Gd ve Y ilave Edilmiş AZ31 Magnezyum alaşımına Ekstrüzyon ve Çok Yönlü Dövme Prosesinin Etkisi
Yıl 2025,
ERKEN GÖRÜNÜM, 1 - 1
Osman Özdamar
,
Mehmet Yetmez
,
Yunus Türen
,
Engin Kocaman
,
Hamdi Alper Özyiğit
Öz
ÖZET
Bu çalışmada AZ31 Magnezyum alaşımına %0,5 ve %1 oranlarında Gadalanyum ile Yittriyum Nadir Toprak Elementi kullanılarak yeni bir alaşım oluşturulmuştur. Oluşan bu alaşıma 375 °C ekstrüzyon yapıldıktan sonra 400°C çok yönlü dövme işlemi gerçekleştirilmiştir. Alaşım bileşenlerinin mikroyapıdaki değişime etkisi ve bunların mekanik özelliklere etkisi incelenmiştir. Çalışmada iri taneli bir yapıya sahip AZ31 döküm alaşımına ilave edilen nadir toprak elementleri ve uygulanan mekanik işlemlerin mikroyapıda etkili olduğu tespit edilmiştir. Alaşımına ilave edilen Gd ve Y’un mikroyapıda (Mg,Al)3Gd ve Mg24Y5 gibi intermetalik fazların oluşumunu teşvik ederken tane boyutunda önemli bir azalmaya neden olmuştur. Alaşıma %0.5 Gd ve Y Nadir Toprak Elementlerinin ilavesiyle elde edilen numunelerin sertlik, akma ve çekme mukavemetlerinin diğer döküm ve %1 Gd ve Y ilavesiyle elde edilen değerlerden daha yüksek olduğu belirlenmiştir. Öte yandan döküm AZ31 alaşımına uygulanan mekanik işlemlerin tane boyutunu azalttığı ve mekanik özellikleri artırdığı tespit edilmiştir.
Anahtar Kelimeler: AZ31, Gadolinyum, Yttriyum, Çok Yönlü Dövme, Ekstrüzyon
Etik Beyan
Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan ederler.
Destekleyen Kurum
Zonguldak Bülent Ecevit Üniversitesi
Proje Numarası
2021-77654622-08
Kaynakça
- [1] Pathak, S., et al., "Strong, ductile, and thermally stable bcc-Mg nanolaminates." Scientific reports, 7(1): p. 8264. (2017).
- [2] Djebari, K., et al., Biyobozunur ZW21 Döküm Alaşımlarının Mikroyapı, "Sertlik ve Korozyon Özelliklerini İncelenmesi." Avrupa Bilim ve Teknoloji Dergisi, (43): p. 6-12. (2022).
- [3] Bilgin, M., "AZ31B magnezyum alaşımının sürtünmeli delme işlemi üzerine deneysel çalışma." Politeknik Dergisi,: p. 1-1. (2020).
- [4] Kulekci, M.K., "Magnesium and its alloys applications in automotive industry". The International Journal of Advanced Manufacturing Technology,. 39: p. 851-865. (2008).
- [5] Akyüz, B., A comparative study on wear and machinability behaviors of AM20, AJ21 and AS21 magnesium alloys. Politeknik Dergisi,. 26(1): p. 243-248. (2023).
- [6] Akyuz, B., "Influence of Al content on machinability of AZ series Mg alloys". Transactions of Nonferrous Metals Society of China, 23(8): p. 2243-2249. (2013).
- [7] Kara, İ.H., H. Ahlatci, And Y. Türen, "The Effect of Cerium and Twins Fraction on Corrosion Resistance of AZ31-1Ca Sheet Alloys." Nevşehir Bilim ve Teknoloji Dergisi,: p. 86-90. (2020).
- [8] Akdoğan, E. and M. Şahbaz, "Çok Yönlü Dövme İşleminin AA5083 Alüminyum Alaşımının Mekanik Özellikleri Üzerindeki Etkisi." Avrupa Bilim ve Teknoloji Dergisi, (34): p. 739-744. (2022).
