Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of The Abrasive Wear Behavior of GFRC And CFRC with Different Parameters Using Taguchi And Artificial Neural Networks Method

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1

Öz

Fiber-reinforced composites are increasingly being utilized in various sectors, including aerospace, maritime, electronic components, and in elements exposed to wear such as bolts, nuts, cams, and gaskets. This study aims to determine the optimal processing parameters in abrasive wear tests conducted under varying wear conditions on glass and carbon fiber-reinforced composites. Employing a mixed-level L36 Taguchi orthogonal experimental design, tests were conducted on a pin on disk apparatus under different loads, sliding distances, and speeds. The results indicated that the most significant parameters affecting the coefficient of friction (COF) and mass loss were the type of fiber and the load. It was observed that an increase in load, sliding distance, and speed augmented the COF and mass loss. Predictions of the coefficient of friction and mass loss were made using a model developed in Artificial Neural Networks (ANN), and these predictions were compared with experimental results. The R2 overall regression values for COF and mass loss in ANN were calculated as 0.98939 and 0.98349, respectively. ANN was found to provide more consistent results in predicting COF and mass loss compared to the Taguchi method.

Kaynakça

  • [1] Divya, G.S., and Suresha, B., "Role of Metallic Nanofillers on Mechanical and Tribological Behaviour of Carbon Fabric Reinforced Epoxy Composites", Materials Sciences and Applications, 740–750 (2018).
  • [2] Lin, G. M., Xie, G. Y., Sui, G. X., and Yang, R., “Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites”, Composites Part B: Engineering, 43(1), 44-49, (2012).
  • [3] Yılmaz, H., Altın, Y., and Bedeloğlu, A., “Investigation of properties of graphene reinforced epoxy nanocomposites”, Journal Of Polytechnic, 24(4), 1719-1727,(2021).
  • [4] Kaya, Z., Balcıoğlu, E., and Gün, H., “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi. Journal Of Polytechnic, 25(2), 843-853, (2022).
  • [5] Korku, M., Feyzullahoğlu, E., and Ilhan, R., “Investigation of the Effects of Environmental Conditions on Wear Behaviors in Glass Fiber Reinforced Polyester Composite Materials Containing Different Types of Polyester and Low Profile Additive”, Journal Of Polytechnic, (2022).
  • [6] Sathishkumar, T. P., Satheeshkumar, S., and Naveen, J., “Glass fiber-reinforced polymer composites-A review”, Journal of Reinforced Plastics and Composites, 33(13): 1258–1275, (2014).
  • [7] Demir, M. E., Çelik, Y. H., and Kılıçkap, E., “Effect of fiber type, load, sliding speed and distance on abrasive wear of glass and carbon fiber reinforced composites”, Journal Of Polytechnic, 22(4), 811-817, (2019).
  • [8] Suresha, B., Chandramohan G., Samapthkumaran, P., Seetharamu, S., and Vynatheya S., “Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites”, Journal of Reinforced Plastics and Composites, 25(7): 771–782, (2006).
  • [9] Srinath, G., and Gnanamoorthy, R., “Effect of short fibre reinforcement on the friction and wear behaviour of nylon 66”, Applied Composite Materials, 12(6): 369–383, (2005).
  • [10] Sharma, N., Kumar, S., & Singh, K. K., “Taguchi’s DOE and artificial neural network analysis for the prediction of tribological performance of graphene nano-platelets filled glass fiber reinforced epoxy composites under the dry sliding condition”, Tribology International, 172, 107580, (2022).
  • [11] Singh, K. K., Singh, N. K., and Jha, R., “Analysis of symmetric and asymmetric glass fiber reinforced plastic laminates subjected to low-velocity impact”, Journal of composite materials, 50(14), 1853-1863. (2016).
  • [12] Agrawal, S., Singh, K. K., and Sarkar, P. K., “A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments”, Tribology International, 96, 217-224. (2016).
  • [13] Findik, F., Yilmaz, R., and Köksal, T., “Investigation of mechanical and physical properties of several industrial rubbers”, Materials & design, 25(4), 269-276. (2004).
