Araştırma Makalesi
BibTex RIS Kaynak Göster

Veri Biliminin Çok Disiplinli Potansiyelinin Kilidini Açmak: Apriori Analizinden İçgörüler

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1432158

Öz

Teknolojinin ve bilimin ilerlemesinde çok büyük öneme sahip olan veri bilimi alanında hangi çalışmaların gerçekleştirildiği ve hangi alanlarda çalışmaların eksik kaldığını belirlemek büyük önem taşımaktadır. Bu çalışma veri bilimi alanında çalışan araştırmacıların başka hangi alanlarda çalıştığını belirlemek ve analiz etmek için yapılmıştır. Bu kapsamda R ile iki farklı veri grubuna apriori analizi uygulanmıştır. İlk veri grubu Web of Science veri tabanınından data science anahtar kelimesini kullanmış olan SSCI, SCI, E-SCI yayınlanmış dergilerdeki makaleler elde edilmiştir. İkinci veri grubu Google Scholor’da Veri bilimi anahtar kelimesini kullanmış en çok atıf alan yazarların (316 yazar) listesinden seçilmiştir. Çalışmada toplam 2262 makale kullanılmıştır. Makalelerde 6533 tekil anahtar kelime olduğu gözlemlenmiştir. Elde edilen veri gruplarına R Studio programında veri madenciliği yöntemi olan Apriori analizi uygulanmıştır. Birliktelik kuralı çıktılarını belirlemek için destek, güven ve kaldıraç (ilginçlik) değerleri kullanılmıştır. Apriori analiz sonucuna göre veri bilimi ile kaldıraç değeri en yüksek konular karar ve politika belirlemesi, eğitimcilerin öğrenme yöntemlerini geliştirmesi, sağlık alanında meme kanseri tedavisi ve genetik bilimidir. Veri bilimi, evren bilimi (kozmoloji) ve ekoloji gibi daha birçok alanda önemli bir yere sahiptir. Bu durum veri biliminin multidisipliner bir alan olduğunu bir kez daha ortaya konmuştur.

Etik Beyan

Açık kaynak Web of Science ve Google Scholar platformlarından veriler elde edilmiştir.

