Araştırma Makalesi
BibTex RIS Kaynak Göster

1.93 GHz GSM Bandında Çalışan SIW Yapılarından Esinlenilmiş Gelişmiş Performansa Sahip Mikroşerit Saplama Filtre Tasarımı

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1470601

Öz

Bu makale SIW yapılarından esinlenilerek gelişmiş performansa sahip 1.93 GHz GSM bandında çalışan bir mikroşerit saplamalı filtre tasarımını sunmaktadır. Tasarlanan filtrede elektromanyetik alanların filtre içerisinde ilerlerken kapsanmasını arttırmak için mikroşerit hatların etrafına ek toprak bağlantı geçişleri yerleştirilmiştir. Filtre, çeşitli sayıdaki geçişler ve farklı geçiş-mikroşerit hat mesafeleri için elektromanyetik simülasyonlarla incelenmiştir. Sonuçlar, filtrenin geçirgen bandında ulaşılan maksimum iletim katsayısı (S21 parametresi) büyüklük değerinin geçiş sayısı arttıkça ve geçişler hatlara yaklaştıkça arttığını göstermektedir. Öte yandan, geçiş sayısı arttığında ve hatlarla aralarındaki mesafe daraldığında maksimum S21 değerinin ulaşıldığı frekans daha düşük frekanslara kaymaktadır. Tasarlanan filtrelerin üretimi de gerçekleştirildi. Ölçümlerde elde edilen sonuçlar simülasyon sonuçlarıyla oldukça uyumludur. Ayrıca, 1.93 GHz bandında çalışan alıcı sistemi inşa edilmiştir. Üretilen filtreler için oluşturulan prototip ile sistem deneyleri gerçekleştirilmiştir. Sonuçlar, herhangi bir ek toprak bağlantı geçişi bulunmayan filtre yerine, geçişlerin olduğu filtrenin kullanıldığı sistemde, filtre geçirgen bandında daha yüksek bir sinyal seviyesine ulaşıldığını ve filtre geçirgen bandı dışındaki istenmeyen sinyallerin daha fazla bastırıldığını göstermektedir. Bulgular, SIW yapılarından esinlenerek tasarlanan filtrelerin yüksek sinyal kalitesi gerektiren uygulamalar için umut verici olduğunu göstermektedir.

Kaynakça

  • [1] Nilsson J.W. and Riedel S.A., “Active Filter Circuits”, Prentice Hall, New Jersey, USA, (2011).
  • [2] Mabrouk M., Abderrahim B., Djeriri Y., Ameur A. and Bessas A., "Design of a standalone hybrid power system and optimization control with intelligent MPPT algorithms”, Journal of Polytechnic, 27(1): 153–167, (2024).
  • [3] Pozar D.M., “Microwave Engineering”, Wiley, New York, USA, (2005).
  • [4] Hong J.-S. and Lancaster M.J., “Microstrip Filters for RF/Microwave Applications”, Wiley, New York, USA, (2001).
  • [5] Yang B., Mehdi G., Hu A., Xie Y., Yao X., Zhang J., Zheng C. and Miao J., “The round-ended design and measurement of all symmetric edge-coupled bandpass filter”, Progress in Electromagnetics Research, 38: 191–203, (2013).
  • [6] Yang B., Mehdi G., Zhang J., Yu T., Yao X. and Miao J., “The compact microstrip bandstop filter using equal width open stub”, International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 1622-1625, (2013).
  • [7] Seven Z.S. and Can S., “Genetic algorithm and particle swarm optimization approach for prediction of physical parameters of rectangular-shaped microstrip antenna”, Journal of Polytechnic, 27(2): 777–787, (2024).
  • [8] Khateb F., Prommee P. and Kulej T., “MIOTA-based filters for noise and motion artifact reductions in biosignal acquisition”, IEEE Access, 10: 14325–14338, (2022).
  • [9] Aydogan I. and Akman Aydin E., “Wearable electromyogram design for finger movements based real-time human-machine interfaces”, Journal of Polytechnic, 26(2): 973–981, (2023).
  • [10] Mukherjee S., Mutnury B., Dalmia S. and Swaminathan M., “Layout-level synthesis of RF inductors and filters in LCP substrates for Wi-Fi applications”, IEEE Transactions on Microwave Theory and Techniques, 53(6): 2196–2210, (2005).