  • [14] Çetkin, E., Demir, M. E., & Ergün, R. K., “The effect of different fillers, loads, and sliding distance on adhesive wear in woven e-glass fabric composites”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(2), 418-429, (2023).
  • [15] Kumar, S., & Ghosh, S. K., “Statistical and computational analysis of an environment-friendly MWCNT/NiSO4 composite materials”, Journal of Manufacturing Processes, 66, 11-26, (2021).
  • [16] Gyurova, L. A., and Friedrich, K., “Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites”, Tribology International, 44(5), 603-609, (2011).
  • [17] Jiang, Z., Zhang, Z., and Friedrich, K., “Prediction on wear properties of polymer composites with artificial neural networks”, Composites Science and Technology, 67(2), 168-176, (2007).
  • [18] Ciurana, J., Quintana, G., and Garcia-Romeu, M. L., “Estimating the cost of vertical high-speed machining centres, a comparison between multiple regression analysis and the neural networks approach”, International Journal of Production Economics, 115(1), 171-178, (2008).
  • [19] Shtub, A., and Versano, R., “Estimating the cost of steel pipe bending, a comparison between neural networks and regression analysis”, International Journal of Production Economics, 62(3), 201-207, (1999).
  • [20] Padhi, P. K., Satapathy, A., and Nakka, A. M., “Processing, characterization, and wear analysis of short glass fiber-reinforced polypropylene composites filled with blast furnace slag”, Journal of Thermoplastic Composite Materials, 28(5), 656-671, (2015).
  • [21] Vaddar, L., Thatti, B., Reddy, B. R., Chittineni, S., Govind, N., Vijay, M, Saleel, C. A., “Glass Fiber-Epoxy Composites with Carbon Nanotube Fillers for Enhancing Properties in Structure Modeling and Analysis Using Artificial Intelligence Technique”, ACS Omega, (2023).
  • [22] Kumar, S., Sharma, N., and Singh, K. K., “Artificial Neural Network technique to assess tribological performance of GFRP composites incorporated with graphene nano-platelets”, Tribology International, 179, 108194, (2023).
  • [23] Demir, M. E., Cetkin, E., Ergün, R. K., and Denizhan, O. “Tribological and mechanical properties of nanofilled glass fiber reinforced composites and analyzing the tribological behavior using artificial neural networks”, Polymer Composites, (2024).
  • [24] Yadav, R., Lee, H. H., Meena, A., and Sharma, Y. K., “Effect of alumina particulate and E-glass fiber reinforced epoxy composite on erosion wear behavior using Taguchi orthogonal array”, Tribology International, 175, 107860, (2022).
  • [25] Kumar, M. S., Raju, N. M. S., Sampath, P. S., and Vivek, U., “Tribological analysis of nano clay/epoxy/glass fiber by using Taguchi’s technique”, Materials & Design, 70, 1-9. (2015).
  • [26] Paturkar, A., Mache, A., Deshpande, A., and Kulkarni, A., “Experimental investigation of dry sliding wear behaviour of jute/epoxy and jute/glass/epoxy hybrids using Taguchi approach” Materials Today: Proceedings, 5(11), 23974-23983, (2018).
  • [27] Ravichandran, G., Rathnakar, G., Santhosh, N., and Suresh, R., “Wear characterization of HNT filled glass-epoxy composites using Taguchi’s design of experiments and study of wear morphology”, Composites Theory and Practice, 20(2), 85-91, (2020).
  • [28] Bagci, M., Imrek, H., and Mashi Khalfan, O., “Optimization of test parameters that influence erosive wear behaviors of glass fiber-reinforced epoxy composites by using the Taguchi method”, Journal of Tribology, 137(1), 011602, (2015).
  • [29] Thimmaiah, S. H., Narayanappa, K., Thyavihalli Girijappa, Y., Gulihonenahali Rajakumara, A., Hemath, M., Thiagamani, S. M. K., and Verma, A., “An artificial neural network and Taguchi prediction on wear characteristics of Kenaf–Kevlar fabric reinforced hybrid polyester composites”, Polymer Composites, 44(1), 261-273, (2023).
