Derleme
BibTex RIS Kaynak Göster

1G'den 6G'ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1263687

Öz

Daha yüksek hizmet kalitesi, veri hızları, kapasite ve azalan gecikmeye yönelik artan ihtiyaç nedeniyle, hücresel iletişim gün geçtikçe gelişmektedir. Hücresel ağların tasarımı, bu talepleri karşılamak için önemli ölçüde geliştirilmektedir. Yeni çoklu erişim yöntemleri, modülasyon teknikleri, gelişen teknolojiler vb. sayesinde ihtiyaç ve talepler karşılanmaktadır. Bu çalışmada, birinci nesilden (1G) altıncı nesle (6G) kadar hücresel evrim üzerine kapsamlı bir çalışma sunulmaktadır. Çalışmada hücresel ağ tasarımları, çoklu erişim stratejileri, modülasyon teknikleri ve gelişen teknolojiler ele alınmıştır. Hücresel ağın mimarisi 1G'den 5G'ye kadar verilmiştir. Mimariyi geliştirmek ve kullanıcı taleplerini karşılamak için ortaya çıkan en önemli teknolojilerden bazıları ele alınmaktadır. Massive MIMO, yazılım tanımlı ağ, mmWave ve diğer gelecek teknolojiler bun önemli teknolojiler arasındadır. Ek olarak, 1G'den 5G'ye kadar çeşitli erişim mekanizmaları araştırılmaktadır. Birkaç nesil hücresel iletişimin bir karşılaştırması bulunmaktadır. Çalışma ayrıca yaklaşan 6G'nin neler getirebileceğine dair bir ön izleme sunmaktadır. 6G ile ilgili tartışılan zorluklar ve sorunlar açıklanmaktadır.

