Araştırma Makalesi
BibTex RIS Kaynak Göster

Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1

Öz

Doğal çevre tahribatının etkileri, son yıllarda dünya denizleri üzerinde ciddi şekilde hissedilmektedir. Çalışmalar, gerek plastik gibi insan kaynaklı kirleticilerin gerekse istilacı türler gibi deniz canlılarının artık denizlerimizde yoğun şekilde bulunduğunu göstermektedir. Diğer bir yandan gemilerin kritik bir unsuru olan soğutma suyu sistemleri, gemi kinistin sandıklarından emilen deniz suyu ile hayat bulmaktadır. Deniz kirliliği kaynaklı yaşanacak kinistin tıkanıklığı, geminin ana ve yardımcı makinelerini çalışamaz duruma getirerek, gemiyi manevra kabiliyetinden mahrum bırakacaktır. Ana makine gücünü ve dolayısıyla manevra yeteneği kaybeden gemi ise muhtemel çarpma, çatışma, karaya oturma, yangın ve patlama gibi felaketlerle yüzleşecektir. Bu çalışma ile deniz kirliliğinin görünmeyen tehlikesi olan kinistin sandığı tıkanıklığı üzerine bir risk analizi yürütülmüştür. Çalışmada hem klasik Hata Türü Etkileri Analizi (FMEA) hem de bulanık FMEA yöntemleri kullanılarak, hata modlarına ilişkin riskler Risk Öncelik Sayısı (RPN) ve bulanık RPN (FRPN) puanlarıyla beraber sayısal olarak hesaplanmıştır. Klasik FMEA bulgularına göre, en riskli 3 hata modu, HM006 - Ana Makine Yüksek Yağlama Yağı Sıcaklığı (143.520), HM007 - Ana Makine Yüksek HTFW Sıcaklığı (111.720), HM014 - Yangın Pompası Düşük Çıkış Basıncı ve Debisi (100.590) olarak tespit edilmiştir. Bulanık FMEA sonuçlarında ise en riskli 3 hata modu HM006 - Ana Makine Yüksek Yağlama Yağı Sıcaklığı (5.58), HM014 - Yangın Pompası Düşük Çıkış Basıncı ve Debisi (5.51) ve HM013 – Kazan Yetersiz Buhar Yoğuşma Verimliliği (5.47) olarak ortaya konmuştur. Elde edilen bulgular ile deniz kirliliğinin gemi sistemleri üzerine etkileri sayısal olarak ortaya konulmuştur. Böylece gemi adamları, denizcilik şirketleri, denetleme otoriteleri, gemi inşa sektörü gibi temel denizcilik paydaşlarına ileride oluşması muhtemel kinistin sandığı tıkanıklığı kaynaklı büyük deniz kazalarını önlemek adına veri sağlanmıştır.