  • [11] Golestanifar A., Karimi G. and Lalbakhsh A., “Varactor-tuned wideband band-pass filter for 5G NR frequency bands n77, n79 and 5G Wi-Fi”, Scientific Reports, 12: 16330(1) –16330(10), (2022).
  • [12] Doumanis E., Goussetis G. and Kosmopoulos S., “Filter Design for Satellite Communications: Helical Resonator Technology”, Artech House, MA, USA, (2015).
  • [13] Yu M., Tang W.-C., Malarky A., Dokas V., Cameron R. and Wang Y., “Predistortion technique for cross-coupled filters and its application to satellite communication systems”, IEEE Transactions on Microwave Theory and Techniques, 51(12): 2505–2515, (2003).
  • [14] Lalbakhsh A., Jamshidi M., Siahkamari H., Ghaderi A., Golestanifar A., Linhart R., Talla J., Simorangkir R.B.V.B. and Mandal K., “A compact lowpass filter for satellite communication systems based on transfer function analysis”, AEU International Journal of Electronics and Communications, 124: 153318(1)–153318(7), (2020).
  • [15] Lalbakhsh A., Mohamadpour G., Roshani S., Ami M., Roshani S., Sayem A.S., Alibakhshikenari M. and Koziel A.S., “Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression”, IEEE Access, 9: 129207–129217, (2021).
  • [16] Yan W.S.T., Mak R.K.C. and Luong H.C., “2-V 0.8-/spl mu/M CMOS monolithic RF filter for GSM receivers”, IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), Anaheim, CA, USA, 569-572, (1999).
  • [17] Proakis J.G. and Salehi M., “Communication Systems Engineering”, Prentice Hall, New Jersey, USA, (2001).
  • [18] Mustari N., Karabulut M.A., Shah A.F.M.S and Tureli U., “1G’den 6G’ye hücresel evrim üzerine kapsamlı bir derleme”, Journal of Polytechnic, 28(2): 351–371, (2025).
  • [19] GSMA, “Legacy mobile network rationalisation: Experiences of 2G and 3G migrations in asia pacific,” https://www.gsma.com/connectivity-for-good/spectrum/wp-content/uploads/2020/06/Legacy-mobile-network-rationalisation.pdf, GSMA, London, UK, (2020).
  • [20] Stanivuk V., “Measurements of the GSM signal strength by mobile phone”, 20th Telecommunications Forum, Belgrade, Serbia, 1784-1787, (2012).
  • [21] Li X., Wang S. and An W., “Design of Tri-Band Dual-Polarized Base Station Antenna for 2G/3G/4G/5G”, Wireless Networks, 30: 1633–1642, (2024).
  • [22] Feng B., Qi S., Ding X., Yang X. and Sim C.-Y.-D., “A dual-polarized multi-wideband ceiling antenna with eight-diagram shape for 2G/3G/LTE/5G sub-6 GHz indoor applications”, IEEE Access, 12: 135338–135351, (2024).
  • [23] Patel D.H. and Makwana G.D., “Multiband antenna for 2G/3G/4G and sub-6 GHz 5G applications using characteristic mode analysis”, Progress In Electromagnetics Research M, 115: 107–117, (2023).
  • [24] Khan A., Ahmad A. and Alam M., “A high-gain reflector-DGS-superstates -enabled quad-band 5G-antenna for mm-wave applications”, Transactions on Electromagnetic Spectrum, 3(1): 34–50, (2023).
  • [25] Poddar H., Ju S., Shakya D. and Rappaport T.S., “A tutorial on NYUSIM: Sub-terahertz and millimeter-wave channel simulator for 5G, 6G, and beyond”, IEEE Communications Surveys & Tutorials, 26(2): 824–857, (2024).
  • [26] Rubio L., Penarrocha V.M.R., Cabedo-Fabres M., Bernardo-Clemente B., Reig J., Fernandez H., Perez J. R., Torres R.P., Valle L. and Fernandez O., “Millimeter-wave channel measurements and path loss characterization in a typical indoor office environment”, Electronics, 12(4): 844, (2023).
  • [27] Babarinde I.O., Ojo J.S. and Ajewole M.O., “High-capacity millimeter wave channel for 5G and future generation systems deployment in tropical region using NYUSIM algorithm”, Transactions on Electromagnetic Spectrum, 3(1): 1–19, (2024).