- [9] Whang, S.-H., "Nanostructured metals and alloys: processing, microstructure, mechanical properties and applications". Elsevier. (2011).
- [10] Cherukuri, B., T.S. Nedkova, and R. Srinivasan, "A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding." Materials Science and Engineering." A,. 410: p. 394-397. (2005).
- [11] Şahbaz, M., "AZ31 Magnezyum Alaşımı İçin Aşırı Yaşlandırmanın Bazı Mekanik Özelliklere Etkisi." Journal of Investigations on Engineering and Technology,. 4(2): p. 61-68. (2021).
- [12] Cao, Y., et al., "Structural evolutions of metallic materials processed by severe plastic deformation." Materials Science and Engineering: R: Reports,. 133: p. 1-59. (2018).
- [13] Song, J., et al., Research advances of magnesium and magnesium alloys worldwide in 2021. Journal of Magnesium and Alloys, 10(4): p. 863-898. (2022).
- [14] Özbeyaz, K., et al., "Mechanical properties and electrical conductivity performance of ECAP processed AA2024 alloy." Indian Journal of Chemical Technology,. 26. (2019).
- [15] Kara, İ., et al., "Effect of Ca and Ce on wear behavior of hot-rolled AZ31 Mg alloys." Acta Physica Polonica A, 137(4): p. 557-560. (2020).
- [16] Calado, L.M., M.J. Carmezim, and M.F. Montemor, "Rare earth based magnesium alloys—a review on WE series." Frontiers in Materials,. 8: p. 804906. (2022).
- [17] Akbaş, A. and M. Zeren, "Investigation of the Effect of various ca content on microstructure and mechanical properties of As-cast ZK60 magnesium alloys." Politeknik Dergisi, 26(3): p. 1061-1069. (2023).
- [18] Liu, H., et al.," Microstructure and mechanical properties of as-cast AZ31 with the addition of Sb." Materials Science and Engineering A,. 497(1-2): p. 254-259. (2008).
- [19 Xu, C., et al., "Microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets processed by combined processes of extrusion, hot rolling and ageing." Materials Science and Engineering: A,. 559: p. 844-851.(2013).
- [20] Yang, Y., et al.," Research advances of magnesium and magnesium alloys worldwide in 2022". Journal of Magnesium and Alloys, (2023).
- [21] Zhang, J., et al.," Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems." Journal of Magnesium and Alloys, 6(3): p. 277-291. (2018).
- [22] Hong, M., et al., "Ductility enhancement of EW75 alloy by multi-directional forging." Journal of Magnesium and Alloys,. 2(4): p. 317-324. (2014).
- [23] Li, R., et al., "Development of high-strength magnesium alloys via combined processes of extrusion, rolling and ageing". Scripta Materialia,. 64(10): p. 950-953. (2011).
- [24] Zengin, H. and Y. Turen, "Effect of Y addition on microstructure and corrosion behavior of extruded Mg–Zn–Nd–Zr alloy". Journal of Magnesium and Alloys,. 8(3): p. 640-653. (2020).
- [25] Toscano, D., et al.,"Effect of forging on microstructure, texture, and uniaxial properties of cast AZ31B alloy". Journal of Materials Engineering and Performance,. 26: p. 3090-3103. (2017).
- [26] Nie, K., et al.,"Effect of multidirectional forging on microstructures and tensile properties of a particulate reinforced magnesium matrix composite". Materials Science and Engineering: A, 528(24): p. 7133-7139. (2011).
- [27] Nie, K., et al., "Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties." Materials Science and Engineering: A,. 624: p. 157-168. (2015).
- [28] Zhang, J., et al., "Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging." Results in Physics,. 10: p. 967-972. (2018).
- [29] Zengin, H., et al., "Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg–4Zn–1La magnesium alloy." Rare metals, 39: p. 909-917. (2020).
- [30] Gryguc, A., et al.,"Improvement of Fatigue Properties of AZ31B Extruded Magnesium Alloy through Forging". Frattura ed Integrità Strutturale,. 14(53)p. 152-165. (2020).