Kaynakça

  • [1] Ceylan, B. O., Karatuğ, Ç., Akyuz, E., Arslanoğlu, Y., & Boustras, G., “A system theory (STAMP) based quantitative accident analysis model for complex engineering systems”, Safety science, 166: 106232, (2023).
  • [2] Theotokatos, G., Sfakianakis, K., & Vassalos, D., “Investigation of ship cooling system operation for improving energy efficiency”, Journal of Marine Science and Technology, 22: 38-50, (2017).
  • [3] Koroglu, T., & Sogut, O. S., “Developing criteria for advanced exergoeconomic performance analysis of thermal energy systems: Application to a marine steam power plant”, Energy, 267: 126582, (2023).
  • [4] Chaal, M., Bahootoroody, A., Basnet, S., Banda, O. A. V., & Goerlandt, F., “Towards system-theoretic risk assessment for future ships: A framework for selecting Risk Control Options”, Ocean Engineering, 259: 111797, (2022).
  • [5] Piola, R., Grandison, C., Shimeta, J., del Frate, A., & Leary, M., “Can vessel sea chest design improve fouling control coating performance?”, Ocean Engineering, 256: 111426, (2022).
  • [6] Coutts, A. D., & Taylor, M. D., “A preliminary investigation of biosecurity risks associated with biofouling on merchant vessels in New Zealand”, New Zealand Journal of Marine and Freshwater Research, 38(2): 215-229, (2004).
  • [7] Moser, C. S., Wier, T. P., First, M. R., Grant, J. F., Riley, S. C., Robbins-Wamsley, S. H., ... & Drake, L. A., “Quantifying the extent of niche areas in the global fleet of commercial ships: the potential for “super-hot spots” of biofouling”, Biological Invasions, 19(6): 1745-1759, (2017).
  • [8] Piola, R., & Grandison, C., “Assessments of quaternary ammonium compounds (QAC) for in-water treatment of mussel fouling in vessel internals and sea chests using an experimental seawater pipework system”, Biofouling, 33(1): 59-74, (2017).
  • [9] https://www.ipcc.ch/about/, “IPCC, 2024. The intergovermental panel on climate change”, (2024).
  • [10] Frey, M. A., Simard, N., Robichaud, D. D., Martin, J. L., & Therriault, T. W., “Fouling around: vessel sea-chests as a vector for the introduction and spread of aquatic invasive species”, Management of Biological Invasions, 5(1): 21, (2014).
  • [11] Ashton, G. V., Willis, K. J., Cook, E. J., & Burrows, M., “Distribution of the introduced amphipod, Caprella mutica Schurin, 1935 (Amphipoda: Caprellida: Caprellidae) on the west coast of Scotland and a review of its global distribution”, Hydrobiologia, 590(1): 31-41, (2007).
  • [12] McDonald, J. I., “Detection of the tropical mussel species Perna viridis in temperate Western Australia: possible association between spawning and a marine heat pulse”, Aquatic Invasions, 7(4), (2012).
  • [13] Pinsky, M. L., Selden, R. L., & Kitchel, Z. J., “Climate-driven shifts in marine species ranges: Scaling from organisms to communities”, Annual review of marine science, 12: 153-179, (2020).
  • [14] Davidson, I., Cahill, P., Hinz, A., Major, R., Kluza, D., Scianni, C., & Georgiades, E., “Biofouling occlusion of ships’ internal seawater systems: operational, economic, and biosecurity consequences”, Biofouling, 39(4): 410-426, (2023).
  • [15] Uflaz, E., Akyüz, E., Bolat, F., Bolat, P., & Arslan, Ö., “Investigation of the effects of mucilage on maritime operation”, Journal of the Black Sea/Mediterranean Environment, 27(2): 140-153, (2021).
  • [16] Usluer, H. B., “Effects of Mucilage on Safety Navigation in the Turkish Straits”, International Journal of Environment and Geoinformatics, 9(3): 84-90, (2022).
  • [17] Arndt, E., Robinson, A., Hester, S., Woodham, B., Wilkinson, P., & Gorgula, S., “Factors that influence vessel biofouling and its prevention and management”, Final report for CEBRA Project, 190803, (2021).
  • [18] Ceylan, B. O., “Marine diesel engine turbocharger fouling phenomenon risk assessment application by using fuzzy FMEA method”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902231208848, (2023).
  • [19] Goerlandt, F., & Montewka, J., “Maritime transportation risk analysis: Review and analysis in light of some foundational issues”, Reliability Engineering & System Safety, 138: 115-134, (2015).
  • [20] Yorulmaz, M., & Sezen, K., “Denizcilik Alanında Kullanılan Risk Analizi Yöntemleri ve Fine Kinney Yöntemiyle Bir Uygulama”, Afet ve Risk Dergisi, 6(3): 622-637, (2023).
  • [21] Sakar, C., & Sokukcu, M., “Dynamic analysis of pilot transfer accidents”, Ocean Engineering, 287: 115823, (2023).