  • [28] Hribšek M.F., Tošić D.V., Tasić M., Filipović Z. and Živković Z., “Design and realization of transversal surface acoustic wave RF filters”, Proceedings of Papers 5th European Conference on Circuits and Systems for Communications, Belgrade, Serbia, 82-85, (2010).
  • [29] Chen P., Li G. and Zhu Z., “Development and application of SAW filter”, Micromachines, 13(5): 656(1)–656(15), (2022).
  • [30] Anwar M.S. and Dhanyal H.R., “Design of S-band combline coaxial cavity bandpass filter”, 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 866-869, (2018).
  • [31] Tomassoni C., Bastioli S. and Sorrentino R., “Generalized TM dual-mode cavity filters”, IEEE Transactions on Microwave Theory and Techniques, 59(12): 3338–3346, (2011).
  • [32] Yassini B., Yu M. and Keats B., “A Ka -band fully tunable cavity filter”, IEEE Transactions on Microwave Theory and Techniques, 60(12): 4002–4012, (2012).
  • [33] Garcia R.G., Renedo M.S., Jarry B., Lintignat J. and Barelaud B., “A class of microwave transversal signal-interference dual-passband planar filters”, IEEE Microwave and Wireless Components Letters, 19(3): 158–160, (2009).
  • [34] Lalbakhsh A., Karimi G. and Sabaghi F., “Triple mode spiral wideband bandpass filter using symmetric dual-line coupling”, Electronics Letters, 53(12): 795–797, (2017).
  • [35] Karimi G., Lalbakhsh A., Dehghani K. and Siahkamari H., “Analysis of novel approach to design of ultra-wide stopband microstrip low-pass filter using modified U-shaped resonator”, ETRI Journal, 37(5): 945–950, (2015).
  • [36] Bai J. and Li L., “Mode-selective corrugated substrate integrated waveguide: A new SIW transmission line : Design a new mode-selective transmission line”, International Applied Computational Electromagnetics Society Symposium, Beijing, China, 1-2, (2018).
  • [37] Wu K., Bozzi M. and Fonseca N.J.G., “Substrate integrated transmission lines: Review and applications”, IEEE Journal of Microwaves, 1(1): 345–363, (2021).
  • [38] Parment F., Ghiotto A., Vuong T.-P., Duchamp J.-M. and Wu K., “Air-filled SIW transmission line and phase shifter for high-performance and low-cost U-Band integrated circuits and systems”, Global Symposium on Millimeter-Waves (GSMM), Montreal, QC, Canada, 1-3, (2015).
  • [39] Alam A., Alam M.S., Almuhanna K., Zhang H., Shamim A. and Shamsan Z.A., “A wideband transition design technique from RWG to SIW technologies”, IEEE Access, 11: 109539–109552, (2023).
  • [40] Liu Z. and Xiao G., “Design of SIW-based multi-aperture couplers using ray tracing method”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(1): 106–113, (2017).
  • [41] Chen J.-X., Hong W., Hao Z.-C., Li H. and Wu K., “Development of a low cost microwave mixer using a broad-band substrate integrated waveguide (SIW) coupler”, IEEE Microwave and Wireless Components Letters, 16(2): 84–86, (2006).
  • [42] Abedi H., Taskhiri M.M. and Hadian E., “Design and analysis of multi-layer SIW coupler to use in phased array antenna feed network”, The Journal of Engineering, 3: 1–8, (2023).
  • [43] Wu Z.-M., Ji L., Li X.-C., Zhu H.-B and Mao J.-F., “A slow wave folded ridge HMSIW using spoof surface plasmon polaritons structure and its application in coupler design”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 13(5): 594–603, (2023).
  • [44] Bilawal F., Babaeian F., Trinh K.T. and Karmakar N.C., “The art of substrate-integrated-waveguide power dividers”, IEEE Access, 11: 9311–9325, (2023).
  • [45] Khan A.A. and Mandal M.K., “Miniaturized substrate integrated waveguide (SIW) power dividers”, IEEE Microwave and Wireless Components Letters, 26(11): 888–890, (2016).
  • [46] Hao Z., Hong W., Li H., Zhang H. and Wu K., “Multiway broadband substrate integrated waveguide (SIW) power divider”, IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 639-642, (2005).