- [31] Karparvarfard, S., et al." Characterization of Semi-Closed Die-Forged ZK60 Mg Alloy " Extrusion. in Magnesium Technology Springer. (2017).
- [32] Beer, A., "Enhancing the extrudability of wrought magnesium alloys, in Advances in wrought magnesium alloys.", Elsevier. p. 304-322. (2012).
- [33] Zhang, W., et al., "Microstructure evolution and mechanical properties of AZ31 magnesium alloy sheets prepared by low-speed extrusion with different temperature." Crystals,. 10(8): p. 644. (2020).
- [34] Gryguc, A., et al. "Magforge–Mechanical behaviour of forged AZ31B extruded magnesium in monotonic compression. in Materials Science Forum." Trans Tech Publ. (2015).
- [35] Zhang, J. and H. Huang, Microstructure and mechanical properties of AZ31 alloy ring processed by hot forging. Materials Science and Technology, 32(10): p. 1043-1052. (2016).
- [36] ŞENEL, S., et al., "AISI 430 "Çeliklerin Derin Kroyonejik İşlem Sonrası Mekanik ve Mikroyapısal Özelliklerinin İncelenmesi." Avrupa Bilim ve Teknoloji Dergisi, (32): p. 1000-1005. (2021).
- [37] Kolhatkar, A.V., et al., "Development of Ultra Sub-Size Tensile Specimen for Evaluation of Tensile Properties of Irradiated Materials." IAEA-CN245-253 (2017).
- [38] Kumar, K., et al., "Use of miniature tensile specimen for measurement of mechanical properties." Procedia engineering,. 86: p. 899-909. (2014).
- [39] Mazar, M.A., et al., "Influence of Gd and Li additions on the microstructural evolution and mechanical properties of hot-rolled AZ31 alloy." Journal of Materials Research and Technology,. 27: p. 2020-2030. (2023).
- [40] Wang, X., et al., "Microstructure, tensile properties and creep behaviors of as-cast Mg–2Al–1Zn–xGd (x= 1, 2, 3, and 4 wt.%) alloys." Journal of alloys and compounds, 522: p. 78-84. (2012).
- [41] Luo, K., et al., Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. Journal of Magnesium and Alloys, 7(2): p. 345-354. (2019).
- [42] Wang, J., et al., "Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys." Materials Science and Engineering: A, 456(1-2): p. 78-84. (2007).
- [43] Meier, J.M., J. Caris, and A.A. Luo,"Towards high strength cast Mg-RE based alloys: phase diagrams and strengthening mechanisms". Journal of Magnesium and Alloys,. 10(6): p. 1401-1427. (2022).
- [44] Mezbahul-Islam, M., A. Mostafa, and M. Medraj, "Essential magnesium alloys binary phase diagrams and their thermochemical data." Journal of Materials, (2014).
- [45] Mao, Z., D.N. Seidman, and C. Wolverton,"First-principles phase stability, magnetic properties and solubility in aluminum–rare-earth (Al–RE) alloys and compounds." Acta Materialia,. 59(9): p. 3659-3666. (2011).
- [46] Zhang, Y., "Influence of intermetallic amount on the degradability of Mg-RE (Nd/Gd) alloys under physiological conditions." RWTH Aachen University (2020).
- [47] Li, W., H. Zhou, and Z. Li, "Effect of gadolinium on microstructure and rolling capability of AZ31 alloy." Journal of Alloys and Compounds,. 475(1-2): p. 227-232. (2009).
- [48] Zimina, M., et al., "Mechanical properties of homogenized twin-roll cast and conventionally cast AZ31 magnesium alloys." Mater Eng, 22: p. 8-15. (2015).
- [49] Wang, J., et al., "Microstructure and mechanical properties of AZ31 magnesium alloy prepared using wire arc additive manufacturing." Journal of Alloys and Compounds,. 939: p. 168665. (2023).
- [50] Murray, J.L., "The Al− Mg (aluminum− magnesium) system." Journal of Phase Equilibria,. 3(1): p. 60-74. (1982).