  • [30] Demir, M. E., Çelik, Y. H., and Kilickap, E., “Effect of matrix material and orientation angle on tensile and tribological behavior of jute reinforced composites”, Materials Testing, 61(8), 806-812, (2019).
  • [31] Unal, H., Mimaroglu, A., Kadıoglu, U., and Ekiz, H., “Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions”, Materials & Design, 25(3), 239-245, (2004).
  • [32] Sarkar, P., Modak, N., & Sahoo, P., “Effect of normal load and velocity on continuous sliding friction and wear behavior of woven glass fiber reinforced epoxy composite”, Materials Today: Proceedings, 4(2), 3082-3092, (2017).
  • [33] Sumer, M., Unal, H., and Mimaroglu, A., “Evaluation of tribological behaviour of PEEK and glass fibre reinforced PEEK composite under dry sliding and water lubricated conditions”, Wear, 265(7-8), 1061-1065, (2008).
  • [34] Ahmed, K. S., Khalid, S. S., Mallinatha, V., and Kumar, S. A., “Dry sliding wear behavior of SiC/Al2O3 filled jute/epoxy composites”, Materials & Design, 36, 306-315, (2012).
  • [35] Stuart, B. H., “Surface plasticisation of poly (ether ether ketone) by chloroform”, Polymer testing, 16(1), 49-57, (1997).
  • [36] Davim, J. P., and Cardoso, R. “Effect of the reinforcement (carbon or glass fibres) on friction and wear behaviour of the PEEK against steel surface at long dry sliding”, Wear, 266(7-8), 795-799, (2009).
  • [37] Yousif, B.F., and Yap, T.C., "Tribological studies of polyester reinforced with CSM 450-R-glass fiber sliding against smooth stainless steel counterface",Wear, 261 443–452 (2006).
  • [38] Suresha, B., “Friction and dry slide wear of short glass fiber reinforced thermoplastic polyurethane composites”, Journal of reinforced plastics and composites, 29(7), 1055-1061, (2010).
  • [39] Suresha, B., Chandramohan, G., Samapthkumaran, P., & Seetharamu, S., “Three-body abrasive wear behaviour of carbon and glass fiber reinforced epoxy composites”, Materials Science and Engineering: A, 443(1-2), 285-291, (2007).
  • [40] Chen, B., Wang, J., & Yan, F., “Comparative investigation on the tribological behaviors of CF/PEEK composites under sea water lubrication”, Tribology International, 52, 170-177, (2012).
  • [41] Lin, G., Xie, G., Sui, G., and Yang, R., “Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites", Composites Part B, 43 (1), 44–49 (2012).
  • [42] Agarwal, G., Patnaik, A., and Sharma, R. K., “Comparative investigations on three-body abrasive wear behavior of long and short glass fiber-reinforced epoxy composites”, Advanced Composite Materials, 23(4), 293-317, (2014).
  • [43] Davim, J.P. and Cardoso, R., "Effect of the reinforcement (carbon or glass fibres) on friction and wear behaviour of the PEEK against steel surface at long dry sliding", Wear, 266 (7–8), 795–799, (2009).
  • [44] Srinivasan, V., Karthikeyan, R., Ganesan, G., and Asaithambi, B. "Comparative Study on the Wear Behavior of Long and Short Glass Fiber Reinforced Plastics", Metals and Materials International, 16 (2), 205–212, (2010).
  • [45] Baday, Ş., Ersöz, O., “Comparative investigations of cryo-treated and untreated inserts on machinability of AISI 1050 by using response surface methodology, ANOVA and Taguchi design”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(3), 1751-1765, (2022).
  • [46] Denizhan, O., "Comparison of different supervised learning algorithms for position analysis of the slider-crank mechanism", Alexandria Engineering Journal, 92, 39-49, (2024).
  • [47] Arun, A., and Kalyan K. S., "Friction and wear behaviour of glass fibre reinforced polymer composite (GFRP) under dry and oil lubricated environmental conditions", Materials Today: Proceedings, 4(8) 7285-7292, (2017).