Kaynakça

  • [1] Dogra, A., Jha, R. K. and Jain, S. "A Survey on Beyond 5G Network With the Advent of 6G: Architecture and Emerging Technologies", IEEE Access, 9, 67512-67547, (2021).
  • [2] Chettri, L. and Bera, R. "A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems", IEEE Internet of Things Journal, 7(1), 16-32, (2020).
  • [3] Guo, F., et al., "An Adaptive Wireless Virtual Reality Framework in Future Wireless Networks: A Distributed Learning Approach", IEEE Transactions on Vehicular Technology, 69(8), 8514-8528, (2020).
  • [4] Ren, P. et al., "Edge AR X5: An Edge-Assisted Multi-User Collaborative Framework for Mobile Web Augmented Reality in 5G and Beyond," IEEE Transactions on Cloud Computing, 10(4), 2521-2537, (2022).
  • [5] Shah, A. F. M. S., Karabulut, M. A., Ilhan, H. and Tureli, U. “Performance optimization of cluster-based MAC protocol for VANETs,” IEEE Access, 8(1), 167731-167738, (2020).
  • [6] Shah, A. F. M. S., Qasim, A. N., Karabulut, M. A., Ilhan, H. and Islam, M. B. “Survey and Performance Evaluation of Multiple Access Schemes for Next-Generation Wireless Communication Systems,” IEEE Access, 9(1), 113428-113442, (2021).
  • [7] Shah, A. F. M. S., "A Survey From 1G to 5G Including the Advent of 6G: Architectures, Multiple Access Techniques, and Emerging Technologies", IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 1117-1123, (2022).
  • [8] Budhiraja, I. et al., "A Systematic Review on NOMA Variants for 5G and Beyond," IEEE Access, 9, 85573-85644, (2021).
  • [9] Sakai, M. et al. "Experimental Field Trials on MU-MIMO Transmissions for High SHF Wide-Band Massive MIMO in 5G," IEEE Transactions on Wireless Communications, 19(4), 2196-2207, (2020).
  • [10] Tadros, C. N., Rizk, M. R. M. and Mokhtar, B. M. "Software Defined Network-Based Management for Enhanced 5G Network Services," IEEE Access, 8, 53997-54008, (2020).
  • [11] Hussain R., "Shared-Aperture Slot-Based Sub-6-GHz and mm-Wave IoT Antenna for 5G Applications," IEEE Internet of Things Journal, 8(13), 10807-10814, (2021).
  • [12] Nagai, H., et al, "Design and verification of large-scale optical circuit switch using ULCF AWGs for datacenter application," Journal of Optical Communications and Networking, 10(7), 82-89, (2018).
  • [13] Van Heddeghem, W., et al., "A Quantitative Survey of the Power Saving Potential in IP-Over-WDM Backbone Networks," IEEE Communications Surveys & Tutorials, 18(1), 706-731, (2016).
  • [14] Ming, F., et al., "GSM/GPRS Bearers Efficiency Analysis for Machine Type Communications", IEEE 75th Vehicular Technology Conference (VTC), 1-5, (2012).
  • [15] Aggelis, K., Louvros, S., "GPRS performance optimization with pre-empted packet queue analysis", 6th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 1-4, (2011).
  • [16] Elnashar, A., El-Saidny, M. A. and Mahmoud, M. "Practical Performance Analyses of Circuit-Switched Fallback and Voice Over LTE," IEEE Transactions on Vehicular Technology, 66(2), 1748-1759, (2017).
  • [17] Elnashar, A., El-Saidny, M. A. and Mahmoud, M., "Practical Performance Analyses of Circuit-Switched Fallback and Voice Over LTE," IEEE Transactions on Vehicular Technology, 66(2), 1748-1759, (2017).
  • [18] Ferdouse, L., Erkucuk, S., Anpalagan, A. and Woungang, I. "Energy Efficient SCMA Supported Downlink Cloud-RANs for 5G Networks," IEEE Access, 8, 1416-1430, (2020).
  • [19] Zhang, Y., Zhou, M., Zhao, H., Yang, L. and Zhu, H., "Spectral efficiency of superimposed pilots in cell-free massive MIMO systems with hardware impairments," China Communications, 18(6), 146-161, (2021).
  • [20] Arabian, F., Nordi,n G. P. and Rice, M. "On the Ungerboeck and Forney Observation Models for Spatial Combining and Their Application to 5G Millimeter-Wave Bands," IEEE Access, 9, 22214-22231, (2021).
  • [21] Guo, C., Tian, L., Jiang, Z. H. and Hong, W. "A Self-Calibration Method for 5G Full-Digital TDD Beamforming Systems Using an Embedded Transmission Line," IEEE Transactions on Antennas and Propagation, 69(5), 2648-2659, (2021).
  • [22] Suartana, I. M. and Rozaq, A., "Performance Modeling QoS for Multimedia Streaming in Software Defined Network," Fourth International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, (2021).
  • [23] Asif, S. M., Anbiyaei, M. R., Ford, K. L., O’Farrell, T. and Langley, R. J. "Low-Profile Independently- and Concurrently-Tunable Quad-Band Antenna for Single Chain Sub-6GHz 5G New Radio Applications," IEEE Access, 7, 183770-183782, (2019).
  • [24] Banerjee, S., Gochhayat, S. P. and Shetty, S., "Performance Analysis of Fixed Broadband Wireless Access in mmWave Band in 5G," International Conference on Computing, Networking and Communications (ICNC), Honolulu, USA, (2023), 124-129.
  • [25] Boccuzzi, J., “Introduction to Cellular Mobile Communications,” In: M. Vaezi, Z. Ding, H. Poor (eds): Multiple Access Techniques for 5G Wireless Networks and Beyond, Springer, Cham, 3-37, (2016).
  • [26] Navita, A., "Performance analysis of OFDMA, MIMO and SC-FDMA technology in 4G LTE networks," 6th International Conference- Cloud System and Big Data Engineering, Noida, India, (2016), 554-558.
  • [27] Hartmann, M. et al., "CNTFET Technology for RF Applications: Review and Future Perspective," IEEE Journal of Microwaves, 1(1), 275-287, (2021).
  • [28] Liu, S., Yu, X., Guo, R., Tang, Y. and Zhao, Z., "THz channel modeling: Consolidating the road to THz communications," China Communications, 18(5), 33-49, (2021).
  • [29] Kolodziej, K. E., et al., "Multitap RF Canceller for In-Band Full-Duplex Wireless Communications," IEEE Transactions on Wireless Communications, 15(6), 4321-4334, (2016).
  • [30] Secgin, S., "Cellular Communication and 1G Systems," in Evolution of Wireless Communication Ecosystems, IEEE, (2023), 51-56.
  • [31] Kumar, S., Gupta, G. and Singh, K. R., "5G: Revolution of future communication technology," International Conference on Green Computing and Internet of Things, Greater Noida, India, (2015), 143-147.