  • [47] Chen S.Y., Zhang D.S. and Yu Y.T., “Wideband SIW power divider with improved out-of-band rejection”, Electronics Letters, 49(15): 943–944, (2013).
  • [48] Tan L.-R., Wu R.-X. and Poo Y., “Magnetically reconfigurable SIW antenna with tunable frequencies and polarizations”, IEEE Transactions on Antennas and Propagation, 63(6): 2772–2776, (2015).
  • [49] Chaturvedi D. and Raghavan S., “Circular quarter-mode SIW antenna for WBAN application”, IETE Journal of Research, 64(4): 482–488, (2018).
  • [50] Serhsouh I., Himdi M., Lebbar H. and Vettikalladi H., “Reconfigurable SIW antenna for fixed frequency beam scanning and 5G applications”, IEEE Access, 8: 60084–60089, (2020).
  • [51] Chen H., Shao Y., Zhang Y., Zhang C. and Zhang Z., “A millimeter-wave triple-band SIW antenna with dual-sense circular polarization”, IEEE Transactions on Antennas and Propagation, 68(12): 8162–8167, (2020).
  • [52] Vala A. and Patel A., “Half-mode substrate-integrated waveguide based band-pass filter for C band application”, Microwave and Optical Technology Letters, 61(6): 1468–1472, (2019).
  • [53] Wang Y., Hong W., Dong Y., Liu B., Tang H.J., Chen J., Yin X. and Wu K., “Half mode substrate integrated waveguide (HMSIW) bandpass filter”, IEEE Microwave and Wireless Components Letters, 17(4): 265–267, (2007).
  • [54] Garg S. and Raj R.K., “A novel bandpass substrate integrated waveguide filter for the application at K & Ka band”, International Journal of Research and Analytical Reviews, 6(1): 1098–1102, (2019).
  • [55] Moitra S. and Bhowmik P.S., “Design and analysis of 150° bend SIW and corrugated SIW bandpass filter with multiple transmission zeroes using reactive periodic structures suitable for microwave integrated circuits (MICs)”, Wireless Personal Communication, 101(1): 167–180, (2018).
  • [56] Zhao L., Li Y., Chen Z.-M., Liang X.-H., Wang J., Shen X. and Zhang Q., “A band-pass filter based on half-mode substrate integrated waveguide and spoof surface plasmon polaritons”, Scientific Reports, 9(1), (2019).
  • [57] Zhu Y and Dong Y., “A novel compact wide-stopband filter with hybrid structure by combining SIW and microstrip technologies”, IEEE Microwave and Wireless Components Letters, 31(7): 841–844, (2021).
  • [58] Guvenli K., Yenikaya S. and Secmen M., “Analysis, design, and actual fabrication of a hybrid microstrip-SIW bandpass filter based on cascaded hardware integration at X-Band”, Elektronika IR Elektrotechnica, 27(1): 23–28, (2021).
  • [59] Cansever C., “Design of a Microstrip Bandpass Filter for 3.1–10.6 GHz Uwb Systems” MS Thesis, Electrical Engineering and Computer Science, Syracuse University, New York, (2013).
  • [60] Deng P.-A. and Tsai J.-T., “Design of microstrip cross-coupled bandpass filter with multiple independent designable transmission zeros using branch-line”, IEEE Microwave and Wireless Components Letters, 23(5): 249–251, (2013).
  • [61] Mustafa A.T. and Mohammed Ali Y.E., “Designa coupled line microstrip bandpass filter at 1.8 GHz”, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 1437-1441, (2021).
  • [62] Arunjith K.S., Ghivela G.C. and Sengupta J., “Design and analysis of novel tri-band band pass filter for GSM, WiMax and UWB applications”, Wireless Personal Communication, 118: 3457–3467, (2021).
  • [63] Mao R.-J., Tang X.-H. and Xiao F., “Miniaturized dual-mode ring bandpass filters with patterned ground plane”, IEEE Transactions on Microwave Theory and Techniques, 55(7): 1539–1547, (2007).

Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1470601

Öz

This paper reports a microstrip stub filter design operating at 1.93 GHz GSM band with enhanced performance inspired by SIW structures. In the designed filter additional vias are placed around the microstrip lines to enhance the encasing of the electromagnetic fields while propagating through the filter to develop the filter performance. The filter was examined with electromagnetic simulations for various numbers of vias and different via to microstrip line distances. Results show that the maximum transmission coefficient (S21 parameter) magnitude value reached in the pass band of the filter increases with the number of the vias and as the vias get closer to the lines. On the other hand, when the via number increases and the space between them and the lines narrows, the frequency at which the maximum S21 value is attained shifts to lower frequencies. The designed filters were manufactured, too. Results obtained in the measurements agree well with the simulation results. Additionally, a receiver system operating at 1.93 GHz band was constructed. System experiments were carried out with the constructed prototype for the manufactured filters. Results show that a greater signal level in the filter pass band is achieved and unwanted signals outside the filter pass band are suppressed more in the system where the filter with vias is used instead of the filter without any additional via. The findings indicate that the designed filters inspired by SIW structures are promising for applications requiring high signal quality.

Kaynakça

  • [1] Nilsson J.W. and Riedel S.A., “Active Filter Circuits”, Prentice Hall, New Jersey, USA, (2011).
  • [2] Mabrouk M., Abderrahim B., Djeriri Y., Ameur A. and Bessas A., "Design of a standalone hybrid power system and optimization control with intelligent MPPT algorithms”, Journal of Polytechnic, 27(1): 153–167, (2024).
  • [3] Pozar D.M., “Microwave Engineering”, Wiley, New York, USA, (2005).
  • [4] Hong J.-S. and Lancaster M.J., “Microstrip Filters for RF/Microwave Applications”, Wiley, New York, USA, (2001).
  • [5] Yang B., Mehdi G., Hu A., Xie Y., Yao X., Zhang J., Zheng C. and Miao J., “The round-ended design and measurement of all symmetric edge-coupled bandpass filter”, Progress in Electromagnetics Research, 38: 191–203, (2013).
  • [6] Yang B., Mehdi G., Zhang J., Yu T., Yao X. and Miao J., “The compact microstrip bandstop filter using equal width open stub”, International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 1622-1625, (2013).
  • [7] Seven Z.S. and Can S., “Genetic algorithm and particle swarm optimization approach for prediction of physical parameters of rectangular-shaped microstrip antenna”, Journal of Polytechnic, 27(2): 777–787, (2024).
  • [8] Khateb F., Prommee P. and Kulej T., “MIOTA-based filters for noise and motion artifact reductions in biosignal acquisition”, IEEE Access, 10: 14325–14338, (2022).
  • [9] Aydogan I. and Akman Aydin E., “Wearable electromyogram design for finger movements based real-time human-machine interfaces”, Journal of Polytechnic, 26(2): 973–981, (2023).
  • [10] Mukherjee S., Mutnury B., Dalmia S. and Swaminathan M., “Layout-level synthesis of RF inductors and filters in LCP substrates for Wi-Fi applications”, IEEE Transactions on Microwave Theory and Techniques, 53(6): 2196–2210, (2005).
  • [11] Golestanifar A., Karimi G. and Lalbakhsh A., “Varactor-tuned wideband band-pass filter for 5G NR frequency bands n77, n79 and 5G Wi-Fi”, Scientific Reports, 12: 16330(1) –16330(10), (2022).
  • [12] Doumanis E., Goussetis G. and Kosmopoulos S., “Filter Design for Satellite Communications: Helical Resonator Technology”, Artech House, MA, USA, (2015).
  • [13] Yu M., Tang W.-C., Malarky A., Dokas V., Cameron R. and Wang Y., “Predistortion technique for cross-coupled filters and its application to satellite communication systems”, IEEE Transactions on Microwave Theory and Techniques, 51(12): 2505–2515, (2003).
  • [14] Lalbakhsh A., Jamshidi M., Siahkamari H., Ghaderi A., Golestanifar A., Linhart R., Talla J., Simorangkir R.B.V.B. and Mandal K., “A compact lowpass filter for satellite communication systems based on transfer function analysis”, AEU International Journal of Electronics and Communications, 124: 153318(1)–153318(7), (2020).
  • [15] Lalbakhsh A., Mohamadpour G., Roshani S., Ami M., Roshani S., Sayem A.S., Alibakhshikenari M. and Koziel A.S., “Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression”, IEEE Access, 9: 129207–129217, (2021).
  • [16] Yan W.S.T., Mak R.K.C. and Luong H.C., “2-V 0.8-/spl mu/M CMOS monolithic RF filter for GSM receivers”, IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282), Anaheim, CA, USA, 569-572, (1999).
