Araştırma Makalesi
BibTex RIS Kaynak Göster

Arduino Geliştirme Kartı, PIC16F877A Mikrodenetleyici ve Klasik Sayıcıyı Kullanarak Gerçekleştirilen Dijital Kronometrelerin Yayılım Gecikmelerinin Karşılaştırması

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1495380

Öz

Yayılım gecikmesi dijital devrelerde oldukça önemlidir. Yayılım gecikmesi, bir dijital devrede sinyalin bir noktadan diğerine iletilirken geçirdiği zaman gecikmesini ifade eder. Bu gecikme, sinyalin hızı ve devre elemanlarının karakteristik özellikleri tarafından belirlenir. Kronometreler, genellikle basit dijital saatler gibi görünür, ancak daha hassas zaman ölçümü yapabilirler. Bazı kronometreler manuel olarak başlatılıp durdurulabilir, bazıları ise otomatik olarak zamanı başlatır ve durdurur. Kronometreler, zamanı saniyenin ondalık kesirleriyle hassas bir şekilde ölçebilirler. Günümüzde herhangi basit bir dijital elektronik devre tasarlanması durumunda bile akla gelen ilk tercihler çoğunlukla Arduino veya PIC16F877 gibi mikrodenetleyici kullanılan platformların kullanımıdır. Bu tercihler esasında özellikle yayılım gecikmesi açısından hiçte uygun tercihler değildir. Bu çalışmada, örnek devre olarak basit bir dijital kronometre devresi seçilmiştir. Hem Arduino geliştirme platformu hem PIC16F877 ve hem de klasik dijital sayıcı entegresi kullanılarak üç farklı kronometre devresi gerçekleştirilmiş ve her üç devrenin de yayılım gecikmeleri simülasyon yöntemi ve gerçek ölçüm yöntemi kullanılarak ölçülmüştür. Ölçümler sonucunda en iyi sonuçların klasik dijital sayıcı entegreleri kullanıldığı zaman elde edilmiştir. Klasik sayıcı entegreleri kullanıldığında yayılım gecikmesinin dolayısıyla performansın çok daha iyi olduğu görülmüştür.