  • [32] Del Peral-Rosado, J. A., et al., "Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G," IEEE Communications Surveys & Tutorials, 20(2), 1124-1148, (2018).
  • [33] David, K. and Berndt, H., ‘‘6G vision and requirements: Is there any need for beyond 5G?’’ IEEE Veh. Technol. Mag., 13(3), 72–80, Sep. (2018).
  • [34] Monserrat, J. F., et al., ‘‘Key technologies for the advent of the 6G,’’ IEEE Wireless Commun. Netw. Conf. Workshops, 1–6, (2020).
  • [35] Lu, Y. and Ning, X., ‘‘A vision of 6G—5G’s successor,’’ J. Manage. Anal., 7(3), 301–320, Aug. (2020).
  • [36] Chen, Y., et al., ‘‘Pervasive intelligent endogenous 6G wireless systems: Prospects, theo- ries and key technologies,’’ Digit. Commun. Netw., 6, 2–14, (2020).
  • [37] Khan, L. U., I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, ‘‘6G wireless systems: A vision, architectural elements, and future directions,’’ IEEE Access, 8, 147029–147044, (2020).
  • [38] Bi, Q., ‘‘Ten trends in the cellular industry and an outlook on 6G,’’ IEEE Commun. Mag., 57(12), 31–37, (2019).
  • [39] Qamar, F., et al., ‘‘Issues, challenges, and research trends in spectrum management: A comprehensive overview and new vision for designing 6G networks,’’ Electronics, 9, 14-16, (2020).
  • [40] Lu, Y. and Zheng, X., ‘‘6G: A survey on technologies, scenarios, challenges, and the related issues,’’ J. Ind. Inf. Integr., 19, 1–52, Jul. (2020).
  • [41] Ahmed, R. and Matin, M. A., ‘‘Towards 6G wireless networks-challenges and potential technologies,’’ J. Electr. Eng., 71(4), 290–297, (2020).
  • [42] Chowdhury, M. Z., et al., "6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions," IEEE Open Journal of the Communications Society, 1, 957-975, (2020).
  • [43] Akyildiz, I. F., Kak, A., and Nie, S., ‘‘6G and beyond: The future of wireless communications systems,’’ IEEE Access, 8, 133995–134030, Jul. (2020).
  • [44] Tonkikh, E. V., Burobina, K. D., and Shurakhov, A. A., ‘‘Possible applications of sixth generation communication networks,’’ Syst. Signals Gener. Process. Field Board Commun., Moscow, Russia, 1–6, (2020).
  • [45] Elmeadawy, S., and Shubair, R. M., "6G Wireless Communications: Future Technologies and Research Challenges," International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, UAE, (2019).
  • [46] Nayak, S., and Patgiri, R., ‘‘6G communications: A vision on the potential applications,’’ 1–8, Apr. (2020), arXiv:2005.07531. [Online]. Available: http://arxiv.org/abs/2005.07531
  • [47] Tataria, H., et al., ‘6G wireless systems: Vision, requirements, challenges, insights, and opportunities,’ 109(7), 1166-1199, (2021).
  • [48] Yang, W. et al., "Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges," IEEE Communications Surveys & Tutorials, 25(1), 213-250, (2023).
  • [49] Tariq, F., et al., "A Speculative Study on 6G," IEEE Wireless Communications, 27(4), 118-125, (2020).
  • [50] Sergiou, C., et al., ‘‘Complex systems: A communication networks perspective towards 6G,’’ IEEE Access, 8, 89007–89030, May (2020).
  • [51] Yang, Y., et al., ‘‘Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,’’ Sci. China Inf. Sci., 64, 1–76, May (2020).
  • [52] Bariah, L., et al., ‘A prospective look: Key enabling technologies, applications and open research topics in 6G networks,’ IEEE Access, 8, 174792–174820, Sep. (2020).
  • [53] Saad, W., Bennis, M., and Chen, M., "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," IEEE Network, 34(3), 134-142, (2020).
  • [54] Zhao, Y., et al., ‘6G mobile communication networks: Vision, challenges, and key technologies,’ Scientia Sinica Inf., 49(8), 963–987, Aug. (2019).
  • [55] Katz, M., et al., ‘‘6Genesis flagship program: Building the bridges towards 6G-enabled wireless smart society and ecosystem,’’ IEEE 10th Latin-American Conf. Commun. (LATINCOM), Levi, Finland,, 1–9, (2018).
  • [56] Dang, S., Amin, O., Shihada, B., and Alouini, M.-S., ‘‘From a human-centric perspective: What might 6G be?’ Nature Electron., 3, 20–29, Jan. (2020).
  • [57] Ahokangas, P., Alves, H., de Beek, J. V., and Bennis M., ‘‘Key drivers and research challenges for 6G ubiquitous wireless intelligence 6G research visions 1,’’ 6G Flagship White Paper, Sep. (2019).
  • [58] Yuan, Y., Zhao, Y., Zong, B., and Parolari, S., ‘‘Potential key Technologies for 6G mobile communications,’’ Sci. China Inf. Sci., 63(8), 1–19, May (2020).
  • [59] Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., and Zorzi, M., ‘‘Towards 6G networks: Use cases and technologies,’’ IEEE Commun. Mag., vol. 58, no. 3, pp. 51–63, Mar. (2020).
  • [60] Yang, H., Alphones, A., Xiong, Z., Niyato, D., Zhao, J. and Wu, K., "Artificial-Intelligence-Enabled Intelligent 6G Networks," IEEE Network, 34(6), 272-280, (2020).
  • [61] Letaief, K. B., Chen, W., Shi, Y., Zhang, J., and Zhang, Y.-J.-A., ‘‘The roadmap to 6G: AI empowered wireless networks,’’ IEEE Commun. Mag., 57(8), 84–90, (2019).
  • [62] Shafin, R., et al., ‘‘Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G,’’ IEEE Wireless Commun., 27(2), 212–217, Apr. (2019).
  • [63] Piran, M. J. and Suh, D. Y., "Learning-Driven Wireless Communications, towards 6G," International Conference on Computing, Electronics & Communications Engineering (iCCECE), 219-224, (2019). [64] Tang, F., Kawamoto, Y., Kato, N., and Liu, J., ‘Future intelligent and secure vehicular network toward 6G: Machine-learning approaches,’ Proc. IEEE, 108(2), 292–307, (2020).
  • [65] Tareq, B., et al., ‘A vision on the artificial intelligence for 6G communication,’ ICT Express, 9(2), 197-210, (2023).
  • [66] Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J. and Zhang, J. C., "Artificial Intelligence-Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G," IEEE Wireless Communications, 27(2), 212-217, (2020).