Kaynakça

  • [1] Agrawal, R., Imieliński, T., & Swami, A., “Mining association rules between sets of items in large databases”, In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216., (1993).
  • [2] Anthopoulos, L., & Kazantzi, V., “Urban energy efficiency assessment models from an AI and big data perspective: Tools for policy makers”, Sustainable Cities and Society, 76, 10349, (2022).
  • [3] Ataş, K., Kaya, A., & Myderrizi, I., “Yapay Sinir Ağı Tabanlı Model ile X-ray Görüntülerinden Covid-19 Teşhisi”, Politeknik Dergisi, 26(2), 541-551, (2023).
  • [4] Balcı, F., & Yılmaz, S., “Faster R-CNN Structure for Computer Vision-based Road Pavement Distress Detection”, Politeknik Dergisi, 26(2), 701-710, (2023).
  • [5] Bayardo Jr, R. J., “Efficiently mining long patterns from databases”, In Proceedings of the 1998 ACM SIGMOD international conference on Management of data, 85-93, (1998).
  • [6] Bellinger, C., Sharma, S., Japkowicz, N., & Zaïane, O. R., “Framework for extreme imbalance classification: SWIM—sampling with the majority class”, Knowledge and Information Systems, 62, 841-866, (2020).
  • [7] Chen, L. P., “Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python: by Peter Bruce, Andrew Bruce, and Peter Gedeck”, O’Reilly Media Inc., Boston, United States, 272-273, (2021).
  • [8] Chen, L.P., “Model-based Clustering and Classification for Data Science: With Application in R by Harles Bouveyron, Gilles Celeus, T. Bredan Murphy and Adrian E. Raftery (2019),” Biometrical Journal, 62, 1120–1121, (2020).
  • [9] Chiang, D. A., Wang, Y. F., Lee, S. L., & Lin, C. J., “Goal-oriented sequential pattern for network banking churn analysis”, Expert systems with applications, 25(3), 293-302, (2003).
  • [10] Dawes, S. S., “The evolution and continuing challenges of e‐governance”, Public administration review, 68, 86-102, (2008).
  • [11] Değer, K., Özkaya, M. G., & Boran, F. E., “Modelling and Analysis of Future Energy Scenarios on the Sustainability Axis”, Politeknik Dergisi, 26(2), 665-678, (2023).
  • [12] Donoho, D., “50 years of data science”, Journal of Computational and Graphical Statistics, 26(4), 745-766, (2017).
  • [13] Durmuş Şenyapar, H. N., Cetinkaya, U., & Bayındır, R., “Renewable Energy Incentives and Future Implications for Turkey: A Comparative Bibliometric Analysis”, Politeknik Dergisi, 27(1), 329-342, (2024).
  • [14] Edastama, P., Bist, A. S., & Prambudi, A., “Implementation of data mining on glasses sales using the apriori algorithm”, International Journal of Cyber and IT Service Management, 1(2), 159-172, (2021).
  • [15] Fathi, M., Haghi Kashani, M., Jameii, S. M., & Mahdipour, E., “Big data analytics in weather forecasting: A systematic review”, Archives of Computational Methods in Engineering, 29(2), 1247-1275, (2022).
  • [16] Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., ... & Ghosh, A., “Review of studies on tree species classification from remotely sensed data”, Remote sensing of environment, 186, 64-87, (2016).
  • [17] Harun, N. A., Makhtar, M., Abd Aziz, A., Zakaria, Z. A., & Syed, F., “The application of apriori algorithm in predicting flood areas”, management, 17, 18, (2017).
  • [18] Hegland, M., “The apriori algorithm–a tutorial”, Mathematics and computation in imaging science and information processing, 209-262, (2007).
  • [19] Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R., “Internet of Behaviours (IoB) and its role in customer services”, Sensors International, 2, (2021).
  • [20] Ji, L., Zhang, B., & Li, J., “A new improvement on apriori algorithm”, In 2006 International Conference on Computational Intelligence and Security, 1, 840-844, (2006).
  • [21] Kashyap, H., Ahmed, H. A., Hoque, N., Roy, S., & Bhattacharyya, D. K., “Big data analytics in bioinformatics: A machine learning perspective”, arXiv preprint arXiv:1506.05101, (2015).
  • [22] Korkmaz, Ş., & Alkan, M., “Derin Öğrenme Algoritmalarını Kullanarak Deepfake Video Tespiti”, Politeknik Dergisi, 26(2), 855-862, (2023).
  • [23] Korschun, D., & Welker, G., “We are Market Basket: The story of the unlikely grassroots movement that saved a beloved business”, Amacom, (2015).
  • [24] Kunnathuvalappil Hariharan, N., “Applications of Data Mining in Finance”, Naveen International Journal of Innovations in Engineering Research and Technology, 5(2), 72-77, (2018).
  • [25] Li, Z., Li, X., Tang, R., & Zhang, L., “Apriori algorithm for the data mining of global cyberspace security issues for human participatory based on association rules”, Frontiers in Psychology, 11, (2021).
  • [26] Mannila, H., “Theoretical frameworks for data mining”, ACM SIGKDD Explorations Newsletter, 1(2), 30-32, (2000).
  • [27] Mikut, R., & Reischl, M., “Data mining tools”, Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(5), 431-443, (2011).
  • [28] Mohapatra, D., Tripathy, J., Mohanty, K. K., & Nayak, D. S. K., “Interpretation of optimized hyper parameters in associative rule learning using eclat and apriori”, In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 879-882, (2021).
  • [29] Nan, S., & Chen, M., “An apriori-algorithm-based analysis method on physical fitness test data for college students”, Easychair Working Paper, (2020).
  • [30] Nandagopal, S., Karthik, S., & Arunachalam, V. P., “Mining of meteorological data using modified apriori algorithm” European Journal of Scientific Research, 47(2), 295-308, (2010).