Kaynakça

  • [1] Floyd T. L., “Electronic Fundamentals Circuits, Devices, and Applications”, Prentice-Hall Inc., New Jersey, (2004).
  • [2] Demirel H, “Sayısal Elektronik (Mantik Devreleri)”, Birsen Yayınevi, İstanbul, (2021).
  • [3] Demirel H, “Temel Elektrik-Elektronik”, Birsen Yayınevi, İstanbul, (2022).
  • [4] Demirel H, “Elektronik I”, Birsen Yayınevi, İstanbul, (2018).
  • [5] Demirel H., “Elektronik II”, Birsen Yayınevi, İstanbul, (2017).
  • [6] Demirel H., “Elektronik Devre Elemanları & Elektronik Devreler”, Birsen Yayınevi, İstanbul, (2015).
  • [7] Balch M., “Complete Digital Design A Comprehensive Guide To Digital Electronics And Computer System Architecture”, McGraw-Hill Professional. Page 430. (2003).
  • [8] Tenruh M., “Can Bit Zamanlaması ve Yayılma Gecikmesi Sebeplerinin Analizi”, Politeknik Dergisi, C. 5, Sy. 4, Ss. 281–287, (2002).
  • [9] Floyd, T. L. “Digital fundamentals: A systems approach”, Pearson Education Limited, (2014).
  • [10] Kleitz W., “Digital Electronics”, Prentice Hall, New Jersey, (1996).
  • [11] Houtan B., Ashjaei M., Daneshtalab M., Sjödin M., Mubeen S., “Supporting end-to-end data propagation delay analysis for TSN-based distributed vehicular embedded systems”, Journal of Systems Architecture, Volume 141, 102911, (2023).
  • [12] Adegoke A. S., Onasanya, M. A., “Effects of Propagation Delay on Signal Transmission”, The Pacific Journal of Science and Technology, 9: 13-19. (2008).
  • [13] Arora V. K., Desmond C. Y. C., Hashim A. M., “Digital signal propagation delay in a nano-circuit containing reactive and resistive elements”, Solid-State Electronics, Volume 61, Issue 1, Pages 87-92, (2011).
  • [14] Tiong K. Y., Palmqvist C.W, “Quantitative methods for train delay propagation research”, Transportation Research Procedia, Volume 72, Pages 80-86, (2023).
  • [15] Huan X., Kim K. S., “On the practical implementation of propagation delay and clock skew compensated high-precision time synchronization schemes with resource-constrained sensor nodes in multi-hop wireless sensor networks”, Computer Networks, Volume 166, 106959, (2020).
  • [16] https://tr.wikipedia.org/wiki/Kronometre, (2024).
  • [17] Adıgüzel, N. S., Karaçam, A., & Kırkaltı, T., “Genç (U16) Futbolcuların Mevkilere Göre Core Stabilizasyon Kuvvet Değerlerinin Karşılaştırılması”, Gazi Beden Eğitimi Ve Spor Bilimleri Dergisi, 23(3), 163-170. (2018).
  • [18] Santos F., Ozguler A., Lenain M., Zins M., Artaud F., Elbaz A., “Comparison of manual and automated measures of walking speed: Distance and pace matter”, Experimental Gerontology, Vol. 170, 111987, (2022).
  • [19] Yu Han Shen, “A Design of Digital Stopwatch Circuit with Chip Implementation”, J. Phys.: Conf. Ser. 1087, (2018).
  • [20] Demirel H., “Cost Analysis of Stopwatch Circuits Made with Arduino Development Board and Digital Integrated Circuits”, AYBU Business Journal, c. 3, sy. 2, ss. 73–82, (2023).
  • [21] Yağımlı M., Akar F., “Dijital Elektronik”, Beta Basım Yayın, İstanbul, (2003).
  • [22] Bishop O., “Topic 22 - Counters and Registers”, Electronics - Circuits and Systems (Fourth Edition), Newnes, Pages 185-196, (2011).
  • [23] Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S., A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations, Computer Science Review, 40, 100364, (2021).
  • [24] Kaya G. ve Çetinkaya K., “Vidalı Transfer Sistemlerine Sahip Kartezyen Tipi 3B Yazıcılarda Gıda Malzemeleri Yazdırma Parametrelerinin İncelenmesi”, Politeknik Dergisi, c. 21, sy. 3, ss. 663–667, (2018).
  • [25] Güleç H. G., Demirel H., “Meteorolojik Veriler Kullanılarak Kastamonu ili Güneşlenme Şiddetinin Yapay Sinir Ağları İle Tahmini”, Technological Applied Sciences (VWSATAS), 12(3) : 114-121, (2017).
  • [26] Srinivasan V. P., Arulvalan A., Amarnath J., Dhinesh L., Dhivyan R. B., Rizwan F. M., Navashanmugam A., Mowyanivesh P., “Design and fabrication of dual axis writing machine”, Materials Today: Proceedings, Volume 45, Part 7, Pages 6743-6749, (2021).
  • [27] Pala H. N., Dirancı İ., Dilek M, “Çok Amaçlı Arduino Deney Seti Tasarımı ve Gerçekleştirilme”, Karabük Üniversitesi Elektrik-Elektronik Mühendisliği Lisans Tezi, (2019).
  • [28] Demirel H., “Arduino & Temel Projeler”, Birsen Yayınevi, İstanbul, (2023).
  • [29] Louis L., “Working principle of Arduino and using it”, International Journal of Control, Automation, Communication and Systems (IJCACS), 1(2), 21-29, (2016).
  • [30] Badamasi Y. A., "The working principle of an Arduino," 11th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, pp. 1-4, (2014).
  • [31] Taşdelen K., Şimşek M. A., Günaydın A., Küçüksille, E. U., “Denetleyici Alan Ağı Tabanlı Motor Ve Sensör Kartlarının Kontrolü ve İzlenmesi”. Gazi University Journal of Science Part C: Design and Technology, 6(2), 277-282. (2018).
  • [32] Garip İ., “Design and Application of Multi-Axis Solar Tracking System to Increase the Efficiency of Solar Cell”, Gazi University Journal of Science Part C: Design and Technology, 9(4), 749-759, (2021).
  • [33] Bouallegue A., Amara S. ve Kheder A., “Theoretical and Practical Study of a Photovoltaic MPPT Algorithm Applied to Voltage Battery Regulation”, International Journal Of Renewable Energy Research, c. 4, sy. 1, ss. 83–90, (2014).
  • [34] Birbir Y., Yurtbasi K., Kanburoglu V., “Design of a single-phase SPWM inverter application with PIC micro controller”, Engineering Science and Technology, an International Journal, Volume 22, Issue 2, Pages 592-599, (2019).
  • [35] Wilmshurst T., “Designing embedded systems with PIC microcontrollers: principles and applications” Elsevier, (2006).
  • [36] Bates M., “PIC hardware”, Interfacing PIC Microcontrollers, Newnes, Pages 3-34, (2006).
  • [37] Ibrahim D., “The PIC Microcontroller Family” Pic Basic Projects, Newnes, Pages 13-48, (2006).
  • [38] Hudgikar, S. R. K., “A Study on Design and Construction of a Digital Clock System”, International Journal of Research and Analysis in Science and Engineering, 2(2), 8-8. (2022).
  • [39] Dalcali A., Demirel H., Çelik E., “Microcontroller-based Cooling of a Single-phase Transformer with Thermoelectric Module”, The International Journal of Energy & Engineering Sciences, 1(2), ss. 4-14, (2016).
  • [40] Apaydın H., Serteller NF., Oğuz Y., “Implementation of three phase induction motor pre-design program on electronic circuit”, Politeknik Dergisi, 27(4), ss. 1281–1292, (2024).
  • [41] Altınkaya H., Kocakaya T., “Comparison of PID control performances of different PLC series in a hydraulic proportional valve system—an experimental setup”, Politeknik Dergisi, 27(6), ss. 2389–2401, (2024).
  • [42] Acar Ö.F., Selçuk B., Erkaymaz O., “Kırınım analizinin mikro denetleyicilerde uygulanması”, Politeknik Dergisi, 28(4), ss. 1195–1203, (2025).

Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1495380

Öz

Propagation delay is crucial in digital circuits, representing the time delay when a signal passes from one point to another within a digital device. This delay is determined by the speed of the signal and the characteristic properties of the circuit elements. Chronometers, although they appear similar to simple digital clocks, can perform more precise time measurements. Some chronometers can be manually started and stopped, while others automatically start and stop timing. Chronometers can measure time with precision down to decimal fractions of a second. Nowadays, when designing even a simple digital electronic circuit, the first choices that come to mind are often platforms using microcontrollers like Arduino or PIC16F877. However, these choices are not suitable particularly in terms of propagation delay. In this study, a simple digital chronometer circuit was chosen as an example circuit. Three different chronometer circuits were implemented using both the Arduino development platform and PIC16F877, as well as a classic digital counter integrated circuit. The propagation delays of all three circuits were measured using simulation and real measurement methods. The measurements revealed that the best results were obtained when using classic digital counter integrated circuits. It was observed that when classic counter integrated circuits were used, the propagation delay, and consequently the performance, was significantly better.

Kaynakça

  • [1] Floyd T. L., “Electronic Fundamentals Circuits, Devices, and Applications”, Prentice-Hall Inc., New Jersey, (2004).
  • [2] Demirel H, “Sayısal Elektronik (Mantik Devreleri)”, Birsen Yayınevi, İstanbul, (2021).
  • [3] Demirel H, “Temel Elektrik-Elektronik”, Birsen Yayınevi, İstanbul, (2022).
  • [4] Demirel H, “Elektronik I”, Birsen Yayınevi, İstanbul, (2018).
  • [5] Demirel H., “Elektronik II”, Birsen Yayınevi, İstanbul, (2017).
  • [6] Demirel H., “Elektronik Devre Elemanları & Elektronik Devreler”, Birsen Yayınevi, İstanbul, (2015).
  • [7] Balch M., “Complete Digital Design A Comprehensive Guide To Digital Electronics And Computer System Architecture”, McGraw-Hill Professional. Page 430. (2003).
  • [8] Tenruh M., “Can Bit Zamanlaması ve Yayılma Gecikmesi Sebeplerinin Analizi”, Politeknik Dergisi, C. 5, Sy. 4, Ss. 281–287, (2002).
  • [9] Floyd, T. L. “Digital fundamentals: A systems approach”, Pearson Education Limited, (2014).
  • [10] Kleitz W., “Digital Electronics”, Prentice Hall, New Jersey, (1996).
  • [11] Houtan B., Ashjaei M., Daneshtalab M., Sjödin M., Mubeen S., “Supporting end-to-end data propagation delay analysis for TSN-based distributed vehicular embedded systems”, Journal of Systems Architecture, Volume 141, 102911, (2023).
  • [12] Adegoke A. S., Onasanya, M. A., “Effects of Propagation Delay on Signal Transmission”, The Pacific Journal of Science and Technology, 9: 13-19. (2008).
  • [13] Arora V. K., Desmond C. Y. C., Hashim A. M., “Digital signal propagation delay in a nano-circuit containing reactive and resistive elements”, Solid-State Electronics, Volume 61, Issue 1, Pages 87-92, (2011).
  • [14] Tiong K. Y., Palmqvist C.W, “Quantitative methods for train delay propagation research”, Transportation Research Procedia, Volume 72, Pages 80-86, (2023).
  • [15] Huan X., Kim K. S., “On the practical implementation of propagation delay and clock skew compensated high-precision time synchronization schemes with resource-constrained sensor nodes in multi-hop wireless sensor networks”, Computer Networks, Volume 166, 106959, (2020).
  • [16] https://tr.wikipedia.org/wiki/Kronometre, (2024).
  • [17] Adıgüzel, N. S., Karaçam, A., & Kırkaltı, T., “Genç (U16) Futbolcuların Mevkilere Göre Core Stabilizasyon Kuvvet Değerlerinin Karşılaştırılması”, Gazi Beden Eğitimi Ve Spor Bilimleri Dergisi, 23(3), 163-170. (2018).
  • [18] Santos F., Ozguler A., Lenain M., Zins M., Artaud F., Elbaz A., “Comparison of manual and automated measures of walking speed: Distance and pace matter”, Experimental Gerontology, Vol. 170, 111987, (2022).
  • [19] Yu Han Shen, “A Design of Digital Stopwatch Circuit with Chip Implementation”, J. Phys.: Conf. Ser. 1087, (2018).