  • [48] Kim, S. S., Shin, M. W., and Jang, H., “Tribological properties of short glass fiber reinforced polyamide 12 sliding on medium carbon steel”, Wear, 274, 34-42, (2012).
  • [49] Sharma, V., Meena, M. L., Kumar, M., & Patnaik, “A., Waste fly ash powder filled glass fiber reinforced epoxy composite: physical, mechancial, thermo-mechanical, and three-body abrasive wear analysis”, Fibers and Polymers, 22(4), 1120-1136, (2021).
  • [50] Suresha, B., & Kumar, K. N. S., “Investigations on mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites”, Materials & Design, 30(6), 2056-2060, (2009).
  • [51] Şahin, Y., and Patrick, D. B., "Effects of nano-Al2O3 and PTFE fillers on tribological property of basalt fabric-reinforced epoxy composites”, Tribology-Materials, Surfaces & Interfaces, 15(4), 258-277, (2021).
  • [52] Wen, Q., Liu, M., Zhang, Z., & Sun, Y., “Experimental investigation into the friction coefficient of ball-on-disc in dry sliding contact considering the effects of surface roughness, low rotation speed, and light normal load”, Lubricants, 10(10), 256, (2022).
  • [53] Singh, M., Dodla, S., Gautam, R. K., & Srivastava, V. K., “Effect of load, sliding frequency, and temperature on tribological properties of graphene nanoplatelets coated carbon fiber reinforced polymer composites”, Journal of Composite Materials, 57(1), 121-132, (2023).
  • [54] Yelmen, B., Çakır, M. T., Şahin, H. H., Kurt, C., “Yapay Sinir Ağı (YSA) Kullanarak Sera Sistemlerinde Enerji Verimliliğinin Modellenmesi”, Journal Of Polytechnic, 24(1), 151-160, (2021).
  • [55] Toktaş İ., “Eliptik delikli ince cidarlı küresel bir elemanın basınç altında gerilme yığılma faktörünün sonlu elemanlar analizi ve yapay sinir ağları ile modellenmesi”, Journal Of Polytechnic, 27(2): 819-827, (2024).
  • [56] Gürbüz G., Gönülaçar Y. E., “Farklı kesme parametreleri ve MQL debilerinde elde edilen deneysel değerlerin S/N oranları ve YSA ile analizi”, Politeknik Dergisi, 24(3): 1093-1107, (2021).
  • [57] Erdoğan, M., ve Yıldız O., “Evrişimli sinir ağı kullanarak dengesiz doppler radar verisinde hedef tespiti”, Journal of Polytechnic, (2023).

GFRC ve CFRC'nin abrasiv aşınma davranışının taguchi ve yapay sinir ağları yöntemi kullanılarak farklı parametrelerde incelenmesi

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1

Öz

Fiber takviyeli kompozitler, havacılık, denizcilik, elektronik bileşenler ve cıvata, somun, kam ve conta gibi aşınmaya maruz kalan elemanlar gibi çeşitli sektörlerde giderek daha fazla kullanılmaktadır. Bu çalışma, cam ve karbon fiber takviyeli kompozitler üzerinde farklı aşınma koşullarında yapılan aşındırıcı aşınma testlerinde optimal işleme parametrelerini belirlemeyi amaçlamaktadır. Karışık düzeyli L36 Taguchi ortogonal deneysel bir tasarım kullanılarak, farklı yükler, kayma mesafeleri ve hızlar altında bir pim üzerinde disk cihazında testler gerçekleştirilmiştir. Sonuçlar, sürtünme katsayısı (COF) ve kütle kaybını etkileyen en önemli parametrelerin fiber tipi ve yük olduğunu göstermiştir. Yükün, kayma mesafesinin ve hızın artmasıyla COF ve kütle kaybının arttığı gözlemlenmiştir. Sürtünme katsayısı ve kütle kaybı için yapay sinir ağları (ANN) ile geliştirilen bir model kullanılarak tahminlerde bulunulmuş ve bu tahminler deneysel sonuçlarla karşılaştırılmıştır. ANN'deki COF ve kütle kaybı için R2 genel regresyon değerleri sırasıyla 0.98939 ve 0.98349 olarak hesaplanmıştır. ANN'nin COF ve kütle kaybını tahmin etmede Taguchi yöntemine göre daha tutarlı sonuçlar sağladığı bulunmuştur.