  • [22] Tunçel, A. L., Akyuz, E., & Arslan, O., “An Extended Event Tree Risk Analysis Under Fuzzy Logic Environment: The Case of Fire in Ship Engine Room”, Journal of ETA Maritime Science, 9(3), (2021).
  • [23] Basnet, S., “Managing risks in maritime remote pilotage using the basis of the Formal Safety Assessment”, (2023).
  • [24] Tonoğlu, F., Atalar, F., Başkan, İ. B., Yildiz, S., Uğurlu, Ö., & Wang, J., “A new hybrid approach for determining sector-specific risk factors in Turkish Straits: Fuzzy AHP-PRAT technique”, Ocean Engineering, 253: 111280, (2022).
  • [25] Aydin, M., Arici, S. S., Akyuz, E., & Arslan, O., “A probabilistic risk assessment for asphyxiation during gas inerting process in chemical tanker ship”, Process Safety and Environmental Protection, 155: 532-542, (2021).
  • [26] Başhan, V., & Demirel, H., “Application of fuzzy dematel technique to assess most common critical operational faults of marine boilers”, Politeknik Dergisi, 22(3): 545-555, (2019).
  • [27] Yorulmaz, M., & YEĞİN, A. O., “Liman işletmelerinde tehlikeli madde elleçlenmesine ilişkin Fine-Kinney ve FMEA yöntemleri ile risk analizi”, R&S-Research Studies Anatolia Journal, 6(1): 1-37, (2023).
  • [28] Ceylan, B. O., “Shipboard compressor system risk analysis by using rule-based fuzzy FMEA for preventing major marine accidents” Ocean Engineering, 272: 113888, (2023).
  • [29] Priharanto, Y. E., Yaqin, R. I., Marjianto, G., Siahaan, J. P., & Abrori, M. Z. L., “Risk assessment of the fishing vessel main engine by fuzzy-fmea approach”, Journal of Failure Analysis and Prevention, 23(2): 822-836, (2023).
  • [30] Yılmaz, F., & İlhan, M. N., “Türk Bayraklı gemilerin karıştığı deniz kazaları ve denizcilere etkilerine ilişkin bir analiz”, Gemi ve Deniz Teknolojisi, (211): 80-95, (2018).
  • [31] Çakır, E., & Kamal, B., “İstanbul Boğazı’ndaki ticari gemi kazalarının karar ağacı yöntemiyle analizi”, Aquatic Research, 4(1): 10-20, (2020).
  • [32] Liu, H. C., Liu, L., & Liu, N., “Risk evaluation approaches in failure mode and effects analysis: A literature review”, Expert systems with applications, 40(2): 828-838, (2013).
  • [33] Karatuğ, Ç., Ceylan, B. O., & Arslanoğlu, Y., “A risk assessment of scrubber use for marine transport by rule-based fuzzy FMEA”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 238(1): 114-125, (2024).
  • [34] Chanamool, N., & Naenna, T., “Fuzzy FMEA application to improve decision-making process in an emergency department”, Applied Soft Computing, 43: 441-453, (2016).
  • [35] Goksu, S., & Arslan, O., “A quantitative dynamic risk assessment for ship operation using the fuzzy FMEA: The case of ship berthing/unberthing operation”, Ocean Engineering, 287: 115548, (2023).
  • [36] Zadeh, L., “Fuzzy sets”, Inform Control, 8: 338-353, (1965).
  • [37] Aktas, İ. S., Memlik, T., & Sözen, A., “Akıllı bir şebekedeki risk indikatörlerinin bulanık analitik hiyerarşi prosesi ile modellenmesi”, 1-1, Politeknik Dergisi, (2020).
  • [38] Karamollaoğlu, H., Yücedağ, İ., & Dogru, İ., “Risk assessment for electricity generation management process with swara based fuzzy TOPSIS method”, Politeknik Dergisi, 1-1, (2021).
  • [39] Ahmed, S., & Gu, X. C., “Accident-based FMECA study of Marine boiler for risk prioritization using fuzzy expert system”, Results in Engineering, 6: 100123, (2020).
  • [40] Akyuz, E., Akgun, I., & Celik, M., “A fuzzy failure mode and effects approach to analyse concentrated inspection campaigns on board ships”, Maritime Policy & Management, 43(7): 887-908, (2016).
  • [41] Pillay, A., & Wang, J., “Modified failure mode and effects analysis using approximate reasoning”, Reliability Engineering & System Safety, 79(1): 69-85, (2003).
  • [42] Ceylan, B. O., Karatuğ, Ç., Ejder, E., Uyanık, T., & Arslanoğlu, Y., “Risk assessment of sea chest fouling on the ship machinery systems by using both FMEA method and ERS process”, Australian Journal of Maritime & Ocean Affairs, 15(4): 414-433, (2023).
  • [43] Balaraju, J., Raj, M. G., & Murthy, C. S., “Fuzzy-FMEA risk evaluation approach for LHD machine–A case study”, Journal of Sustainable Mining, 18(4): 257-268, (2019).
  • [44] Dağsuyu, C., Göçmen, E., Narlı, M., & Kokangül, A., “Classical and fuzzy FMEA risk analysis in a sterilization unit”, Computers & Industrial Engineering, 101: 286-294, (2016).
  • [45] Kaptan, M., Sivri, N., Blettler, M. C., & Uğurlu, Ö., “Potential threat of plastic waste during the navigation of ships through the Turkish straits”, Environmental Monitoring and Assessment, 192(8): 508, (2020).