  • [31] Ntampaka, M., Avestruz, C., Boada, S., Caldeira, J., Cisewski-Kehe, J., Di Stefano, R., ... & Wandelt, B., “The role of machine learning in the next decade of cosmology”, arXiv preprint arXiv:1902.10159, (2019).
  • [32] O’Hagan, A., “The Bayesian approach to statistics”, Handbook of probability: Theory and applications, 85-100, (2008).
  • [33] Olodude, O. O., & Oladejo, B. F., “Enhanced customer-based knowledge management system for products generation in banking system”, Computer Science Series, 11(1), 129-137, (2013).
  • [34] Osman, A. S., “Data mining techniques”, Data Science and Networking, 2(1), (2019).
  • [35] Patel, D. T., “Big data analytics in bioinformatics”, In Biotechnology: Concepts, Methodologies, Tools, and Applications,1967-1984, (2019).
  • [36] Pei, J., Mao, R., Hu, K., & Zhu, H., “Towards data mining benchmarking: a test bed for performance study of frequent pattern mining”, In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 592, (2000).
  • [37] Pfannkuch, M., & Wild, C., “Towards an understanding of statistical thinking”, The challenge of developing statistical literacy, reasoning and thinking, 17-46, (2004).
  • [38] Raghupathi, W., & Raghupathi, V., “Big data analytics in healthcare: promise and potential”, Health information science and systems, 2, 1-10, (2014).
  • [39] Rong, C., Liu, Z., Huo, N., & Sun, H., “Exploring Chinese dietary habits using recipes extracted from websites”, IEEE Access, 7, 24354-24361, (2019).
  • [40] Sathya, M., & Devi, P. I., “Apriori algorithm on web logs for mining frequent link. In 2017 IEEE International Conference on Intelligent Techniques in Control”, Optimization and Signal Processing (INCOS), 1-5, (2017).
  • [41] Savasere, A., Omiecinski, E. R., & Navathe, S. B., “An efficient algorithm for mining association rules in large databases”, Georgia Institute of Technology, (1995).
  • [42] Semeler, A. R., Pinto, A. L., & Rozados, H. B. F., “Data science in data librarianship: Core competencies of a data librarian”, Journal of Librarianship and Information Science, 51(3), 771-780, (2019).
  • [43] Sertçelik, Ş., & Önder, E., “Yönetim Bilişim Sistemleri Kapsamında Akademik Araştırma Alanlarının İncelenmesi: Apriori Algoritması ile Bir Analiz”, Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 14(2), 680-690, (2023).
  • [44] Shao, L., “Research on sports training decision support system based on improved association rules algorithm”, Security and Communication Networks, 1-6, (2021).
  • [45] Singh, J., Ram, H., & Sodhi, D. J., “Improving efficiency of apriori algorithm using transaction reduction”, International Journal of Scientific and Research Publications, 3(1), 1-4, (2013).
  • [46] Sornalakshmi, M., Balamurali, S., Venkatesulu, M., Krishnan, M. N., Ramasamy, L. K., Kadry, S., & Lim, S., “An efficient apriori algorithm for frequent pattern mining using mapreduce in healthcare data”, Bulletin of Electrical Engineering and Informatics, 10(1), 390-403, (2021).
  • [47] Spearman, C., “The proof and measurement of association between two things”, The American Journal of Psychology, 15(1), 72–101, (1904).
  • [48] Spearman, C., “Footrule for measuring correlation”, British Journal of Psychology, 2(1), 89, (1906).
  • [49] Sumiran, K., “An overview of data mining techniques and their application in industrial engineering”, Asian Journal of Applied Science and Technology, 2(2), 947-953, (2018).
  • [50] Suwinski, P., Ong, C., Ling, M. H., Poh, Y. M., Khan, A. M., & Ong, H. S., “Advancing personalized medicine through the application of whole exome sequencing and big data analytics”, Frontiers in genetics, 10, 49, (2019).
  • [51] Ullah, I., “Logıcal Reasonıng and Data Mınıng Algorıthms”, Recent Advances In Statıstıcs, 103, (2011).
  • [52] Useche, S., Montoro, L., Alonso, F., & Oviedo-Trespalacios, O., “Infrastructural and human factors affecting safety outcomes of cyclists”, Sustainability, 10(2), 299, (2018).
  • [53] Usha, D., Niveditha, V. R., Kirubadevi, T., & Thamizhikkavi, P., “Use of predictive analytical algorithm by crime investigation team: An analysis”, International Journal of Advances Science and Technology, 29, 2986-2992, (2020).
  • [54] Uysal, M., Acharya, A., & Saltz, J., “Structure and performance of decision support algorithms on active disks”, University of Maryland, (1998).
  • [55] Veeramalai, S., Jaisankar, N., & Kannan, A., “Efficient web log mining using enhanced Apriori algorithm with hash tree and fuzzy”, International journal of computer science & information Technology (IJCSIT), 2, 1-15, (2010).
  • [56] Wang, Y., “Categorization of Association Rule Mining Algorithms”, In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, (2003).
  • [57] Wu, W., Lin, W., Hsu, C. H., & He, L., “Energy-efficient hadoop for big data analytics and computing: A systematic review and research insights”, Future Generation Computer Systems, 86, 1351-1, (2018).
  • [58] Yuan, X., “An Improved Apriori Algorithm for Mining Association Rules”, In AIP Conference Proceedings, 1820 (1), 080005, (2017).
  • [59] Yücel, M., Osmanca, M. S., & Mercimek, İ. F., “Machine Learning Algorithm Estimation and Comparison of Live Network Values of the Inputs Which Have the Most Effect on the FEC Parameter in DWDM Systems”, Politeknik Dergisi, 27(1), 133-138, (2024).
  • [60] Zhang, W., Ma, D., & Yao, W., “Medical diagnosis data mining based on improved Apriori algorithm”, Journal of Networks, 9(5), 1339, (2014).

Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1432158

Öz

Data science holds paramount significance for the progress of technology and science. Consequently, it is imperative to discern the existing studies in data science and identify areas where research is deficient. For this reason, this study aims to identify, analyse other fields where researchers work in data science, and provide guidance for future research endeavours. The application of apriori analysis to two distinct data groups utilising the R Studio program is expounded in this article. The first data group comprises 2262 articles from SSCI, SCI, and E-SCI indexed journals, sourced from the Web of Science database using the keyword "data science." The second dataset is derived from a list of over 15,000 cited authors (316 authors) specialising in data science on Google Scholar. The study encompasses a total of 2262 articles and data from 316 authors. The articles encompass 6533 unique keywords. Employing apriori analysis, a data mining method, on the acquired datasets involves using support, confidence, and lift values to ascertain association rule outputs. The Apriori analysis results indicate that data science is pivotal in decision and policymaking, developing learning methods for educators, breast cancer treatment, and genetic science in the health domain. Furthermore, data science is significant in diverse fields such as cosmology and ecology. This outcome reaffirms the interdisciplinary nature of data science.

Etik Beyan

Data are obtained from open source Web of Science and Google Scholar platforms.

Kaynakça

  • [1] Agrawal, R., Imieliński, T., & Swami, A., “Mining association rules between sets of items in large databases”, In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216., (1993).
  • [2] Anthopoulos, L., & Kazantzi, V., “Urban energy efficiency assessment models from an AI and big data perspective: Tools for policy makers”, Sustainable Cities and Society, 76, 10349, (2022).
  • [3] Ataş, K., Kaya, A., & Myderrizi, I., “Yapay Sinir Ağı Tabanlı Model ile X-ray Görüntülerinden Covid-19 Teşhisi”, Politeknik Dergisi, 26(2), 541-551, (2023).
  • [4] Balcı, F., & Yılmaz, S., “Faster R-CNN Structure for Computer Vision-based Road Pavement Distress Detection”, Politeknik Dergisi, 26(2), 701-710, (2023).
  • [5] Bayardo Jr, R. J., “Efficiently mining long patterns from databases”, In Proceedings of the 1998 ACM SIGMOD international conference on Management of data, 85-93, (1998).
  • [6] Bellinger, C., Sharma, S., Japkowicz, N., & Zaïane, O. R., “Framework for extreme imbalance classification: SWIM—sampling with the majority class”, Knowledge and Information Systems, 62, 841-866, (2020).
  • [7] Chen, L. P., “Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python: by Peter Bruce, Andrew Bruce, and Peter Gedeck”, O’Reilly Media Inc., Boston, United States, 272-273, (2021).
  • [8] Chen, L.P., “Model-based Clustering and Classification for Data Science: With Application in R by Harles Bouveyron, Gilles Celeus, T. Bredan Murphy and Adrian E. Raftery (2019),” Biometrical Journal, 62, 1120–1121, (2020).
  • [9] Chiang, D. A., Wang, Y. F., Lee, S. L., & Lin, C. J., “Goal-oriented sequential pattern for network banking churn analysis”, Expert systems with applications, 25(3), 293-302, (2003).
  • [10] Dawes, S. S., “The evolution and continuing challenges of e‐governance”, Public administration review, 68, 86-102, (2008).
  • [11] Değer, K., Özkaya, M. G., & Boran, F. E., “Modelling and Analysis of Future Energy Scenarios on the Sustainability Axis”, Politeknik Dergisi, 26(2), 665-678, (2023).
  • [12] Donoho, D., “50 years of data science”, Journal of Computational and Graphical Statistics, 26(4), 745-766, (2017).
  • [13] Durmuş Şenyapar, H. N., Cetinkaya, U., & Bayındır, R., “Renewable Energy Incentives and Future Implications for Turkey: A Comparative Bibliometric Analysis”, Politeknik Dergisi, 27(1), 329-342, (2024).
  • [14] Edastama, P., Bist, A. S., & Prambudi, A., “Implementation of data mining on glasses sales using the apriori algorithm”, International Journal of Cyber and IT Service Management, 1(2), 159-172, (2021).