  • [67] Tang, F., Kawamoto, Y., Kato, N., and Liu, J., “Future intelligent and secure vehicular network toward 6G: Machine-learning approaches,” Proc. IEEE, vol. 108, no. 2, pp. 292–307, Feb. (2020). [68] 6G White Paper on Machine Learning in Wireless Communication Networks-6GFlagship, 6G White Paper, Apr. (2020). [69] Kato, N., Mao, B., Tang, F., Kawamoto, Y., and Liu, J., ‘‘Ten challenges in advancing machine learning technologies toward 6G,’’ IEEE Wireless Commun., 27(3), 96–103, (2020).
  • [70] Mao, B., Kawamoto, Y., and Kato, N., ‘‘AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things,’’ IEEE Internet Things J., 7(8), 7031–7042, Mar. (2020).
  • [71] Nawaz, S. J., Sharma, S. K., Wyne, S., Patwary, M. N., and Asaduzzaman, M., “Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future,” IEEE Access, 7, 46317–46350, (2019) . [72] Nguyen, T., Tran, N., Loven, L., Partala, J., Kechadi, M.-T., and Pirttikangas, S., ‘‘Privacy-aware blockchain innovation for 6G: Challenges and opportunities,’’ 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 1–5, (2020).
  • [73] Hewa, T., Gür, G., Kalla, A., Ylianttila, M., Bracken, A., and Liyanage, M., ‘‘The role of blockchain in 6G: Challenges, opportunities and research directions,’’ 2nd 6G Wireless Summit, Levi, Finland, 1-5, (2020).
  • [74] Lu, Y., ‘Security in 6G: The prospects and the relevant technologies,’ J. Ind. Integr. Manage., 5, 1–24, (2020).
  • [75] Manogaran, G., Rawal, B. S., and Saravanan, V., ‘‘Blockchain based integrated security measure for reliable service delegation in 6G communication environment,’’ Comput. Commun.,161, 1–22, Jul. (2020).
  • [76] Tschorsch, F. and Scheuermann, B., “Bitcoin and beyond: A technical survey on decentralized digital currencies,” IEEE Commun. Surveys Tuts., 18(3), 2084–2123, (2016).
  • [77] Dai, H.-N., Zheng, Z., and Zhang, Y., “Blockchain for Internet of Things: A survey,” IEEE Internet Things J., 6(5), 8076–8094, Oct. (2019).
  • [78] Xie, J., Yu, F. R. Huang, T., Xie, R., Liu, J., and Liu, Y., “A survey on the scalability of blockchain systems, IEEE Netw., 33(5), 166–173, (2019).
  • [79] Qamar, F., Siddiqui, M. U. A., Hindia M. N., Hassan R., and Nguyen Q. N., ‘Issues, challenges, and research trends in spectrum management: A comprehensive overview and new vision for designing 6G networks,’ Electronics, 9, 14-16, Sep. (2020).
  • [80] Sadi, Y., Erkucuk, S., and Panayirci, E., ‘‘Flexible physical layer based resource allocation for machine type communications towards 6G,’’ 2nd 6G Wireless Summit, Levi, Finland, 1–5, (2020).
  • [81] Bilge, K. Ç., Nuno, K. P., ‘Resource sharing and scheduling in device-to-device communication underlying cellular network’, Pamukkale Univ Muh Bilim Derg. 27(5), 604-609, (2021).
  • [82] Yuan, X., Zhang, Y.-J. A., Shi, Y., Yan, W. and Liu, H., "Reconfigurable-Intelligent-Surface Empowered Wireless Communications: Challenges and Opportunities," IEEE Wireless Communications, 28(2), 136-143, April (2021).
  • [83] Basar, E., ‘Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G,’ IEEE Trans. Commun., 68(5), 3187–3196, (2020).
  • [84] Huang, C., et al., ‘Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,’ IEEE Wireless Commun., 27(5), 118–125, (2020).
  • [85] Wymeersch, H. and Denis, B., ‘Beyond 5G wireless localization with reconfigurable intelligent surfaces,’ IEEE Int. Conf. Commun. (ICC), pp. 1–6, (2020).
  • [86] Renzo, M. Di, "6G Wireless: Wireless Networks Empowered by Reconfigurable Intelligent Surfaces," 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, (2019).
  • [87] Hodge, J. A., Mishra, K. V., and Zaghloul, A. I., ‘Intelligent timevarying metasurface transceiver for index modulation in 6G wireless networks,’ IEEE Antennas Wireless Propag. Lett., 19, 1891–1895, (2020).
  • [88] Tang, W., Chen, M. Z., Dai, J. Y., Zeng, Y., Zhao, X., Jin, S., Cheng, Q., and Cui, T. J., ‘Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design,’ IEEE Wireless Commun., 27(2), 180–187, Apr. (2020).
  • [89] Bariah, L. et al., “A prospective look: Key enabling technologies, applications and open research topics in 6G networks,” IEEE Access, 8, 174792–174820, (2020).
  • [90] Ji, B. et al., "Several Key Technologies for 6G: Challenges and Opportunities," IEEE Communications Standards Magazine, 5(2), 44-51, (2021).
  • [91] Rikkinen, K., Kyosti, P., Leinonen, M. E., Berg, M., and Parssinen, A., “THz radio communication: Link budget analysis toward 6G,” IEEE Commun. Mag., 58(11), 22–27, (2020).
  • [92] Polese, M., et al., “Toward end-to end, full-stack 6G terahertz networks,” IEEE Commun. Mag., 58(11), 48–54, (2020).
  • [93] Du, J., Jiang, C., Wang, J., Ren, Y., and Debbah, M., “Machine learning for 6G wireless networks: Carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service,” IEEE Veh. Technol. Mag., 15(4), 122–134, Dec. (2020).
  • [94] 5G Evolution and 6G, Docomo White Paper, Jan. (2020).
  • [95] Networks-2030, a Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 and Beyond, White Paper-Focus Group Network, 2030.
  • [96] 6G Drivers and the UN SDGs-6GFlagship, 6G White Paper, Jun. (2020).
  • [97] ‘6G waves magazine-6GFlagship,’ Spring, Tech. Rep., (2020).
  • [98] White Paper on 6G-the Next Hyper Connected Experience for All, Samsung, Seoul, South Korea, 1–46, (2020).
  • [99] Li, R., ‘‘Towards a new Internet for the year 2030 and beyond,’’ Future Netw., 1–23, Jul. (2019).
  • [100] Liu, G., et al., "Vision, requirements and network architecture of 6G mobile network beyond 2030," China Communications, 17(9), 92-104, (2020).
  • [101] Alwis, C. D., et al., "Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research," IEEE Open Journal of the Communications Society, 2, 836-886, (2021).
  • [102] Bhat, J. R., and Alqahtani, S. A., "6G Ecosystem: Current Status and Future Perspective," IEEE Access, 9, 43134-43167, (2021).
  • [103] Wang, M, Lin, Y, Tian, Q. and Si, G., "Transfer Learning Promotes 6G Wireless Communications: Recent Advances and Future Challenges," IEEE Transactions on Reliability, 70(2), 790-807, (2021).