The Hidden Threat of Marine Pollution: A Risk Assessment of a Clogged Ship Sea Chest

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1

Öz

In recent years, natural environmental destruction has had a significant impact on the world's oceans. According to studies, human-made pollutants like plastic and aquatic organisms like invasive species have begun to accumulate in our oceans. On the other hand, the cooling water systems, an essential part of the ships, are activated by the seawater that is absorbed by the sea chests. Due to marine pollution, a clogged sea chest can make the ship's main and auxiliary engines inoperable, eliminating the ship's maneuverability. The ship, which has lost its main engine power and thus its maneuverability, may face catastrophes including possible allision, collision, grounding, fire, and explosion. In this study, a risk assessment of a clogged sea chest, an unseen danger of marine pollution, was performed. The risks of 15 failure modes were computed numerically using both classical Failure Mode Effects Analysis (FMEA) and fuzzy FMEA methodologies, along with the Risk Priority Number (RPN) and fuzzy RPN (FRPN) scores. According to traditional FMEA findings, the three highest-risk failure modes are HM006 - Main Engine High Lubricating Oil Temperature (143.520), HM007 - Main Engine High HTFW Temperature (111.720), and HM014 - Fire Pump Low Outlet Pressure and Flow Rate (100.590). On the other side, fuzzy FMEA results show that the top three risky failure modes are HM006 for the Main Engine High Lubricating Oil Temperature (5.58), HM014 - Fire Pump Low Outlet Pressure and Flow Rate (5.51), and HM013 - Insufficient Boiler Steam Condensate Efficiency (5.47). The effects of marine pollution on ship systems have been illustrated numerically using the obtained findings. Consequently, findings have been provided to key maritime stakeholders such as seafarers, maritime companies, supervising authorities, and the shipbuilding industry to prevent future crucial maritime accidents.