  • [15] Fathi, M., Haghi Kashani, M., Jameii, S. M., & Mahdipour, E., “Big data analytics in weather forecasting: A systematic review”, Archives of Computational Methods in Engineering, 29(2), 1247-1275, (2022).
  • [16] Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., ... & Ghosh, A., “Review of studies on tree species classification from remotely sensed data”, Remote sensing of environment, 186, 64-87, (2016).
  • [17] Harun, N. A., Makhtar, M., Abd Aziz, A., Zakaria, Z. A., & Syed, F., “The application of apriori algorithm in predicting flood areas”, management, 17, 18, (2017).
  • [18] Hegland, M., “The apriori algorithm–a tutorial”, Mathematics and computation in imaging science and information processing, 209-262, (2007).
  • [19] Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R., “Internet of Behaviours (IoB) and its role in customer services”, Sensors International, 2, (2021).
  • [20] Ji, L., Zhang, B., & Li, J., “A new improvement on apriori algorithm”, In 2006 International Conference on Computational Intelligence and Security, 1, 840-844, (2006).
  • [21] Kashyap, H., Ahmed, H. A., Hoque, N., Roy, S., & Bhattacharyya, D. K., “Big data analytics in bioinformatics: A machine learning perspective”, arXiv preprint arXiv:1506.05101, (2015).
  • [22] Korkmaz, Ş., & Alkan, M., “Derin Öğrenme Algoritmalarını Kullanarak Deepfake Video Tespiti”, Politeknik Dergisi, 26(2), 855-862, (2023).
  • [23] Korschun, D., & Welker, G., “We are Market Basket: The story of the unlikely grassroots movement that saved a beloved business”, Amacom, (2015).
  • [24] Kunnathuvalappil Hariharan, N., “Applications of Data Mining in Finance”, Naveen International Journal of Innovations in Engineering Research and Technology, 5(2), 72-77, (2018).
  • [25] Li, Z., Li, X., Tang, R., & Zhang, L., “Apriori algorithm for the data mining of global cyberspace security issues for human participatory based on association rules”, Frontiers in Psychology, 11, (2021).
  • [26] Mannila, H., “Theoretical frameworks for data mining”, ACM SIGKDD Explorations Newsletter, 1(2), 30-32, (2000).
  • [27] Mikut, R., & Reischl, M., “Data mining tools”, Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(5), 431-443, (2011).
  • [28] Mohapatra, D., Tripathy, J., Mohanty, K. K., & Nayak, D. S. K., “Interpretation of optimized hyper parameters in associative rule learning using eclat and apriori”, In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 879-882, (2021).
  • [29] Nan, S., & Chen, M., “An apriori-algorithm-based analysis method on physical fitness test data for college students”, Easychair Working Paper, (2020).
  • [30] Nandagopal, S., Karthik, S., & Arunachalam, V. P., “Mining of meteorological data using modified apriori algorithm” European Journal of Scientific Research, 47(2), 295-308, (2010).
  • [31] Ntampaka, M., Avestruz, C., Boada, S., Caldeira, J., Cisewski-Kehe, J., Di Stefano, R., ... & Wandelt, B., “The role of machine learning in the next decade of cosmology”, arXiv preprint arXiv:1902.10159, (2019).
  • [32] O’Hagan, A., “The Bayesian approach to statistics”, Handbook of probability: Theory and applications, 85-100, (2008).
  • [33] Olodude, O. O., & Oladejo, B. F., “Enhanced customer-based knowledge management system for products generation in banking system”, Computer Science Series, 11(1), 129-137, (2013).
  • [34] Osman, A. S., “Data mining techniques”, Data Science and Networking, 2(1), (2019).
  • [35] Patel, D. T., “Big data analytics in bioinformatics”, In Biotechnology: Concepts, Methodologies, Tools, and Applications,1967-1984, (2019).
  • [36] Pei, J., Mao, R., Hu, K., & Zhu, H., “Towards data mining benchmarking: a test bed for performance study of frequent pattern mining”, In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 592, (2000).
  • [37] Pfannkuch, M., & Wild, C., “Towards an understanding of statistical thinking”, The challenge of developing statistical literacy, reasoning and thinking, 17-46, (2004).
  • [38] Raghupathi, W., & Raghupathi, V., “Big data analytics in healthcare: promise and potential”, Health information science and systems, 2, 1-10, (2014).
  • [39] Rong, C., Liu, Z., Huo, N., & Sun, H., “Exploring Chinese dietary habits using recipes extracted from websites”, IEEE Access, 7, 24354-24361, (2019).