  • [17] Proakis J.G. and Salehi M., “Communication Systems Engineering”, Prentice Hall, New Jersey, USA, (2001).
  • [18] Mustari N., Karabulut M.A., Shah A.F.M.S and Tureli U., “1G’den 6G’ye hücresel evrim üzerine kapsamlı bir derleme”, Journal of Polytechnic, 28(2): 351–371, (2025).
  • [19] GSMA, “Legacy mobile network rationalisation: Experiences of 2G and 3G migrations in asia pacific,” https://www.gsma.com/connectivity-for-good/spectrum/wp-content/uploads/2020/06/Legacy-mobile-network-rationalisation.pdf, GSMA, London, UK, (2020).
  • [20] Stanivuk V., “Measurements of the GSM signal strength by mobile phone”, 20th Telecommunications Forum, Belgrade, Serbia, 1784-1787, (2012).
  • [21] Li X., Wang S. and An W., “Design of Tri-Band Dual-Polarized Base Station Antenna for 2G/3G/4G/5G”, Wireless Networks, 30: 1633–1642, (2024).
  • [22] Feng B., Qi S., Ding X., Yang X. and Sim C.-Y.-D., “A dual-polarized multi-wideband ceiling antenna with eight-diagram shape for 2G/3G/LTE/5G sub-6 GHz indoor applications”, IEEE Access, 12: 135338–135351, (2024).
  • [23] Patel D.H. and Makwana G.D., “Multiband antenna for 2G/3G/4G and sub-6 GHz 5G applications using characteristic mode analysis”, Progress In Electromagnetics Research M, 115: 107–117, (2023).
  • [24] Khan A., Ahmad A. and Alam M., “A high-gain reflector-DGS-superstates -enabled quad-band 5G-antenna for mm-wave applications”, Transactions on Electromagnetic Spectrum, 3(1): 34–50, (2023).
  • [25] Poddar H., Ju S., Shakya D. and Rappaport T.S., “A tutorial on NYUSIM: Sub-terahertz and millimeter-wave channel simulator for 5G, 6G, and beyond”, IEEE Communications Surveys & Tutorials, 26(2): 824–857, (2024).
  • [26] Rubio L., Penarrocha V.M.R., Cabedo-Fabres M., Bernardo-Clemente B., Reig J., Fernandez H., Perez J. R., Torres R.P., Valle L. and Fernandez O., “Millimeter-wave channel measurements and path loss characterization in a typical indoor office environment”, Electronics, 12(4): 844, (2023).
  • [27] Babarinde I.O., Ojo J.S. and Ajewole M.O., “High-capacity millimeter wave channel for 5G and future generation systems deployment in tropical region using NYUSIM algorithm”, Transactions on Electromagnetic Spectrum, 3(1): 1–19, (2024).
  • [28] Hribšek M.F., Tošić D.V., Tasić M., Filipović Z. and Živković Z., “Design and realization of transversal surface acoustic wave RF filters”, Proceedings of Papers 5th European Conference on Circuits and Systems for Communications, Belgrade, Serbia, 82-85, (2010).
  • [29] Chen P., Li G. and Zhu Z., “Development and application of SAW filter”, Micromachines, 13(5): 656(1)–656(15), (2022).
  • [30] Anwar M.S. and Dhanyal H.R., “Design of S-band combline coaxial cavity bandpass filter”, 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 866-869, (2018).
  • [31] Tomassoni C., Bastioli S. and Sorrentino R., “Generalized TM dual-mode cavity filters”, IEEE Transactions on Microwave Theory and Techniques, 59(12): 3338–3346, (2011).
  • [32] Yassini B., Yu M. and Keats B., “A Ka -band fully tunable cavity filter”, IEEE Transactions on Microwave Theory and Techniques, 60(12): 4002–4012, (2012).
  • [33] Garcia R.G., Renedo M.S., Jarry B., Lintignat J. and Barelaud B., “A class of microwave transversal signal-interference dual-passband planar filters”, IEEE Microwave and Wireless Components Letters, 19(3): 158–160, (2009).
  • [34] Lalbakhsh A., Karimi G. and Sabaghi F., “Triple mode spiral wideband bandpass filter using symmetric dual-line coupling”, Electronics Letters, 53(12): 795–797, (2017).