Kaynakça

  • [1] Divya, G.S., and Suresha, B., "Role of Metallic Nanofillers on Mechanical and Tribological Behaviour of Carbon Fabric Reinforced Epoxy Composites", Materials Sciences and Applications, 740–750 (2018).
  • [2] Lin, G. M., Xie, G. Y., Sui, G. X., and Yang, R., “Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites”, Composites Part B: Engineering, 43(1), 44-49, (2012).
  • [3] Yılmaz, H., Altın, Y., and Bedeloğlu, A., “Investigation of properties of graphene reinforced epoxy nanocomposites”, Journal Of Polytechnic, 24(4), 1719-1727,(2021).
  • [4] Kaya, Z., Balcıoğlu, E., and Gün, H., “Fiber Takviyeli Kompozitlerin Farklı Deformasyon Hızındaki Mod I ve Mod I/II Kırılma Davranışların İncelenmesi. Journal Of Polytechnic, 25(2), 843-853, (2022).
  • [5] Korku, M., Feyzullahoğlu, E., and Ilhan, R., “Investigation of the Effects of Environmental Conditions on Wear Behaviors in Glass Fiber Reinforced Polyester Composite Materials Containing Different Types of Polyester and Low Profile Additive”, Journal Of Polytechnic, (2022).
  • [6] Sathishkumar, T. P., Satheeshkumar, S., and Naveen, J., “Glass fiber-reinforced polymer composites-A review”, Journal of Reinforced Plastics and Composites, 33(13): 1258–1275, (2014).
  • [7] Demir, M. E., Çelik, Y. H., and Kılıçkap, E., “Effect of fiber type, load, sliding speed and distance on abrasive wear of glass and carbon fiber reinforced composites”, Journal Of Polytechnic, 22(4), 811-817, (2019).
  • [8] Suresha, B., Chandramohan G., Samapthkumaran, P., Seetharamu, S., and Vynatheya S., “Friction and wear characteristics of carbon-epoxy and glass-epoxy woven roving fiber composites”, Journal of Reinforced Plastics and Composites, 25(7): 771–782, (2006).
  • [9] Srinath, G., and Gnanamoorthy, R., “Effect of short fibre reinforcement on the friction and wear behaviour of nylon 66”, Applied Composite Materials, 12(6): 369–383, (2005).
  • [10] Sharma, N., Kumar, S., & Singh, K. K., “Taguchi’s DOE and artificial neural network analysis for the prediction of tribological performance of graphene nano-platelets filled glass fiber reinforced epoxy composites under the dry sliding condition”, Tribology International, 172, 107580, (2022).
  • [11] Singh, K. K., Singh, N. K., and Jha, R., “Analysis of symmetric and asymmetric glass fiber reinforced plastic laminates subjected to low-velocity impact”, Journal of composite materials, 50(14), 1853-1863. (2016).
  • [12] Agrawal, S., Singh, K. K., and Sarkar, P. K., “A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments”, Tribology International, 96, 217-224. (2016).
  • [13] Findik, F., Yilmaz, R., and Köksal, T., “Investigation of mechanical and physical properties of several industrial rubbers”, Materials & design, 25(4), 269-276. (2004).
  • [14] Çetkin, E., Demir, M. E., & Ergün, R. K., “The effect of different fillers, loads, and sliding distance on adhesive wear in woven e-glass fabric composites”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 237(2), 418-429, (2023).
  • [15] Kumar, S., & Ghosh, S. K., “Statistical and computational analysis of an environment-friendly MWCNT/NiSO4 composite materials”, Journal of Manufacturing Processes, 66, 11-26, (2021).
  • [16] Gyurova, L. A., and Friedrich, K., “Artificial neural networks for predicting sliding friction and wear properties of polyphenylene sulfide composites”, Tribology International, 44(5), 603-609, (2011).
  • [17] Jiang, Z., Zhang, Z., and Friedrich, K., “Prediction on wear properties of polymer composites with artificial neural networks”, Composites Science and Technology, 67(2), 168-176, (2007).