  • [40] Sathya, M., & Devi, P. I., “Apriori algorithm on web logs for mining frequent link. In 2017 IEEE International Conference on Intelligent Techniques in Control”, Optimization and Signal Processing (INCOS), 1-5, (2017).
  • [41] Savasere, A., Omiecinski, E. R., & Navathe, S. B., “An efficient algorithm for mining association rules in large databases”, Georgia Institute of Technology, (1995).
  • [42] Semeler, A. R., Pinto, A. L., & Rozados, H. B. F., “Data science in data librarianship: Core competencies of a data librarian”, Journal of Librarianship and Information Science, 51(3), 771-780, (2019).
  • [43] Sertçelik, Ş., & Önder, E., “Yönetim Bilişim Sistemleri Kapsamında Akademik Araştırma Alanlarının İncelenmesi: Apriori Algoritması ile Bir Analiz”, Gümüşhane Üniversitesi Sosyal Bilimler Dergisi, 14(2), 680-690, (2023).
  • [44] Shao, L., “Research on sports training decision support system based on improved association rules algorithm”, Security and Communication Networks, 1-6, (2021).
  • [45] Singh, J., Ram, H., & Sodhi, D. J., “Improving efficiency of apriori algorithm using transaction reduction”, International Journal of Scientific and Research Publications, 3(1), 1-4, (2013).
  • [46] Sornalakshmi, M., Balamurali, S., Venkatesulu, M., Krishnan, M. N., Ramasamy, L. K., Kadry, S., & Lim, S., “An efficient apriori algorithm for frequent pattern mining using mapreduce in healthcare data”, Bulletin of Electrical Engineering and Informatics, 10(1), 390-403, (2021).
  • [47] Spearman, C., “The proof and measurement of association between two things”, The American Journal of Psychology, 15(1), 72–101, (1904).
  • [48] Spearman, C., “Footrule for measuring correlation”, British Journal of Psychology, 2(1), 89, (1906).
  • [49] Sumiran, K., “An overview of data mining techniques and their application in industrial engineering”, Asian Journal of Applied Science and Technology, 2(2), 947-953, (2018).
  • [50] Suwinski, P., Ong, C., Ling, M. H., Poh, Y. M., Khan, A. M., & Ong, H. S., “Advancing personalized medicine through the application of whole exome sequencing and big data analytics”, Frontiers in genetics, 10, 49, (2019).
  • [51] Ullah, I., “Logıcal Reasonıng and Data Mınıng Algorıthms”, Recent Advances In Statıstıcs, 103, (2011).
  • [52] Useche, S., Montoro, L., Alonso, F., & Oviedo-Trespalacios, O., “Infrastructural and human factors affecting safety outcomes of cyclists”, Sustainability, 10(2), 299, (2018).
  • [53] Usha, D., Niveditha, V. R., Kirubadevi, T., & Thamizhikkavi, P., “Use of predictive analytical algorithm by crime investigation team: An analysis”, International Journal of Advances Science and Technology, 29, 2986-2992, (2020).
  • [54] Uysal, M., Acharya, A., & Saltz, J., “Structure and performance of decision support algorithms on active disks”, University of Maryland, (1998).
  • [55] Veeramalai, S., Jaisankar, N., & Kannan, A., “Efficient web log mining using enhanced Apriori algorithm with hash tree and fuzzy”, International journal of computer science & information Technology (IJCSIT), 2, 1-15, (2010).
  • [56] Wang, Y., “Categorization of Association Rule Mining Algorithms”, In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM Press, (2003).
  • [57] Wu, W., Lin, W., Hsu, C. H., & He, L., “Energy-efficient hadoop for big data analytics and computing: A systematic review and research insights”, Future Generation Computer Systems, 86, 1351-1, (2018).
  • [58] Yuan, X., “An Improved Apriori Algorithm for Mining Association Rules”, In AIP Conference Proceedings, 1820 (1), 080005, (2017).
  • [59] Yücel, M., Osmanca, M. S., & Mercimek, İ. F., “Machine Learning Algorithm Estimation and Comparison of Live Network Values of the Inputs Which Have the Most Effect on the FEC Parameter in DWDM Systems”, Politeknik Dergisi, 27(1), 133-138, (2024).
  • [60] Zhang, W., Ma, D., & Yao, W., “Medical diagnosis data mining based on improved Apriori algorithm”, Journal of Networks, 9(5), 1339, (2014).
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Öğrenme (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Merve Nur Barun 0000-0002-2545-9534