  • [20] Demirel H., “Cost Analysis of Stopwatch Circuits Made with Arduino Development Board and Digital Integrated Circuits”, AYBU Business Journal, c. 3, sy. 2, ss. 73–82, (2023).
  • [21] Yağımlı M., Akar F., “Dijital Elektronik”, Beta Basım Yayın, İstanbul, (2003).
  • [22] Bishop O., “Topic 22 - Counters and Registers”, Electronics - Circuits and Systems (Fourth Edition), Newnes, Pages 185-196, (2011).
  • [23] Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S., A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations, Computer Science Review, 40, 100364, (2021).
  • [24] Kaya G. ve Çetinkaya K., “Vidalı Transfer Sistemlerine Sahip Kartezyen Tipi 3B Yazıcılarda Gıda Malzemeleri Yazdırma Parametrelerinin İncelenmesi”, Politeknik Dergisi, c. 21, sy. 3, ss. 663–667, (2018).
  • [25] Güleç H. G., Demirel H., “Meteorolojik Veriler Kullanılarak Kastamonu ili Güneşlenme Şiddetinin Yapay Sinir Ağları İle Tahmini”, Technological Applied Sciences (VWSATAS), 12(3) : 114-121, (2017).
  • [26] Srinivasan V. P., Arulvalan A., Amarnath J., Dhinesh L., Dhivyan R. B., Rizwan F. M., Navashanmugam A., Mowyanivesh P., “Design and fabrication of dual axis writing machine”, Materials Today: Proceedings, Volume 45, Part 7, Pages 6743-6749, (2021).
  • [27] Pala H. N., Dirancı İ., Dilek M, “Çok Amaçlı Arduino Deney Seti Tasarımı ve Gerçekleştirilme”, Karabük Üniversitesi Elektrik-Elektronik Mühendisliği Lisans Tezi, (2019).
  • [28] Demirel H., “Arduino & Temel Projeler”, Birsen Yayınevi, İstanbul, (2023).
  • [29] Louis L., “Working principle of Arduino and using it”, International Journal of Control, Automation, Communication and Systems (IJCACS), 1(2), 21-29, (2016).
  • [30] Badamasi Y. A., "The working principle of an Arduino," 11th International Conference on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, pp. 1-4, (2014).
  • [31] Taşdelen K., Şimşek M. A., Günaydın A., Küçüksille, E. U., “Denetleyici Alan Ağı Tabanlı Motor Ve Sensör Kartlarının Kontrolü ve İzlenmesi”. Gazi University Journal of Science Part C: Design and Technology, 6(2), 277-282. (2018).
  • [32] Garip İ., “Design and Application of Multi-Axis Solar Tracking System to Increase the Efficiency of Solar Cell”, Gazi University Journal of Science Part C: Design and Technology, 9(4), 749-759, (2021).
  • [33] Bouallegue A., Amara S. ve Kheder A., “Theoretical and Practical Study of a Photovoltaic MPPT Algorithm Applied to Voltage Battery Regulation”, International Journal Of Renewable Energy Research, c. 4, sy. 1, ss. 83–90, (2014).
  • [34] Birbir Y., Yurtbasi K., Kanburoglu V., “Design of a single-phase SPWM inverter application with PIC micro controller”, Engineering Science and Technology, an International Journal, Volume 22, Issue 2, Pages 592-599, (2019).
  • [35] Wilmshurst T., “Designing embedded systems with PIC microcontrollers: principles and applications” Elsevier, (2006).
  • [36] Bates M., “PIC hardware”, Interfacing PIC Microcontrollers, Newnes, Pages 3-34, (2006).
  • [37] Ibrahim D., “The PIC Microcontroller Family” Pic Basic Projects, Newnes, Pages 13-48, (2006).
  • [38] Hudgikar, S. R. K., “A Study on Design and Construction of a Digital Clock System”, International Journal of Research and Analysis in Science and Engineering, 2(2), 8-8. (2022).
  • [39] Dalcali A., Demirel H., Çelik E., “Microcontroller-based Cooling of a Single-phase Transformer with Thermoelectric Module”, The International Journal of Energy & Engineering Sciences, 1(2), ss. 4-14, (2016).
  • [40] Apaydın H., Serteller NF., Oğuz Y., “Implementation of three phase induction motor pre-design program on electronic circuit”, Politeknik Dergisi, 27(4), ss. 1281–1292, (2024).
  • [41] Altınkaya H., Kocakaya T., “Comparison of PID control performances of different PLC series in a hydraulic proportional valve system—an experimental setup”, Politeknik Dergisi, 27(6), ss. 2389–2401, (2024).
  • [42] Acar Ö.F., Selçuk B., Erkaymaz O., “Kırınım analizinin mikro denetleyicilerde uygulanması”, Politeknik Dergisi, 28(4), ss. 1195–1203, (2025).
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Devreler ve Sistemler, Elektrik Devreleri ve Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Huseyin Demirel 0000-0003-2983-1425