  • [18] Ciurana, J., Quintana, G., and Garcia-Romeu, M. L., “Estimating the cost of vertical high-speed machining centres, a comparison between multiple regression analysis and the neural networks approach”, International Journal of Production Economics, 115(1), 171-178, (2008).
  • [19] Shtub, A., and Versano, R., “Estimating the cost of steel pipe bending, a comparison between neural networks and regression analysis”, International Journal of Production Economics, 62(3), 201-207, (1999).
  • [20] Padhi, P. K., Satapathy, A., and Nakka, A. M., “Processing, characterization, and wear analysis of short glass fiber-reinforced polypropylene composites filled with blast furnace slag”, Journal of Thermoplastic Composite Materials, 28(5), 656-671, (2015).
  • [21] Vaddar, L., Thatti, B., Reddy, B. R., Chittineni, S., Govind, N., Vijay, M, Saleel, C. A., “Glass Fiber-Epoxy Composites with Carbon Nanotube Fillers for Enhancing Properties in Structure Modeling and Analysis Using Artificial Intelligence Technique”, ACS Omega, (2023).
  • [22] Kumar, S., Sharma, N., and Singh, K. K., “Artificial Neural Network technique to assess tribological performance of GFRP composites incorporated with graphene nano-platelets”, Tribology International, 179, 108194, (2023).
  • [23] Demir, M. E., Cetkin, E., Ergün, R. K., and Denizhan, O. “Tribological and mechanical properties of nanofilled glass fiber reinforced composites and analyzing the tribological behavior using artificial neural networks”, Polymer Composites, (2024).
  • [24] Yadav, R., Lee, H. H., Meena, A., and Sharma, Y. K., “Effect of alumina particulate and E-glass fiber reinforced epoxy composite on erosion wear behavior using Taguchi orthogonal array”, Tribology International, 175, 107860, (2022).
  • [25] Kumar, M. S., Raju, N. M. S., Sampath, P. S., and Vivek, U., “Tribological analysis of nano clay/epoxy/glass fiber by using Taguchi’s technique”, Materials & Design, 70, 1-9. (2015).
  • [26] Paturkar, A., Mache, A., Deshpande, A., and Kulkarni, A., “Experimental investigation of dry sliding wear behaviour of jute/epoxy and jute/glass/epoxy hybrids using Taguchi approach” Materials Today: Proceedings, 5(11), 23974-23983, (2018).
  • [27] Ravichandran, G., Rathnakar, G., Santhosh, N., and Suresh, R., “Wear characterization of HNT filled glass-epoxy composites using Taguchi’s design of experiments and study of wear morphology”, Composites Theory and Practice, 20(2), 85-91, (2020).
  • [28] Bagci, M., Imrek, H., and Mashi Khalfan, O., “Optimization of test parameters that influence erosive wear behaviors of glass fiber-reinforced epoxy composites by using the Taguchi method”, Journal of Tribology, 137(1), 011602, (2015).
  • [29] Thimmaiah, S. H., Narayanappa, K., Thyavihalli Girijappa, Y., Gulihonenahali Rajakumara, A., Hemath, M., Thiagamani, S. M. K., and Verma, A., “An artificial neural network and Taguchi prediction on wear characteristics of Kenaf–Kevlar fabric reinforced hybrid polyester composites”, Polymer Composites, 44(1), 261-273, (2023).
  • [30] Demir, M. E., Çelik, Y. H., and Kilickap, E., “Effect of matrix material and orientation angle on tensile and tribological behavior of jute reinforced composites”, Materials Testing, 61(8), 806-812, (2019).
  • [31] Unal, H., Mimaroglu, A., Kadıoglu, U., and Ekiz, H., “Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions”, Materials & Design, 25(3), 239-245, (2004).
  • [32] Sarkar, P., Modak, N., & Sahoo, P., “Effect of normal load and velocity on continuous sliding friction and wear behavior of woven glass fiber reinforced epoxy composite”, Materials Today: Proceedings, 4(2), 3082-3092, (2017).