Emrah Önder 0000-0002-0554-1290

Erken Görünüm Tarihi 12 Eylül 2024
Yayımlanma Tarihi
Gönderilme Tarihi 5 Şubat 2024
Kabul Tarihi 9 Eylül 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Barun, M. . N., & Önder, E. (2024). Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1432158
AMA Barun MN, Önder E. Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis. Politeknik Dergisi. Published online 01 Eylül 2024:1-1. doi:10.2339/politeknik.1432158
Chicago Barun, Merve Nur, ve Emrah Önder. “Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis”. Politeknik Dergisi, Eylül (Eylül 2024), 1-1. https://doi.org/10.2339/politeknik.1432158.
EndNote Barun MN, Önder E (01 Eylül 2024) Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis. Politeknik Dergisi 1–1.
IEEE M. . N. Barun ve E. Önder, “Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis”, Politeknik Dergisi, ss. 1–1, Eylül 2024, doi: 10.2339/politeknik.1432158.
ISNAD Barun, Merve Nur - Önder, Emrah. “Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis”. Politeknik Dergisi. Eylül 2024. 1-1. https://doi.org/10.2339/politeknik.1432158.
JAMA Barun MN, Önder E. Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis. Politeknik Dergisi. 2024;:1–1.
MLA Barun, Merve Nur ve Emrah Önder. “Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1432158.
Vancouver Barun MN, Önder E. Unlocking the Multidisciplinary Potential of Data Science: Insights from Apriori Analysis. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.