A Comprehensive Study on Cellular Evolution from 1G to 6G

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1263687

Öz

Due to the growing need for greater quality of service, data rates, capacity, and decreased latency, cellular communication is evolving. The design of cellular networks is being dramatically enhanced in order to meet these demands. The needs and demands are fulfilled due to new multiple access methods, modulation techniques, emerging technologies, etc. In this paper, a comprehensive study on cellular evolution from the first generation (1G) to sixth generation (6G) is presented. The cellular network designs, multiple access strategies, modulation techniques, and emerging technologies are considered in the study. The architecture of the cellular network is given from 1G to 5G. Some of the most important emerging technologies for improving architecture and meeting user demands are covered. Massive MIMO, software-defined networking, mmWave, and other upcoming technologies are among them. Additionally, several access mechanisms ranging from 1G to 5G are investigated. There is a comparison of several generations of cellular communication. The study also gives a preview of what the upcoming 6G may bring. There are obstacles and issues with 6G that are discussed.

Kaynakça

  • [1] Dogra, A., Jha, R. K. and Jain, S. "A Survey on Beyond 5G Network With the Advent of 6G: Architecture and Emerging Technologies", IEEE Access, 9, 67512-67547, (2021).
  • [2] Chettri, L. and Bera, R. "A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems", IEEE Internet of Things Journal, 7(1), 16-32, (2020).
  • [3] Guo, F., et al., "An Adaptive Wireless Virtual Reality Framework in Future Wireless Networks: A Distributed Learning Approach", IEEE Transactions on Vehicular Technology, 69(8), 8514-8528, (2020).
  • [4] Ren, P. et al., "Edge AR X5: An Edge-Assisted Multi-User Collaborative Framework for Mobile Web Augmented Reality in 5G and Beyond," IEEE Transactions on Cloud Computing, 10(4), 2521-2537, (2022).
  • [5] Shah, A. F. M. S., Karabulut, M. A., Ilhan, H. and Tureli, U. “Performance optimization of cluster-based MAC protocol for VANETs,” IEEE Access, 8(1), 167731-167738, (2020).
  • [6] Shah, A. F. M. S., Qasim, A. N., Karabulut, M. A., Ilhan, H. and Islam, M. B. “Survey and Performance Evaluation of Multiple Access Schemes for Next-Generation Wireless Communication Systems,” IEEE Access, 9(1), 113428-113442, (2021).
  • [7] Shah, A. F. M. S., "A Survey From 1G to 5G Including the Advent of 6G: Architectures, Multiple Access Techniques, and Emerging Technologies", IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 1117-1123, (2022).
  • [8] Budhiraja, I. et al., "A Systematic Review on NOMA Variants for 5G and Beyond," IEEE Access, 9, 85573-85644, (2021).
  • [9] Sakai, M. et al. "Experimental Field Trials on MU-MIMO Transmissions for High SHF Wide-Band Massive MIMO in 5G," IEEE Transactions on Wireless Communications, 19(4), 2196-2207, (2020).
  • [10] Tadros, C. N., Rizk, M. R. M. and Mokhtar, B. M. "Software Defined Network-Based Management for Enhanced 5G Network Services," IEEE Access, 8, 53997-54008, (2020).
  • [11] Hussain R., "Shared-Aperture Slot-Based Sub-6-GHz and mm-Wave IoT Antenna for 5G Applications," IEEE Internet of Things Journal, 8(13), 10807-10814, (2021).
  • [12] Nagai, H., et al, "Design and verification of large-scale optical circuit switch using ULCF AWGs for datacenter application," Journal of Optical Communications and Networking, 10(7), 82-89, (2018).
  • [13] Van Heddeghem, W., et al., "A Quantitative Survey of the Power Saving Potential in IP-Over-WDM Backbone Networks," IEEE Communications Surveys & Tutorials, 18(1), 706-731, (2016).
  • [14] Ming, F., et al., "GSM/GPRS Bearers Efficiency Analysis for Machine Type Communications", IEEE 75th Vehicular Technology Conference (VTC), 1-5, (2012).
  • [15] Aggelis, K., Louvros, S., "GPRS performance optimization with pre-empted packet queue analysis", 6th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 1-4, (2011).
  • [16] Elnashar, A., El-Saidny, M. A. and Mahmoud, M. "Practical Performance Analyses of Circuit-Switched Fallback and Voice Over LTE," IEEE Transactions on Vehicular Technology, 66(2), 1748-1759, (2017).
  • [17] Elnashar, A., El-Saidny, M. A. and Mahmoud, M., "Practical Performance Analyses of Circuit-Switched Fallback and Voice Over LTE," IEEE Transactions on Vehicular Technology, 66(2), 1748-1759, (2017).
  • [18] Ferdouse, L., Erkucuk, S., Anpalagan, A. and Woungang, I. "Energy Efficient SCMA Supported Downlink Cloud-RANs for 5G Networks," IEEE Access, 8, 1416-1430, (2020).
  • [19] Zhang, Y., Zhou, M., Zhao, H., Yang, L. and Zhu, H., "Spectral efficiency of superimposed pilots in cell-free massive MIMO systems with hardware impairments," China Communications, 18(6), 146-161, (2021).
  • [20] Arabian, F., Nordi,n G. P. and Rice, M. "On the Ungerboeck and Forney Observation Models for Spatial Combining and Their Application to 5G Millimeter-Wave Bands," IEEE Access, 9, 22214-22231, (2021).
  • [21] Guo, C., Tian, L., Jiang, Z. H. and Hong, W. "A Self-Calibration Method for 5G Full-Digital TDD Beamforming Systems Using an Embedded Transmission Line," IEEE Transactions on Antennas and Propagation, 69(5), 2648-2659, (2021).
  • [22] Suartana, I. M. and Rozaq, A., "Performance Modeling QoS for Multimedia Streaming in Software Defined Network," Fourth International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, (2021).
  • [23] Asif, S. M., Anbiyaei, M. R., Ford, K. L., O’Farrell, T. and Langley, R. J. "Low-Profile Independently- and Concurrently-Tunable Quad-Band Antenna for Single Chain Sub-6GHz 5G New Radio Applications," IEEE Access, 7, 183770-183782, (2019).
  • [24] Banerjee, S., Gochhayat, S. P. and Shetty, S., "Performance Analysis of Fixed Broadband Wireless Access in mmWave Band in 5G," International Conference on Computing, Networking and Communications (ICNC), Honolulu, USA, (2023), 124-129.
  • [25] Boccuzzi, J., “Introduction to Cellular Mobile Communications,” In: M. Vaezi, Z. Ding, H. Poor (eds): Multiple Access Techniques for 5G Wireless Networks and Beyond, Springer, Cham, 3-37, (2016).
  • [26] Navita, A., "Performance analysis of OFDMA, MIMO and SC-FDMA technology in 4G LTE networks," 6th International Conference- Cloud System and Big Data Engineering, Noida, India, (2016), 554-558.