Kaynakça

  • [1] Ceylan, B. O., Karatuğ, Ç., Akyuz, E., Arslanoğlu, Y., & Boustras, G., “A system theory (STAMP) based quantitative accident analysis model for complex engineering systems”, Safety science, 166: 106232, (2023).
  • [2] Theotokatos, G., Sfakianakis, K., & Vassalos, D., “Investigation of ship cooling system operation for improving energy efficiency”, Journal of Marine Science and Technology, 22: 38-50, (2017).
  • [3] Koroglu, T., & Sogut, O. S., “Developing criteria for advanced exergoeconomic performance analysis of thermal energy systems: Application to a marine steam power plant”, Energy, 267: 126582, (2023).
  • [4] Chaal, M., Bahootoroody, A., Basnet, S., Banda, O. A. V., & Goerlandt, F., “Towards system-theoretic risk assessment for future ships: A framework for selecting Risk Control Options”, Ocean Engineering, 259: 111797, (2022).
  • [5] Piola, R., Grandison, C., Shimeta, J., del Frate, A., & Leary, M., “Can vessel sea chest design improve fouling control coating performance?”, Ocean Engineering, 256: 111426, (2022).
  • [6] Coutts, A. D., & Taylor, M. D., “A preliminary investigation of biosecurity risks associated with biofouling on merchant vessels in New Zealand”, New Zealand Journal of Marine and Freshwater Research, 38(2): 215-229, (2004).
  • [7] Moser, C. S., Wier, T. P., First, M. R., Grant, J. F., Riley, S. C., Robbins-Wamsley, S. H., ... & Drake, L. A., “Quantifying the extent of niche areas in the global fleet of commercial ships: the potential for “super-hot spots” of biofouling”, Biological Invasions, 19(6): 1745-1759, (2017).
  • [8] Piola, R., & Grandison, C., “Assessments of quaternary ammonium compounds (QAC) for in-water treatment of mussel fouling in vessel internals and sea chests using an experimental seawater pipework system”, Biofouling, 33(1): 59-74, (2017).
  • [9] https://www.ipcc.ch/about/, “IPCC, 2024. The intergovermental panel on climate change”, (2024).
  • [10] Frey, M. A., Simard, N., Robichaud, D. D., Martin, J. L., & Therriault, T. W., “Fouling around: vessel sea-chests as a vector for the introduction and spread of aquatic invasive species”, Management of Biological Invasions, 5(1): 21, (2014).
  • [11] Ashton, G. V., Willis, K. J., Cook, E. J., & Burrows, M., “Distribution of the introduced amphipod, Caprella mutica Schurin, 1935 (Amphipoda: Caprellida: Caprellidae) on the west coast of Scotland and a review of its global distribution”, Hydrobiologia, 590(1): 31-41, (2007).
  • [12] McDonald, J. I., “Detection of the tropical mussel species Perna viridis in temperate Western Australia: possible association between spawning and a marine heat pulse”, Aquatic Invasions, 7(4), (2012).
  • [13] Pinsky, M. L., Selden, R. L., & Kitchel, Z. J., “Climate-driven shifts in marine species ranges: Scaling from organisms to communities”, Annual review of marine science, 12: 153-179, (2020).
  • [14] Davidson, I., Cahill, P., Hinz, A., Major, R., Kluza, D., Scianni, C., & Georgiades, E., “Biofouling occlusion of ships’ internal seawater systems: operational, economic, and biosecurity consequences”, Biofouling, 39(4): 410-426, (2023).
  • [15] Uflaz, E., Akyüz, E., Bolat, F., Bolat, P., & Arslan, Ö., “Investigation of the effects of mucilage on maritime operation”, Journal of the Black Sea/Mediterranean Environment, 27(2): 140-153, (2021).
  • [16] Usluer, H. B., “Effects of Mucilage on Safety Navigation in the Turkish Straits”, International Journal of Environment and Geoinformatics, 9(3): 84-90, (2022).
  • [17] Arndt, E., Robinson, A., Hester, S., Woodham, B., Wilkinson, P., & Gorgula, S., “Factors that influence vessel biofouling and its prevention and management”, Final report for CEBRA Project, 190803, (2021).
  • [18] Ceylan, B. O., “Marine diesel engine turbocharger fouling phenomenon risk assessment application by using fuzzy FMEA method”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902231208848, (2023).
  • [19] Goerlandt, F., & Montewka, J., “Maritime transportation risk analysis: Review and analysis in light of some foundational issues”, Reliability Engineering & System Safety, 138: 115-134, (2015).
  • [20] Yorulmaz, M., & Sezen, K., “Denizcilik Alanında Kullanılan Risk Analizi Yöntemleri ve Fine Kinney Yöntemiyle Bir Uygulama”, Afet ve Risk Dergisi, 6(3): 622-637, (2023).
  • [21] Sakar, C., & Sokukcu, M., “Dynamic analysis of pilot transfer accidents”, Ocean Engineering, 287: 115823, (2023).
  • [22] Tunçel, A. L., Akyuz, E., & Arslan, O., “An Extended Event Tree Risk Analysis Under Fuzzy Logic Environment: The Case of Fire in Ship Engine Room”, Journal of ETA Maritime Science, 9(3), (2021).
  • [23] Basnet, S., “Managing risks in maritime remote pilotage using the basis of the Formal Safety Assessment”, (2023).
  • [24] Tonoğlu, F., Atalar, F., Başkan, İ. B., Yildiz, S., Uğurlu, Ö., & Wang, J., “A new hybrid approach for determining sector-specific risk factors in Turkish Straits: Fuzzy AHP-PRAT technique”, Ocean Engineering, 253: 111280, (2022).
  • [25] Aydin, M., Arici, S. S., Akyuz, E., & Arslan, O., “A probabilistic risk assessment for asphyxiation during gas inerting process in chemical tanker ship”, Process Safety and Environmental Protection, 155: 532-542, (2021).
