. V., Kimura, N. M., Petrucci, T., Freitas, C. F., Herculano, L. S., Astrath, N. G. ''Spectroscopic and photothermal characterization of graphene quantum dots for antimicrobial applications'', Journal of Applied Physics, 131: 155102, (2022).
- [11] Kundu, S., Yadav, R. M., Narayanan, T. N., Shelke, M. V., Vajtai, R., Ajayan, P. M., and Pillai, V. K. ''Synthesis of N, F and S co-doped graphene quantum dots'', Nanoscale, 7: 11515-11519, (2015).
- [12] Qu, D., Zheng, M., Du, P., Zhou, Y., Zhang, L., Li, D., and Sun, Z. ''Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts'', Nanoscale, 5: 12272-12277, (2013).
- [13] Tam, T. Van, Trung, N.B., Kim, H.R., Chung, J.S. dan Choi, W.M., ''One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection'', Sensors and Actuators, B: Chemical, 202: 568-573, (2014).
- [14] Xuan, Y., Zhang, R. Y., Zhang, X. S., An, J., Cheng, K., Li, C., and Zhao, Y. D. Targeting ''N-doped graphene quantum dot with high photothermal conversion efficiency for dual-mode imaging and therapy in vitro'', Nanotechnology, 29: 355101, (2018).
- [15] Figuerola, A., Di Corato, R., Manna, L. dan Pellegrino, T., ''From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications'', Pharmacological Research, 62: 126-43, (2010).
- [16] Gökalp, C., Çıplak, Z., Getiren, B. dan Yıldız, N., ''Photoluminescence, photothermal and magnetic properties of nitrogen doped graphene quantum dots based ternary nanocomposite'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605: 125370, (2020).
- [17] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots'', Scientific Reports, 4: 5294, (2014).
- [18] Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., and Sun, Z., ''NIR photothermal therapy using polyaniline nanoparticles'', Biomaterials, 4: 5294, (2013).
- [19] Iannazzo, D., Pistone, A., Salamò, M., Galvagno, S., Romeo, R., Giofré, S. V., and Di Pietro, A. ''Graphene quantum dots for cancer targeted drug delivery'', International Journal of Pharmaceutics, 518: 185-192, (2017).
- [20] Pan, D., Zhang, J., Li, Z. dan Wu, M., ''Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots'', Advanced Materials, 22:734-738, (2010).
- [21] UrRahman, O., Chandra Mohapatra, S. dan Ahmad, S., ''Fe3O4 inverse spinal super paramagnetic nanoparticles'', Materials Chemistry and Physics, 132: 196–202, (2012).
- [22] Radoń, A., Drygała, A., Hawełek, Ł. dan Łukowiec, D., ''Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers'', Materials Characterization, 131: 148-156, (2017).
- [23] Alvand, M. dan Shemirani, F., ''A Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion'', Microchimica Acta, 184: 1621-1629, (2017).
- [24] Ju, J. dan Chen, W., ''Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media'', Biosensors and Bioelectronics, 58: 219-225, (2014).
- [25] Keshipour, S. dan Adak, K., ''Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics'', RSC Advances, 6: 89407-89412, (2016).
- [26] Ganganboina, A.B., Chowdhury, A.D. dan Doong, R. an, ''Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor'', Electrochimica Acta, 245: 912-923, (2017).
- [27] Ke, K., Lin, L., Liang, H., Chen, X., Han, C., Li, J., and Yang, H. H., ''Polypyrrole nanoprobes with low non-specific protein adsorption for intracellular mRNA detection and photothermal therapy'', Chemical Communications, 51: 6800-6803, (2015).
- [28] Lee, B., Stokes, G. A., Valimukhametova, A., Nguyen, S., Gonzalez-Rodriguez, R., Bhaloo, A., and Naumov, A. V., ''Automated Approach to In Vitro Image-Guided Photothermal Therapy with Top-Down and Bottom-Up-Synthesized Graphene Quantum Dots'', Nanomaterials, 13: 805, (2023).
- [29] Zhang, K., Zhang, J. dan Yang, A., ''Photoheating Effects of CuS@PEI_GQDs Nanoshells under Near-Infrared Laser and Sunlight Irradiation'', Crystal Growth and Design, 23: 1697-1708, (2023).
- [30] Sheini, A., Taherpour, A. A., Maghsudi, M., Farajmand-Amirabadi, S., Kouchak, M., Rahbar, N., and Alidadi, H., ''N-doped graphene quantum dots from graphene oxide and dendrimer and application in photothermal therapy: An experimental and theoretical study'', Colloids and Surfaces A: Physicochemical and Engineering Aspects, 636: 128066, (2022).
- [31] Kim, T. E., Jang, H. J., Park, S. W., Wei, J., Cho, S., Park, W. I., and Jung, Y. K. ''Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy'', ACS Applied Bio Materials, 4: 3453-3461, (2021).
- [32] Guo, M., Xiang, H. J., Wang, Y., Zhang, Q. L., An, L., Yang, S. P., and Liu, J. G.''Ruthenium nitrosyl functionalized graphene quantum dots as an efficient nanoplatform for NIR-light-controlled and mitochondria-targeted delivery of nitric oxide combined with photothermal therapy'', Chemical Communications, 53: 3253-3256, (2017).
- [33] Zhang, X., Xu, X., Li, T., Lin, M., Lin, X., Zhang, H., and Yang, B.., ''Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures'', ACS Applied Materials and Interfaces, 6: 14552-14561, (2014).
- [34] Chen, M., Fang, X., Tang, S. dan Zheng, N., ''Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy'', Chemical Communications, 48: 8934-8936, (2012).