  • [27] Hartmann, M. et al., "CNTFET Technology for RF Applications: Review and Future Perspective," IEEE Journal of Microwaves, 1(1), 275-287, (2021).
  • [28] Liu, S., Yu, X., Guo, R., Tang, Y. and Zhao, Z., "THz channel modeling: Consolidating the road to THz communications," China Communications, 18(5), 33-49, (2021).
  • [29] Kolodziej, K. E., et al., "Multitap RF Canceller for In-Band Full-Duplex Wireless Communications," IEEE Transactions on Wireless Communications, 15(6), 4321-4334, (2016).
  • [30] Secgin, S., "Cellular Communication and 1G Systems," in Evolution of Wireless Communication Ecosystems, IEEE, (2023), 51-56.
  • [31] Kumar, S., Gupta, G. and Singh, K. R., "5G: Revolution of future communication technology," International Conference on Green Computing and Internet of Things, Greater Noida, India, (2015), 143-147.
  • [32] Del Peral-Rosado, J. A., et al., "Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G," IEEE Communications Surveys & Tutorials, 20(2), 1124-1148, (2018).
  • [33] David, K. and Berndt, H., ‘‘6G vision and requirements: Is there any need for beyond 5G?’’ IEEE Veh. Technol. Mag., 13(3), 72–80, Sep. (2018).
  • [34] Monserrat, J. F., et al., ‘‘Key technologies for the advent of the 6G,’’ IEEE Wireless Commun. Netw. Conf. Workshops, 1–6, (2020).
  • [35] Lu, Y. and Ning, X., ‘‘A vision of 6G—5G’s successor,’’ J. Manage. Anal., 7(3), 301–320, Aug. (2020).
  • [36] Chen, Y., et al., ‘‘Pervasive intelligent endogenous 6G wireless systems: Prospects, theo- ries and key technologies,’’ Digit. Commun. Netw., 6, 2–14, (2020).
  • [37] Khan, L. U., I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, ‘‘6G wireless systems: A vision, architectural elements, and future directions,’’ IEEE Access, 8, 147029–147044, (2020).
  • [38] Bi, Q., ‘‘Ten trends in the cellular industry and an outlook on 6G,’’ IEEE Commun. Mag., 57(12), 31–37, (2019).
  • [39] Qamar, F., et al., ‘‘Issues, challenges, and research trends in spectrum management: A comprehensive overview and new vision for designing 6G networks,’’ Electronics, 9, 14-16, (2020).
  • [40] Lu, Y. and Zheng, X., ‘‘6G: A survey on technologies, scenarios, challenges, and the related issues,’’ J. Ind. Inf. Integr., 19, 1–52, Jul. (2020).
  • [41] Ahmed, R. and Matin, M. A., ‘‘Towards 6G wireless networks-challenges and potential technologies,’’ J. Electr. Eng., 71(4), 290–297, (2020).
  • [42] Chowdhury, M. Z., et al., "6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions," IEEE Open Journal of the Communications Society, 1, 957-975, (2020).
  • [43] Akyildiz, I. F., Kak, A., and Nie, S., ‘‘6G and beyond: The future of wireless communications systems,’’ IEEE Access, 8, 133995–134030, Jul. (2020).
  • [44] Tonkikh, E. V., Burobina, K. D., and Shurakhov, A. A., ‘‘Possible applications of sixth generation communication networks,’’ Syst. Signals Gener. Process. Field Board Commun., Moscow, Russia, 1–6, (2020).
  • [45] Elmeadawy, S., and Shubair, R. M., "6G Wireless Communications: Future Technologies and Research Challenges," International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, UAE, (2019).
  • [46] Nayak, S., and Patgiri, R., ‘‘6G communications: A vision on the potential applications,’’ 1–8, Apr. (2020), arXiv:2005.07531. [Online]. Available: http://arxiv.org/abs/2005.07531
  • [47] Tataria, H., et al., ‘6G wireless systems: Vision, requirements, challenges, insights, and opportunities,’ 109(7), 1166-1199, (2021).
  • [48] Yang, W. et al., "Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges," IEEE Communications Surveys & Tutorials, 25(1), 213-250, (2023).
  • [49] Tariq, F., et al., "A Speculative Study on 6G," IEEE Wireless Communications, 27(4), 118-125, (2020).
  • [50] Sergiou, C., et al., ‘‘Complex systems: A communication networks perspective towards 6G,’’ IEEE Access, 8, 89007–89030, May (2020).
  • [51] Yang, Y., et al., ‘‘Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts,’’ Sci. China Inf. Sci., 64, 1–76, May (2020).
  • [52] Bariah, L., et al., ‘A prospective look: Key enabling technologies, applications and open research topics in 6G networks,’ IEEE Access, 8, 174792–174820, Sep. (2020).
  • [53] Saad, W., Bennis, M., and Chen, M., "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," IEEE Network, 34(3), 134-142, (2020).
  • [54] Zhao, Y., et al., ‘6G mobile communication networks: Vision, challenges, and key technologies,’ Scientia Sinica Inf., 49(8), 963–987, Aug. (2019).
  • [55] Katz, M., et al., ‘‘6Genesis flagship program: Building the bridges towards 6G-enabled wireless smart society and ecosystem,’’ IEEE 10th Latin-American Conf. Commun. (LATINCOM), Levi, Finland,, 1–9, (2018).
  • [56] Dang, S., Amin, O., Shihada, B., and Alouini, M.-S., ‘‘From a human-centric perspective: What might 6G be?’ Nature Electron., 3, 20–29, Jan. (2020).
  • [57] Ahokangas, P., Alves, H., de Beek, J. V., and Bennis M., ‘‘Key drivers and research challenges for 6G ubiquitous wireless intelligence 6G research visions 1,’’ 6G Flagship White Paper, Sep. (2019).
  • [58] Yuan, Y., Zhao, Y., Zong, B., and Parolari, S., ‘‘Potential key Technologies for 6G mobile communications,’’ Sci. China Inf. Sci., 63(8), 1–19, May (2020).
  • [59] Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., and Zorzi, M., ‘‘Towards 6G networks: Use cases and technologies,’’ IEEE Commun. Mag., vol. 58, no. 3, pp. 51–63, Mar. (2020).
  • [60] Yang, H., Alphones, A., Xiong, Z., Niyato, D., Zhao, J. and Wu, K., "Artificial-Intelligence-Enabled Intelligent 6G Networks," IEEE Network, 34(6), 272-280, (2020).
  • [61] Letaief, K. B., Chen, W., Shi, Y., Zhang, J., and Zhang, Y.-J.-A., ‘‘The roadmap to 6G: AI empowered wireless networks,’’ IEEE Commun. Mag., 57(8), 84–90, (2019).
  • [62] Shafin, R., et al., ‘‘Artificial intelligence-enabled cellular networks: A critical path to beyond-5G and 6G,’’ IEEE Wireless Commun., 27(2), 212–217, Apr. (2019).
  • [63] Piran, M. J. and Suh, D. Y., "Learning-Driven Wireless Communications, towards 6G," International Conference on Computing, Electronics & Communications Engineering (iCCECE), 219-224, (2019). [64] Tang, F., Kawamoto, Y., Kato, N., and Liu, J., ‘Future intelligent and secure vehicular network toward 6G: Machine-learning approaches,’ Proc. IEEE, 108(2), 292–307, (2020).
  • [65] Tareq, B., et al., ‘A vision on the artificial intelligence for 6G communication,’ ICT Express, 9(2), 197-210, (2023).