  • [35] Karimi G., Lalbakhsh A., Dehghani K. and Siahkamari H., “Analysis of novel approach to design of ultra-wide stopband microstrip low-pass filter using modified U-shaped resonator”, ETRI Journal, 37(5): 945–950, (2015).
  • [36] Bai J. and Li L., “Mode-selective corrugated substrate integrated waveguide: A new SIW transmission line : Design a new mode-selective transmission line”, International Applied Computational Electromagnetics Society Symposium, Beijing, China, 1-2, (2018).
  • [37] Wu K., Bozzi M. and Fonseca N.J.G., “Substrate integrated transmission lines: Review and applications”, IEEE Journal of Microwaves, 1(1): 345–363, (2021).
  • [38] Parment F., Ghiotto A., Vuong T.-P., Duchamp J.-M. and Wu K., “Air-filled SIW transmission line and phase shifter for high-performance and low-cost U-Band integrated circuits and systems”, Global Symposium on Millimeter-Waves (GSMM), Montreal, QC, Canada, 1-3, (2015).
  • [39] Alam A., Alam M.S., Almuhanna K., Zhang H., Shamim A. and Shamsan Z.A., “A wideband transition design technique from RWG to SIW technologies”, IEEE Access, 11: 109539–109552, (2023).
  • [40] Liu Z. and Xiao G., “Design of SIW-based multi-aperture couplers using ray tracing method”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(1): 106–113, (2017).
  • [41] Chen J.-X., Hong W., Hao Z.-C., Li H. and Wu K., “Development of a low cost microwave mixer using a broad-band substrate integrated waveguide (SIW) coupler”, IEEE Microwave and Wireless Components Letters, 16(2): 84–86, (2006).
  • [42] Abedi H., Taskhiri M.M. and Hadian E., “Design and analysis of multi-layer SIW coupler to use in phased array antenna feed network”, The Journal of Engineering, 3: 1–8, (2023).
  • [43] Wu Z.-M., Ji L., Li X.-C., Zhu H.-B and Mao J.-F., “A slow wave folded ridge HMSIW using spoof surface plasmon polaritons structure and its application in coupler design”, IEEE Transactions on Components, Packaging and Manufacturing Technology, 13(5): 594–603, (2023).
  • [44] Bilawal F., Babaeian F., Trinh K.T. and Karmakar N.C., “The art of substrate-integrated-waveguide power dividers”, IEEE Access, 11: 9311–9325, (2023).
  • [45] Khan A.A. and Mandal M.K., “Miniaturized substrate integrated waveguide (SIW) power dividers”, IEEE Microwave and Wireless Components Letters, 26(11): 888–890, (2016).
  • [46] Hao Z., Hong W., Li H., Zhang H. and Wu K., “Multiway broadband substrate integrated waveguide (SIW) power divider”, IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 639-642, (2005).
  • [47] Chen S.Y., Zhang D.S. and Yu Y.T., “Wideband SIW power divider with improved out-of-band rejection”, Electronics Letters, 49(15): 943–944, (2013).
  • [48] Tan L.-R., Wu R.-X. and Poo Y., “Magnetically reconfigurable SIW antenna with tunable frequencies and polarizations”, IEEE Transactions on Antennas and Propagation, 63(6): 2772–2776, (2015).
  • [49] Chaturvedi D. and Raghavan S., “Circular quarter-mode SIW antenna for WBAN application”, IETE Journal of Research, 64(4): 482–488, (2018).
  • [50] Serhsouh I., Himdi M., Lebbar H. and Vettikalladi H., “Reconfigurable SIW antenna for fixed frequency beam scanning and 5G applications”, IEEE Access, 8: 60084–60089, (2020).
  • [51] Chen H., Shao Y., Zhang Y., Zhang C. and Zhang Z., “A millimeter-wave triple-band SIW antenna with dual-sense circular polarization”, IEEE Transactions on Antennas and Propagation, 68(12): 8162–8167, (2020).
  • [52] Vala A. and Patel A., “Half-mode substrate-integrated waveguide based band-pass filter for C band application”, Microwave and Optical Technology Letters, 61(6): 1468–1472, (2019).
  • [53] Wang Y., Hong W., Dong Y., Liu B., Tang H.J., Chen J., Yin X. and Wu K., “Half mode substrate integrated waveguide (HMSIW) bandpass filter”, IEEE Microwave and Wireless Components Letters, 17(4): 265–267, (2007).