- [51] Jiang, P., C. Blawert, and M.L. Zheludkevich, "The corrosion performance and mechanical properties of Mg-Zn based alloys—a review." Corrosion and Materials Degradation,. 1(1): p. 7. (2020).
- [52] Zhang, J.-l., et al., "The effect of Gd element and solution treatment on the microstructure of AZ31 magnesium alloy and its kinetic model." Journal of Alloys and Compounds, 663: p. 610-616. (2016).
- [53] Pourbahari, B., M. Emamy, and H. Mirzadeh, "Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys." Progress in Natural Science: Materials International,. 27(2): p. 228-235. (2017).
- [54] Mirak, A., C. "Davidson, and J. Taylor, Study on the early surface films formed on Mg-Y molten alloy in different atmospheres." Journal of Magnesium and Alloys, 3(3): p. 173-179. (2015).
- [55] Gao, L., R. Chen, and E. Han, "Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys." Journal of Alloys and Compounds, 481(1-2): p. 379-384. (2009).
- [56] Köklü, U., et al., "Influence of extrusion parameters on drilling machinability of AZ31 magnesium alloy." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,. 236(5): p. 2082-2094.(2022).
- [57] Mingbo, Y., et al.," Comparison of effects of cerium, yttrium and gadolinium additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy." Journal of Rare Earths, 29(6): p. 550-557. (2011).
- [58] Wang, H., T. Wang, and J. Peng, "Effect of gadolinium addition on microstructure, mechanical properties and corrosion resistance of 316L austenitic stainless steels." Physics of Metals and Metallography,. 122(14): p. 1640-1647. (2021).
- [59] Lwin, M.L., et al., "Effect of single and co-addition of rare earth on the microstructure, mechanical properties, and corrosion behavior of AZ31 magnesium alloys." Journal of Materials Engineering and Performance, p. 1-15. (2023).
- [60] Li, M., et al., "Effect of Nd on microstructure and mechanical properties of AZ31 magnesium alloy." Rare metal materials and engineering, 38(1): p. 7-10.(2009).
- [61] Li, M., et al., "Effects of neodymium rich rare earth elements on microstructure and mechanical properties of as cast AZ31 magnesium alloy." Materials Science and Technology, 27(7): p. 1138-1142. (2011).
- [62] Jiang, N., et al., "Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy." Journal of Rare Earths, 34(6): p. 632-637. (2016).
The Effect of Extrusion and Multidirectional Forging Processes on Gd and Y Added AZ31 Magnesium Alloy
Yıl 2025,
ERKEN GÖRÜNÜM, 1 - 1
Osman Özdamar
,
Mehmet Yetmez
,
Yunus Türen
,
Engin Kocaman
,
Hamdi Alper Özyiğit
Öz
The Effect of Extrusion and Multidirectional Forging Processes on Gd and Y Added AZ31 Magnesium Alloy
ABSTRACT
In this study, a new alloy was created by adding 0.5% and 1% Gadolinium and Yttrium Rare Earth Elements to AZ31 Magnesium alloy. After extruding this alloy at 375°C, multidirectional forging was performed at 400°C. The effect of alloy components on the microstructural change and their impact on mechanical properties were investigated. It was determined that the Rare Earth Elements added to the AZ31 cast alloy with a coarse-grained structure and the mechanical processes applied were effective in the microstructure. The addition of Gd and Y to the alloy promoted the formation of intermetallic phases such as (Mg,Al)3Gd and Mg24Y5 in the microstructure, leading to a significant reduction in grain size. It was found that the samples obtained by adding 0.5% Gd and Y Rare Earth Elements to the alloy had higher hardness, yield strength, and tensile strength values compared to the cast and 1% Gd and Y addition values. On the other hand, it was determined that the mechanical processes applied to the cast AZ31 alloy reduced the grain size and improved the mechanical properties.
Keywords: AZ31, Gadolinium, Yttrium, Multi Directional Forging, Extrusion
Proje Numarası
2021-77654622-08
Kaynakça
- [1] Pathak, S., et al., "Strong, ductile, and thermally stable bcc-Mg nanolaminates." Scientific reports, 7(1): p. 8264. (2017).