  • [66] Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J. and Zhang, J. C., "Artificial Intelligence-Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G," IEEE Wireless Communications, 27(2), 212-217, (2020).
  • [67] Tang, F., Kawamoto, Y., Kato, N., and Liu, J., “Future intelligent and secure vehicular network toward 6G: Machine-learning approaches,” Proc. IEEE, vol. 108, no. 2, pp. 292–307, Feb. (2020). [68] 6G White Paper on Machine Learning in Wireless Communication Networks-6GFlagship, 6G White Paper, Apr. (2020). [69] Kato, N., Mao, B., Tang, F., Kawamoto, Y., and Liu, J., ‘‘Ten challenges in advancing machine learning technologies toward 6G,’’ IEEE Wireless Commun., 27(3), 96–103, (2020).
  • [70] Mao, B., Kawamoto, Y., and Kato, N., ‘‘AI-based joint optimization of QoS and security for 6G energy harvesting Internet of Things,’’ IEEE Internet Things J., 7(8), 7031–7042, Mar. (2020).
  • [71] Nawaz, S. J., Sharma, S. K., Wyne, S., Patwary, M. N., and Asaduzzaman, M., “Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future,” IEEE Access, 7, 46317–46350, (2019) . [72] Nguyen, T., Tran, N., Loven, L., Partala, J., Kechadi, M.-T., and Pirttikangas, S., ‘‘Privacy-aware blockchain innovation for 6G: Challenges and opportunities,’’ 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 1–5, (2020).
  • [73] Hewa, T., Gür, G., Kalla, A., Ylianttila, M., Bracken, A., and Liyanage, M., ‘‘The role of blockchain in 6G: Challenges, opportunities and research directions,’’ 2nd 6G Wireless Summit, Levi, Finland, 1-5, (2020).
  • [74] Lu, Y., ‘Security in 6G: The prospects and the relevant technologies,’ J. Ind. Integr. Manage., 5, 1–24, (2020).
  • [75] Manogaran, G., Rawal, B. S., and Saravanan, V., ‘‘Blockchain based integrated security measure for reliable service delegation in 6G communication environment,’’ Comput. Commun.,161, 1–22, Jul. (2020).
  • [76] Tschorsch, F. and Scheuermann, B., “Bitcoin and beyond: A technical survey on decentralized digital currencies,” IEEE Commun. Surveys Tuts., 18(3), 2084–2123, (2016).
  • [77] Dai, H.-N., Zheng, Z., and Zhang, Y., “Blockchain for Internet of Things: A survey,” IEEE Internet Things J., 6(5), 8076–8094, Oct. (2019).
  • [78] Xie, J., Yu, F. R. Huang, T., Xie, R., Liu, J., and Liu, Y., “A survey on the scalability of blockchain systems, IEEE Netw., 33(5), 166–173, (2019).
  • [79] Qamar, F., Siddiqui, M. U. A., Hindia M. N., Hassan R., and Nguyen Q. N., ‘Issues, challenges, and research trends in spectrum management: A comprehensive overview and new vision for designing 6G networks,’ Electronics, 9, 14-16, Sep. (2020).
  • [80] Sadi, Y., Erkucuk, S., and Panayirci, E., ‘‘Flexible physical layer based resource allocation for machine type communications towards 6G,’’ 2nd 6G Wireless Summit, Levi, Finland, 1–5, (2020).
  • [81] Bilge, K. Ç., Nuno, K. P., ‘Resource sharing and scheduling in device-to-device communication underlying cellular network’, Pamukkale Univ Muh Bilim Derg. 27(5), 604-609, (2021).
  • [82] Yuan, X., Zhang, Y.-J. A., Shi, Y., Yan, W. and Liu, H., "Reconfigurable-Intelligent-Surface Empowered Wireless Communications: Challenges and Opportunities," IEEE Wireless Communications, 28(2), 136-143, April (2021).
  • [83] Basar, E., ‘Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G,’ IEEE Trans. Commun., 68(5), 3187–3196, (2020).
  • [84] Huang, C., et al., ‘Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,’ IEEE Wireless Commun., 27(5), 118–125, (2020).
  • [85] Wymeersch, H. and Denis, B., ‘Beyond 5G wireless localization with reconfigurable intelligent surfaces,’ IEEE Int. Conf. Commun. (ICC), pp. 1–6, (2020).
  • [86] Renzo, M. Di, "6G Wireless: Wireless Networks Empowered by Reconfigurable Intelligent Surfaces," 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, (2019).
  • [87] Hodge, J. A., Mishra, K. V., and Zaghloul, A. I., ‘Intelligent timevarying metasurface transceiver for index modulation in 6G wireless networks,’ IEEE Antennas Wireless Propag. Lett., 19, 1891–1895, (2020).
  • [88] Tang, W., Chen, M. Z., Dai, J. Y., Zeng, Y., Zhao, X., Jin, S., Cheng, Q., and Cui, T. J., ‘Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design,’ IEEE Wireless Commun., 27(2), 180–187, Apr. (2020).
  • [89] Bariah, L. et al., “A prospective look: Key enabling technologies, applications and open research topics in 6G networks,” IEEE Access, 8, 174792–174820, (2020).
  • [90] Ji, B. et al., "Several Key Technologies for 6G: Challenges and Opportunities," IEEE Communications Standards Magazine, 5(2), 44-51, (2021).
  • [91] Rikkinen, K., Kyosti, P., Leinonen, M. E., Berg, M., and Parssinen, A., “THz radio communication: Link budget analysis toward 6G,” IEEE Commun. Mag., 58(11), 22–27, (2020).
  • [92] Polese, M., et al., “Toward end-to end, full-stack 6G terahertz networks,” IEEE Commun. Mag., 58(11), 48–54, (2020).
  • [93] Du, J., Jiang, C., Wang, J., Ren, Y., and Debbah, M., “Machine learning for 6G wireless networks: Carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service,” IEEE Veh. Technol. Mag., 15(4), 122–134, Dec. (2020).
  • [94] 5G Evolution and 6G, Docomo White Paper, Jan. (2020).
  • [95] Networks-2030, a Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 and Beyond, White Paper-Focus Group Network, 2030.
  • [96] 6G Drivers and the UN SDGs-6GFlagship, 6G White Paper, Jun. (2020).
  • [97] ‘6G waves magazine-6GFlagship,’ Spring, Tech. Rep., (2020).
  • [98] White Paper on 6G-the Next Hyper Connected Experience for All, Samsung, Seoul, South Korea, 1–46, (2020).
  • [99] Li, R., ‘‘Towards a new Internet for the year 2030 and beyond,’’ Future Netw., 1–23, Jul. (2019).
  • [100] Liu, G., et al., "Vision, requirements and network architecture of 6G mobile network beyond 2030," China Communications, 17(9), 92-104, (2020).
  • [101] Alwis, C. D., et al., "Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research," IEEE Open Journal of the Communications Society, 2, 836-886, (2021).
  • [102] Bhat, J. R., and Alqahtani, S. A., "6G Ecosystem: Current Status and Future Perspective," IEEE Access, 9, 43134-43167, (2021).
  • [103] Wang, M, Lin, Y, Tian, Q. and Si, G., "Transfer Learning Promotes 6G Wireless Communications: Recent Advances and Future Challenges," IEEE Transactions on Reliability, 70(2), 790-807, (2021).
Toplam 99 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Nazifa Mustari 0000-0003-2340-7754