  • [54] Garg S. and Raj R.K., “A novel bandpass substrate integrated waveguide filter for the application at K & Ka band”, International Journal of Research and Analytical Reviews, 6(1): 1098–1102, (2019).
  • [55] Moitra S. and Bhowmik P.S., “Design and analysis of 150° bend SIW and corrugated SIW bandpass filter with multiple transmission zeroes using reactive periodic structures suitable for microwave integrated circuits (MICs)”, Wireless Personal Communication, 101(1): 167–180, (2018).
  • [56] Zhao L., Li Y., Chen Z.-M., Liang X.-H., Wang J., Shen X. and Zhang Q., “A band-pass filter based on half-mode substrate integrated waveguide and spoof surface plasmon polaritons”, Scientific Reports, 9(1), (2019).
  • [57] Zhu Y and Dong Y., “A novel compact wide-stopband filter with hybrid structure by combining SIW and microstrip technologies”, IEEE Microwave and Wireless Components Letters, 31(7): 841–844, (2021).
  • [58] Guvenli K., Yenikaya S. and Secmen M., “Analysis, design, and actual fabrication of a hybrid microstrip-SIW bandpass filter based on cascaded hardware integration at X-Band”, Elektronika IR Elektrotechnica, 27(1): 23–28, (2021).
  • [59] Cansever C., “Design of a Microstrip Bandpass Filter for 3.1–10.6 GHz Uwb Systems” MS Thesis, Electrical Engineering and Computer Science, Syracuse University, New York, (2013).
  • [60] Deng P.-A. and Tsai J.-T., “Design of microstrip cross-coupled bandpass filter with multiple independent designable transmission zeros using branch-line”, IEEE Microwave and Wireless Components Letters, 23(5): 249–251, (2013).
  • [61] Mustafa A.T. and Mohammed Ali Y.E., “Designa coupled line microstrip bandpass filter at 1.8 GHz”, 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 1437-1441, (2021).
  • [62] Arunjith K.S., Ghivela G.C. and Sengupta J., “Design and analysis of novel tri-band band pass filter for GSM, WiMax and UWB applications”, Wireless Personal Communication, 118: 3457–3467, (2021).
  • [63] Mao R.-J., Tang X.-H. and Xiao F., “Miniaturized dual-mode ring bandpass filters with patterned ground plane”, IEEE Transactions on Microwave Theory and Techniques, 55(7): 1539–1547, (2007).
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Devreler ve Sistemler, Mühendislik Elektromanyetiği
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Tosun 0000-0001-8774-6240

Abdulkadir Yentür 0000-0002-9828-929X

Veli Tayfun Kılıç 0000-0001-6806-9053

Erken Görünüm Tarihi 14 Ekim 2025
Yayımlanma Tarihi 16 Kasım 2025
Gönderilme Tarihi 6 Mayıs 2024
Kabul Tarihi 11 Ocak 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Tosun, H., Yentür, A., & Kılıç, V. T. (2025). Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1470601
AMA Tosun H, Yentür A, Kılıç VT. Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band. Politeknik Dergisi. Published online 01 Ekim 2025:1-1. doi:10.2339/politeknik.1470601
Chicago Tosun, Hüseyin, Abdulkadir Yentür, ve Veli Tayfun Kılıç. “Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band”. Politeknik Dergisi, Ekim (Ekim 2025), 1-1. https://doi.org/10.2339/politeknik.1470601.
EndNote Tosun H, Yentür A, Kılıç VT (01 Ekim 2025) Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band. Politeknik Dergisi 1–1.
IEEE H. Tosun, A. Yentür, ve V. T. Kılıç, “Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band”, Politeknik Dergisi, ss. 1–1, Ekim2025, doi: 10.2339/politeknik.1470601.
ISNAD Tosun, Hüseyin vd. “Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band”. Politeknik Dergisi. Ekim2025. 1-1. https://doi.org/10.2339/politeknik.1470601.
JAMA Tosun H, Yentür A, Kılıç VT. Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band. Politeknik Dergisi. 2025;:1–1.
MLA Tosun, Hüseyin vd. “Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1470601.
Vancouver Tosun H, Yentür A, Kılıç VT. Microstrip Stub Filter Design with Enhanced Performance Inspired By SIW Structures Operating at 1.93 GHz GSM Band. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.