Erken Görünüm Tarihi 28 Eylül 2025
Yayımlanma Tarihi 16 Kasım 2025
Gönderilme Tarihi 3 Haziran 2024
Kabul Tarihi 18 Eylül 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Demirel, H. (2025). Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1495380
AMA Demirel H. Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter. Politeknik Dergisi. Published online 01 Eylül 2025:1-1. doi:10.2339/politeknik.1495380
Chicago Demirel, Huseyin. “Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter”. Politeknik Dergisi, Eylül (Eylül 2025), 1-1. https://doi.org/10.2339/politeknik.1495380.
EndNote Demirel H (01 Eylül 2025) Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter. Politeknik Dergisi 1–1.
IEEE H. Demirel, “Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter”, Politeknik Dergisi, ss. 1–1, Eylül2025, doi: 10.2339/politeknik.1495380.
ISNAD Demirel, Huseyin. “Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter”. Politeknik Dergisi. Eylül2025. 1-1. https://doi.org/10.2339/politeknik.1495380.
JAMA Demirel H. Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter. Politeknik Dergisi. 2025;:1–1.
MLA Demirel, Huseyin. “Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1495380.
Vancouver Demirel H. Comparison of Propagation Delays of Digital Stopwatches Implemented Using Arduino Development Board, PIC16F877A Microcontroller and Classical Counter. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.