- [2] Djebari, K., et al., Biyobozunur ZW21 Döküm Alaşımlarının Mikroyapı, "Sertlik ve Korozyon Özelliklerini İncelenmesi." Avrupa Bilim ve Teknoloji Dergisi, (43): p. 6-12. (2022).
- [3] Bilgin, M., "AZ31B magnezyum alaşımının sürtünmeli delme işlemi üzerine deneysel çalışma." Politeknik Dergisi,: p. 1-1. (2020).
- [4] Kulekci, M.K., "Magnesium and its alloys applications in automotive industry". The International Journal of Advanced Manufacturing Technology,. 39: p. 851-865. (2008).
- [5] Akyüz, B., A comparative study on wear and machinability behaviors of AM20, AJ21 and AS21 magnesium alloys. Politeknik Dergisi,. 26(1): p. 243-248. (2023).
- [6] Akyuz, B., "Influence of Al content on machinability of AZ series Mg alloys". Transactions of Nonferrous Metals Society of China, 23(8): p. 2243-2249. (2013).
- [7] Kara, İ.H., H. Ahlatci, And Y. Türen, "The Effect of Cerium and Twins Fraction on Corrosion Resistance of AZ31-1Ca Sheet Alloys." Nevşehir Bilim ve Teknoloji Dergisi,: p. 86-90. (2020).
- [8] Akdoğan, E. and M. Şahbaz, "Çok Yönlü Dövme İşleminin AA5083 Alüminyum Alaşımının Mekanik Özellikleri Üzerindeki Etkisi." Avrupa Bilim ve Teknoloji Dergisi, (34): p. 739-744. (2022).
- [9] Whang, S.-H., "Nanostructured metals and alloys: processing, microstructure, mechanical properties and applications". Elsevier. (2011).
- [10] Cherukuri, B., T.S. Nedkova, and R. Srinivasan, "A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding." Materials Science and Engineering." A,. 410: p. 394-397. (2005).
- [11] Şahbaz, M., "AZ31 Magnezyum Alaşımı İçin Aşırı Yaşlandırmanın Bazı Mekanik Özelliklere Etkisi." Journal of Investigations on Engineering and Technology,. 4(2): p. 61-68. (2021).
- [12] Cao, Y., et al., "Structural evolutions of metallic materials processed by severe plastic deformation." Materials Science and Engineering: R: Reports,. 133: p. 1-59. (2018).
- [13] Song, J., et al., Research advances of magnesium and magnesium alloys worldwide in 2021. Journal of Magnesium and Alloys, 10(4): p. 863-898. (2022).
- [14] Özbeyaz, K., et al., "Mechanical properties and electrical conductivity performance of ECAP processed AA2024 alloy." Indian Journal of Chemical Technology,. 26. (2019).
- [15] Kara, İ., et al., "Effect of Ca and Ce on wear behavior of hot-rolled AZ31 Mg alloys." Acta Physica Polonica A, 137(4): p. 557-560. (2020).
- [16] Calado, L.M., M.J. Carmezim, and M.F. Montemor, "Rare earth based magnesium alloys—a review on WE series." Frontiers in Materials,. 8: p. 804906. (2022).
- [17] Akbaş, A. and M. Zeren, "Investigation of the Effect of various ca content on microstructure and mechanical properties of As-cast ZK60 magnesium alloys." Politeknik Dergisi, 26(3): p. 1061-1069. (2023).
- [18] Liu, H., et al.," Microstructure and mechanical properties of as-cast AZ31 with the addition of Sb." Materials Science and Engineering A,. 497(1-2): p. 254-259. (2008).
- [19 Xu, C., et al., "Microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets processed by combined processes of extrusion, hot rolling and ageing." Materials Science and Engineering: A,. 559: p. 844-851.(2013).
- [20] Yang, Y., et al.," Research advances of magnesium and magnesium alloys worldwide in 2022". Journal of Magnesium and Alloys, (2023).