  • [33] Sumer, M., Unal, H., and Mimaroglu, A., “Evaluation of tribological behaviour of PEEK and glass fibre reinforced PEEK composite under dry sliding and water lubricated conditions”, Wear, 265(7-8), 1061-1065, (2008).
  • [34] Ahmed, K. S., Khalid, S. S., Mallinatha, V., and Kumar, S. A., “Dry sliding wear behavior of SiC/Al2O3 filled jute/epoxy composites”, Materials & Design, 36, 306-315, (2012).
  • [35] Stuart, B. H., “Surface plasticisation of poly (ether ether ketone) by chloroform”, Polymer testing, 16(1), 49-57, (1997).
  • [36] Davim, J. P., and Cardoso, R. “Effect of the reinforcement (carbon or glass fibres) on friction and wear behaviour of the PEEK against steel surface at long dry sliding”, Wear, 266(7-8), 795-799, (2009).
  • [37] Yousif, B.F., and Yap, T.C., "Tribological studies of polyester reinforced with CSM 450-R-glass fiber sliding against smooth stainless steel counterface",Wear, 261 443–452 (2006).
  • [38] Suresha, B., “Friction and dry slide wear of short glass fiber reinforced thermoplastic polyurethane composites”, Journal of reinforced plastics and composites, 29(7), 1055-1061, (2010).
  • [39] Suresha, B., Chandramohan, G., Samapthkumaran, P., & Seetharamu, S., “Three-body abrasive wear behaviour of carbon and glass fiber reinforced epoxy composites”, Materials Science and Engineering: A, 443(1-2), 285-291, (2007).
  • [40] Chen, B., Wang, J., & Yan, F., “Comparative investigation on the tribological behaviors of CF/PEEK composites under sea water lubrication”, Tribology International, 52, 170-177, (2012).
  • [41] Lin, G., Xie, G., Sui, G., and Yang, R., “Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites", Composites Part B, 43 (1), 44–49 (2012).
  • [42] Agarwal, G., Patnaik, A., and Sharma, R. K., “Comparative investigations on three-body abrasive wear behavior of long and short glass fiber-reinforced epoxy composites”, Advanced Composite Materials, 23(4), 293-317, (2014).
  • [43] Davim, J.P. and Cardoso, R., "Effect of the reinforcement (carbon or glass fibres) on friction and wear behaviour of the PEEK against steel surface at long dry sliding", Wear, 266 (7–8), 795–799, (2009).
  • [44] Srinivasan, V., Karthikeyan, R., Ganesan, G., and Asaithambi, B. "Comparative Study on the Wear Behavior of Long and Short Glass Fiber Reinforced Plastics", Metals and Materials International, 16 (2), 205–212, (2010).
  • [45] Baday, Ş., Ersöz, O., “Comparative investigations of cryo-treated and untreated inserts on machinability of AISI 1050 by using response surface methodology, ANOVA and Taguchi design”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(3), 1751-1765, (2022).
  • [46] Denizhan, O., "Comparison of different supervised learning algorithms for position analysis of the slider-crank mechanism", Alexandria Engineering Journal, 92, 39-49, (2024).
  • [47] Arun, A., and Kalyan K. S., "Friction and wear behaviour of glass fibre reinforced polymer composite (GFRP) under dry and oil lubricated environmental conditions", Materials Today: Proceedings, 4(8) 7285-7292, (2017).
  • [48] Kim, S. S., Shin, M. W., and Jang, H., “Tribological properties of short glass fiber reinforced polyamide 12 sliding on medium carbon steel”, Wear, 274, 34-42, (2012).
  • [49] Sharma, V., Meena, M. L., Kumar, M., & Patnaik, “A., Waste fly ash powder filled glass fiber reinforced epoxy composite: physical, mechancial, thermo-mechanical, and three-body abrasive wear analysis”, Fibers and Polymers, 22(4), 1120-1136, (2021).
  • [50] Suresha, B., & Kumar, K. N. S., “Investigations on mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites”, Materials & Design, 30(6), 2056-2060, (2009).