  • [26] Başhan, V., & Demirel, H., “Application of fuzzy dematel technique to assess most common critical operational faults of marine boilers”, Politeknik Dergisi, 22(3): 545-555, (2019).
  • [27] Yorulmaz, M., & YEĞİN, A. O., “Liman işletmelerinde tehlikeli madde elleçlenmesine ilişkin Fine-Kinney ve FMEA yöntemleri ile risk analizi”, R&S-Research Studies Anatolia Journal, 6(1): 1-37, (2023).
  • [28] Ceylan, B. O., “Shipboard compressor system risk analysis by using rule-based fuzzy FMEA for preventing major marine accidents” Ocean Engineering, 272: 113888, (2023).
  • [29] Priharanto, Y. E., Yaqin, R. I., Marjianto, G., Siahaan, J. P., & Abrori, M. Z. L., “Risk assessment of the fishing vessel main engine by fuzzy-fmea approach”, Journal of Failure Analysis and Prevention, 23(2): 822-836, (2023).
  • [30] Yılmaz, F., & İlhan, M. N., “Türk Bayraklı gemilerin karıştığı deniz kazaları ve denizcilere etkilerine ilişkin bir analiz”, Gemi ve Deniz Teknolojisi, (211): 80-95, (2018).
  • [31] Çakır, E., & Kamal, B., “İstanbul Boğazı’ndaki ticari gemi kazalarının karar ağacı yöntemiyle analizi”, Aquatic Research, 4(1): 10-20, (2020).
  • [32] Liu, H. C., Liu, L., & Liu, N., “Risk evaluation approaches in failure mode and effects analysis: A literature review”, Expert systems with applications, 40(2): 828-838, (2013).
  • [33] Karatuğ, Ç., Ceylan, B. O., & Arslanoğlu, Y., “A risk assessment of scrubber use for marine transport by rule-based fuzzy FMEA”, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 238(1): 114-125, (2024).
  • [34] Chanamool, N., & Naenna, T., “Fuzzy FMEA application to improve decision-making process in an emergency department”, Applied Soft Computing, 43: 441-453, (2016).
  • [35] Goksu, S., & Arslan, O., “A quantitative dynamic risk assessment for ship operation using the fuzzy FMEA: The case of ship berthing/unberthing operation”, Ocean Engineering, 287: 115548, (2023).
  • [36] Zadeh, L., “Fuzzy sets”, Inform Control, 8: 338-353, (1965).
  • [37] Aktas, İ. S., Memlik, T., & Sözen, A., “Akıllı bir şebekedeki risk indikatörlerinin bulanık analitik hiyerarşi prosesi ile modellenmesi”, 1-1, Politeknik Dergisi, (2020).
  • [38] Karamollaoğlu, H., Yücedağ, İ., & Dogru, İ., “Risk assessment for electricity generation management process with swara based fuzzy TOPSIS method”, Politeknik Dergisi, 1-1, (2021).
  • [39] Ahmed, S., & Gu, X. C., “Accident-based FMECA study of Marine boiler for risk prioritization using fuzzy expert system”, Results in Engineering, 6: 100123, (2020).
  • [40] Akyuz, E., Akgun, I., & Celik, M., “A fuzzy failure mode and effects approach to analyse concentrated inspection campaigns on board ships”, Maritime Policy & Management, 43(7): 887-908, (2016).
  • [41] Pillay, A., & Wang, J., “Modified failure mode and effects analysis using approximate reasoning”, Reliability Engineering & System Safety, 79(1): 69-85, (2003).
  • [42] Ceylan, B. O., Karatuğ, Ç., Ejder, E., Uyanık, T., & Arslanoğlu, Y., “Risk assessment of sea chest fouling on the ship machinery systems by using both FMEA method and ERS process”, Australian Journal of Maritime & Ocean Affairs, 15(4): 414-433, (2023).
  • [43] Balaraju, J., Raj, M. G., & Murthy, C. S., “Fuzzy-FMEA risk evaluation approach for LHD machine–A case study”, Journal of Sustainable Mining, 18(4): 257-268, (2019).
  • [44] Dağsuyu, C., Göçmen, E., Narlı, M., & Kokangül, A., “Classical and fuzzy FMEA risk analysis in a sterilization unit”, Computers & Industrial Engineering, 101: 286-294, (2016).
  • [45] Kaptan, M., Sivri, N., Blettler, M. C., & Uğurlu, Ö., “Potential threat of plastic waste during the navigation of ships through the Turkish straits”, Environmental Monitoring and Assessment, 192(8): 508, (2020).
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik, Gemi Makineleri İşletme Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Bulut Ozan Ceylan 0000-0003-1182-3566

Erken Görünüm Tarihi 1 Ağustos 2024
Yayımlanma Tarihi
Gönderilme Tarihi 16 Mayıs 2023
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Ceylan, B. O. (2024). Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi. Politeknik Dergisi1-1.
AMA Ceylan BO. Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi. Politeknik Dergisi. Published online 01 Ağustos 2024:1-1.
Chicago Ceylan, Bulut Ozan. “Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi”. Politeknik Dergisi, Ağustos (Ağustos 2024), 1-1.
EndNote Ceylan BO (01 Ağustos 2024) Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi. Politeknik Dergisi 1–1.
IEEE B. O. Ceylan, “Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi”, Politeknik Dergisi, ss. 1–1, Ağustos 2024.
ISNAD Ceylan, Bulut Ozan. “Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi”. Politeknik Dergisi. Ağustos 2024. 1-1.
JAMA Ceylan BO. Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi. Politeknik Dergisi. 2024;:1–1.
MLA Ceylan, Bulut Ozan. “Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi”. Politeknik Dergisi, 2024, ss. 1-1.
Vancouver Ceylan BO. Deniz Kirliliğinin Görünmeyen Tehlikesi: Gemi Kinistin Sandığı Tıkanıklığı Üzerine Bir Risk Analizi. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.