- [21] Zhang, J., et al.," Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems." Journal of Magnesium and Alloys, 6(3): p. 277-291. (2018).
- [22] Hong, M., et al., "Ductility enhancement of EW75 alloy by multi-directional forging." Journal of Magnesium and Alloys,. 2(4): p. 317-324. (2014).
- [23] Li, R., et al., "Development of high-strength magnesium alloys via combined processes of extrusion, rolling and ageing". Scripta Materialia,. 64(10): p. 950-953. (2011).
- [24] Zengin, H. and Y. Turen, "Effect of Y addition on microstructure and corrosion behavior of extruded Mg–Zn–Nd–Zr alloy". Journal of Magnesium and Alloys,. 8(3): p. 640-653. (2020).
- [25] Toscano, D., et al.,"Effect of forging on microstructure, texture, and uniaxial properties of cast AZ31B alloy". Journal of Materials Engineering and Performance,. 26: p. 3090-3103. (2017).
- [26] Nie, K., et al.,"Effect of multidirectional forging on microstructures and tensile properties of a particulate reinforced magnesium matrix composite". Materials Science and Engineering: A, 528(24): p. 7133-7139. (2011).
- [27] Nie, K., et al., "Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties." Materials Science and Engineering: A,. 624: p. 157-168. (2015).
- [28] Zhang, J., et al., "Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging." Results in Physics,. 10: p. 967-972. (2018).
- [29] Zengin, H., et al., "Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg–4Zn–1La magnesium alloy." Rare metals, 39: p. 909-917. (2020).
- [30] Gryguc, A., et al.,"Improvement of Fatigue Properties of AZ31B Extruded Magnesium Alloy through Forging". Frattura ed Integrità Strutturale,. 14(53)p. 152-165. (2020).
- [31] Karparvarfard, S., et al." Characterization of Semi-Closed Die-Forged ZK60 Mg Alloy " Extrusion. in Magnesium Technology Springer. (2017).
- [32] Beer, A., "Enhancing the extrudability of wrought magnesium alloys, in Advances in wrought magnesium alloys.", Elsevier. p. 304-322. (2012).
- [33] Zhang, W., et al., "Microstructure evolution and mechanical properties of AZ31 magnesium alloy sheets prepared by low-speed extrusion with different temperature." Crystals,. 10(8): p. 644. (2020).
- [34] Gryguc, A., et al. "Magforge–Mechanical behaviour of forged AZ31B extruded magnesium in monotonic compression. in Materials Science Forum." Trans Tech Publ. (2015).
- [35] Zhang, J. and H. Huang, Microstructure and mechanical properties of AZ31 alloy ring processed by hot forging. Materials Science and Technology, 32(10): p. 1043-1052. (2016).
- [36] ŞENEL, S., et al., "AISI 430 "Çeliklerin Derin Kroyonejik İşlem Sonrası Mekanik ve Mikroyapısal Özelliklerinin İncelenmesi." Avrupa Bilim ve Teknoloji Dergisi, (32): p. 1000-1005. (2021).
- [37] Kolhatkar, A.V., et al., "Development of Ultra Sub-Size Tensile Specimen for Evaluation of Tensile Properties of Irradiated Materials." IAEA-CN245-253 (2017).
- [38] Kumar, K., et al., "Use of miniature tensile specimen for measurement of mechanical properties." Procedia engineering,. 86: p. 899-909. (2014).
- [39] Mazar, M.A., et al., "Influence of Gd and Li additions on the microstructural evolution and mechanical properties of hot-rolled AZ31 alloy." Journal of Materials Research and Technology,. 27: p. 2020-2030. (2023).
- [40] Wang, X., et al., "Microstructure, tensile properties and creep behaviors of as-cast Mg–2Al–1Zn–xGd (x= 1, 2, 3, and 4 wt.%) alloys." Journal of alloys and compounds, 522: p. 78-84. (2012).
- [41] Luo, K., et al., Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. Journal of Magnesium and Alloys, 7(2): p. 345-354. (2019).
- [42] Wang, J., et al., "Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys." Materials Science and Engineering: A, 456(1-2): p. 78-84. (2007).