  • [51] Şahin, Y., and Patrick, D. B., "Effects of nano-Al2O3 and PTFE fillers on tribological property of basalt fabric-reinforced epoxy composites”, Tribology-Materials, Surfaces & Interfaces, 15(4), 258-277, (2021).
  • [52] Wen, Q., Liu, M., Zhang, Z., & Sun, Y., “Experimental investigation into the friction coefficient of ball-on-disc in dry sliding contact considering the effects of surface roughness, low rotation speed, and light normal load”, Lubricants, 10(10), 256, (2022).
  • [53] Singh, M., Dodla, S., Gautam, R. K., & Srivastava, V. K., “Effect of load, sliding frequency, and temperature on tribological properties of graphene nanoplatelets coated carbon fiber reinforced polymer composites”, Journal of Composite Materials, 57(1), 121-132, (2023).
  • [54] Yelmen, B., Çakır, M. T., Şahin, H. H., Kurt, C., “Yapay Sinir Ağı (YSA) Kullanarak Sera Sistemlerinde Enerji Verimliliğinin Modellenmesi”, Journal Of Polytechnic, 24(1), 151-160, (2021).
  • [55] Toktaş İ., “Eliptik delikli ince cidarlı küresel bir elemanın basınç altında gerilme yığılma faktörünün sonlu elemanlar analizi ve yapay sinir ağları ile modellenmesi”, Journal Of Polytechnic, 27(2): 819-827, (2024).
  • [56] Gürbüz G., Gönülaçar Y. E., “Farklı kesme parametreleri ve MQL debilerinde elde edilen deneysel değerlerin S/N oranları ve YSA ile analizi”, Politeknik Dergisi, 24(3): 1093-1107, (2021).
  • [57] Erdoğan, M., ve Yıldız O., “Evrişimli sinir ağı kullanarak dengesiz doppler radar verisinde hedef tespiti”, Journal of Polytechnic, (2023).
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Triboloji
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Emin Demir 0000-0001-9630-6378

Erken Görünüm Tarihi 2 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 29 Şubat 2024
Kabul Tarihi 18 Nisan 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Demir, M. E. (2024). Investigation of The Abrasive Wear Behavior of GFRC And CFRC with Different Parameters Using Taguchi And Artificial Neural Networks Method. Politeknik Dergisi1-1.
AMA Demir ME. Investigation of The Abrasive Wear Behavior of GFRC And CFRC with Different Parameters Using Taguchi And Artificial Neural Networks Method. Politeknik Dergisi. Published online 01 Temmuz 2024:1-1.
Chicago Demir, Mehmet Emin. “Investigation of The Abrasive Wear Behavior of GFRC And CFRC With Different Parameters Using Taguchi And Artificial Neural Networks Method”. Politeknik Dergisi, Temmuz (Temmuz 2024), 1-1.
EndNote Demir ME (01 Temmuz 2024) Investigation of The Abrasive Wear Behavior of GFRC And CFRC with Different Parameters Using Taguchi And Artificial Neural Networks Method. Politeknik Dergisi 1–1.
IEEE M. E. Demir, “Investigation of The Abrasive Wear Behavior of GFRC And CFRC with Different Parameters Using Taguchi And Artificial Neural Networks Method”, Politeknik Dergisi, ss. 1–1, Temmuz 2024.
ISNAD Demir, Mehmet Emin. “Investigation of The Abrasive Wear Behavior of GFRC And CFRC With Different Parameters Using Taguchi And Artificial Neural Networks Method”. Politeknik Dergisi. Temmuz 2024. 1-1.
JAMA Demir ME. Investigation of The Abrasive Wear Behavior of GFRC And CFRC with Different Parameters Using Taguchi And Artificial Neural Networks Method. Politeknik Dergisi. 2024;:1–1.
MLA Demir, Mehmet Emin. “Investigation of The Abrasive Wear Behavior of GFRC And CFRC With Different Parameters Using Taguchi And Artificial Neural Networks Method”. Politeknik Dergisi, 2024, ss. 1-1.
Vancouver Demir ME. Investigation of The Abrasive Wear Behavior of GFRC And CFRC with Different Parameters Using Taguchi And Artificial Neural Networks Method. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.