Muhammet Ali Karabulut 0000-0002-2080-5485

A F M Shahen Shah 0000-0002-3133-6557

Ufuk Türeli 0000-0002-4986-5270

Erken Görünüm Tarihi 11 Eylül 2023
Yayımlanma Tarihi
Gönderilme Tarihi 11 Mart 2023
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Mustari, N., Karabulut, M. A., Shah, A. F. M. S., Türeli, U. (2023). 1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1263687
AMA Mustari N, Karabulut MA, Shah AFMS, Türeli U. 1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme. Politeknik Dergisi. Published online 01 Eylül 2023:1-1. doi:10.2339/politeknik.1263687
Chicago Mustari, Nazifa, Muhammet Ali Karabulut, A F M Shahen Shah, ve Ufuk Türeli. “1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme”. Politeknik Dergisi, Eylül (Eylül 2023), 1-1. https://doi.org/10.2339/politeknik.1263687.
EndNote Mustari N, Karabulut MA, Shah AFMS, Türeli U (01 Eylül 2023) 1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme. Politeknik Dergisi 1–1.
IEEE N. Mustari, M. A. Karabulut, A. F. M. S. Shah, ve U. Türeli, “1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme”, Politeknik Dergisi, ss. 1–1, Eylül 2023, doi: 10.2339/politeknik.1263687.
ISNAD Mustari, Nazifa vd. “1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme”. Politeknik Dergisi. Eylül 2023. 1-1. https://doi.org/10.2339/politeknik.1263687.
JAMA Mustari N, Karabulut MA, Shah AFMS, Türeli U. 1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme. Politeknik Dergisi. 2023;:1–1.
MLA Mustari, Nazifa vd. “1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme”. Politeknik Dergisi, 2023, ss. 1-1, doi:10.2339/politeknik.1263687.
Vancouver Mustari N, Karabulut MA, Shah AFMS, Türeli U. 1G’den 6G’ye Hücresel Evrim Üzerine Kapsamlı Bir Derleme. Politeknik Dergisi. 2023:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.