- [43] Meier, J.M., J. Caris, and A.A. Luo,"Towards high strength cast Mg-RE based alloys: phase diagrams and strengthening mechanisms". Journal of Magnesium and Alloys,. 10(6): p. 1401-1427. (2022).
- [44] Mezbahul-Islam, M., A. Mostafa, and M. Medraj, "Essential magnesium alloys binary phase diagrams and their thermochemical data." Journal of Materials, (2014).
- [45] Mao, Z., D.N. Seidman, and C. Wolverton,"First-principles phase stability, magnetic properties and solubility in aluminum–rare-earth (Al–RE) alloys and compounds." Acta Materialia,. 59(9): p. 3659-3666. (2011).
- [46] Zhang, Y., "Influence of intermetallic amount on the degradability of Mg-RE (Nd/Gd) alloys under physiological conditions." RWTH Aachen University (2020).
- [47] Li, W., H. Zhou, and Z. Li, "Effect of gadolinium on microstructure and rolling capability of AZ31 alloy." Journal of Alloys and Compounds,. 475(1-2): p. 227-232. (2009).
- [48] Zimina, M., et al., "Mechanical properties of homogenized twin-roll cast and conventionally cast AZ31 magnesium alloys." Mater Eng, 22: p. 8-15. (2015).
- [49] Wang, J., et al., "Microstructure and mechanical properties of AZ31 magnesium alloy prepared using wire arc additive manufacturing." Journal of Alloys and Compounds,. 939: p. 168665. (2023).
- [50] Murray, J.L., "The Al− Mg (aluminum− magnesium) system." Journal of Phase Equilibria,. 3(1): p. 60-74. (1982).
- [51] Jiang, P., C. Blawert, and M.L. Zheludkevich, "The corrosion performance and mechanical properties of Mg-Zn based alloys—a review." Corrosion and Materials Degradation,. 1(1): p. 7. (2020).
- [52] Zhang, J.-l., et al., "The effect of Gd element and solution treatment on the microstructure of AZ31 magnesium alloy and its kinetic model." Journal of Alloys and Compounds, 663: p. 610-616. (2016).
- [53] Pourbahari, B., M. Emamy, and H. Mirzadeh, "Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys." Progress in Natural Science: Materials International,. 27(2): p. 228-235. (2017).
- [54] Mirak, A., C. "Davidson, and J. Taylor, Study on the early surface films formed on Mg-Y molten alloy in different atmospheres." Journal of Magnesium and Alloys, 3(3): p. 173-179. (2015).
- [55] Gao, L., R. Chen, and E. Han, "Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys." Journal of Alloys and Compounds, 481(1-2): p. 379-384. (2009).
- [56] Köklü, U., et al., "Influence of extrusion parameters on drilling machinability of AZ31 magnesium alloy." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,. 236(5): p. 2082-2094.(2022).
- [57] Mingbo, Y., et al.," Comparison of effects of cerium, yttrium and gadolinium additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy." Journal of Rare Earths, 29(6): p. 550-557. (2011).
- [58] Wang, H., T. Wang, and J. Peng, "Effect of gadolinium addition on microstructure, mechanical properties and corrosion resistance of 316L austenitic stainless steels." Physics of Metals and Metallography,. 122(14): p. 1640-1647. (2021).
- [59] Lwin, M.L., et al., "Effect of single and co-addition of rare earth on the microstructure, mechanical properties, and corrosion behavior of AZ31 magnesium alloys." Journal of Materials Engineering and Performance, p. 1-15. (2023).
- [60] Li, M., et al., "Effect of Nd on microstructure and mechanical properties of AZ31 magnesium alloy." Rare metal materials and engineering, 38(1): p. 7-10.(2009).
- [61] Li, M., et al., "Effects of neodymium rich rare earth elements on microstructure and mechanical properties of as cast AZ31 magnesium alloy." Materials Science and Technology, 27(7): p. 1138-1142. (2011).
- [62] Jiang, N., et al., "Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy." Journal of Rare Earths, 34(6): p. 632-637. (2016).