Araştırma Makalesi
BibTex RIS Kaynak Göster

Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1528068

Öz

The rapid advancement of technology is continuously increasing the need for rare earth elements (REEs). These strategically important metals are mainly sourced from primary resources, and then secondary resources are explored. Despite the significant issues caused by post products, fly ash from coal-fired power plants can be considered a secondary source due to its high REE content. This study conducted characterization analyses of six fly ash samples from power plants in Türkiye and investigated the potential for REE enrichment. The fly ashes were analysed using atomic absorption spectrophotometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), and X-ray diffraction (XRD) methods. The enrichment potential of REEs in two selected fly ashes was examined. Total REE values were found to be 168.9 and 244.9 ppm. The results indicate that fly ashes can be utilized as a secondary source of REEs. Moreover, the application of bioleaching for the enrichment of REEs from fly ash is considered both an economically viable and environmentally friendly alternative. In this context, fly ash from Türkiye is concluded to have significant potential for REE recovery, and this method can contribute to the sustainable use of existing resources. This study also validates its findings by comparing them with literature.

Destekleyen Kurum

Çukurova University

Proje Numarası

FDK-2019-12004

Teşekkür

This study was derived from a PhD thesis project supported by Çukurova University's Scientific Research Coordination Office under project number FDK-2019-12004. We would like to express our gratitude to the General Directorate of TKI Institution and the operating authorities for their support in our studies.

Kaynakça

  • [1] Belviso, C., "State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues", Progress in Energy and Combustion Science, 65: 109–135, (2018).
  • [2] Republic of Türkiye Ministry of Energy and Natural Resources. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (accessed Mar. 14, 2024).
  • [3] TEIAŞ. https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri
  • [4] Topal, M., Topal Arslan, I. E., Aslan, S., and Kılıç, M., "Termik Santral Uçucu Külü, Termik ve Arıtma Çamurundan Ağır Metallerin Liçlenebilirliği", SAÜ. Fen Bilimleri Dergisi, 15: 97–104, (2011).
  • [5] Dipta, O. B., Sobhan, S. K. F., and Shuvo, A. K., "Assessment of the combined effect of silica fume, fly ash, and steel slag on the mechanical behavior of concrete", Journal of Civil Engineering and Construction, 12: 78–85, (2023).
  • [6] Seidler, M. and Malloy, K., "A Comprehensive Survey of Coal Ash Law and Commercialization", 1–94, (2020).
  • [7] Liu, P., Zhao, S., Xie, N., Yang, L., Wang, Q., Wen, Y., Chen, H., and Tang, Y., "Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash", Environmental Science and Technology, 57: 5414–5423, (2023).
  • [8] Türker, P.; Erdoğan, B.; Katnaş, F.; and Yeğinobalı, A. "Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri", Fersa Matbaacılık, Ankara, (2009).
  • [9] Bayat, O., "Uçucu kül değerlendi̇ri̇lmesi̇ni̇n mali̇yet anali̇zi̇", Bilimsel Madencilik Dergisi, 34: 21–36, (1995).
  • [10] Bayat, O., "Characterisation of Turkish fly ashes", Fuel, 77: 1059–1066, (1998).
  • [11] Görhan, G., Kahraman, E., Başpınar, M. S., and Demir, İ., "Uçucu Kül Bölüm I : Oluşumu , Sınıflandırılması ve Kullanım", Yapı Teknolojileri Elektronik Dergisi, 4: 85–94, (2008).
  • [12] Kaplan, G. and Gültekin, A. B. In The Investigation of Fly Ash Usage in Terms of Environmental and Social Effects In Construction Sector, Ankara, Türkiye, (2010).
  • [13] Fatih, T. and Ümit, A. In Utilization of Fly Ash in Manufacturing of Building Bricks, Center for Applied Energy Research University of Kentucky, (2001).
  • [14] Poon, C. S., Kou, S. C., and Lam, L., "Use of recycled aggregates in molded concrete bricks and blocks", Construction and Building Materials, 16: 281–289, (2002).
  • [15] Bilici, H., Türkoz, M., and Savaş, H., "Üç farklı termik santralden alınan uçucu külün ince taneli zeminin kompaksiyon ve dayanım özellikleri üzerinde performansı", ESOGÜ Müh Mim Fak Derg., 30: 379–388, (2022).
  • [16] Dehghanian, K. “Killi zeminlerin özelliklerinin uçucu kül kullanarak iyileştirilmesi”. ALKÜ Fen Bilimleri Dergisi., (2021).
  • [17] Ünal, O., Güçlüer, K., and Öz, V., "An Investigation of Usability of Yatağan Fly Ash in Structural Areas", Afyon Kocatepe University Journal of Sciences and Engineering, 15: 1–7, (2015).
  • [18] Hirajima, T., Petrus, H. T. B. M., Oosako, Y., Nonaka, M., Sasaki, K., and Ando, T., "Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application", International Journal of Mineral Processing, 95: 18–24, (2010).
  • [19] Kolay, P. K. and Bhusal, S., "Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization", Fuel, 117: 118–124, (2014).
  • [20] Zyrkowski, M., Neto, R. C., Santos, L. F., and Witkowski, K., "Characterization of fly-ash cenospheres from coal-fired power plant unit", Fuel, 174: 49–53, (2016).
  • [21] Ranjbar, N. and Kuenzel, C., "Cenospheres: A review", Fuel, 207: 1–12, (2017).
  • [22] Urunkar, Y., Pandit, A., Bhargava, P., Joshi, J., Mathpati, C., Vasanthakumaran, S., Jain, D., Hussain, Z., Patel, S., and More, V., "Light-weight thermal insulating fly ash cenosphere ceramics", International Journal of Applied Ceramic Technology, 15: 1467–1477, (2018).
  • [23] Ramme, B.W., Noegel, J.J., and Rohatgi, Pradeep.K. Separation of cenospheres from fly ash. (2013).
  • [24] Çiçek, T. and Tanrıverdi, M. In Kömüre dayalı termik santral uçucu küllerinden otoklav yöntemi ile hafif tuğla üretimi, İzmir, (2004).
  • [25] Topçu, İ. B. and Karakurt, C. In Uçucu kül ve yüksek fırın cürufunun çimento üretiminde katkı olarak kullanımı, 7. Ulusal Beton Kongresi, İstanbul: İstanbul, (2007).
  • [26] Çiçek, T. and Çinçin, Y., "Use of fly ash in production of light-weight building bricks", Construction and Building Materials, 94: 521–527, (2015).
  • [27] Gupta, N., Gedam, V. V., Moghe, C., and Labhasetwar, P., "Investigation of characteristics and leaching behavior of coal fly ash, coal fly ash bricks and clay bricks", Environmental Technology and Innovation, 7: 152–159, (2017).
  • [28] Onel, O., Tanriverdi, M., and Cicek, T. In Utilization of Yatagan Power Plant Fly Ash in Production of Building Bricks, Institute of Physics Publishing: (2017).
  • [29] Çinçin, Y., Önel, Ö., Tanrıverdi, M., and Çiçek, T. In Katkı malzemesi kullanılmadan uçucu küllerden tuğla üretim olanaklarının değerlendirilmesi, Kahramanmaraş, (2019).
  • [30] Ontürk, K., Firat, S., Vural, I., Khatib, J. M., Üniversitesi, S., Meslek, G., Mimari, Y., Bölümü, R., Üniversitesi, G., Fakültesi, T., and Bölümü, İ. M., "Uçucu Kül ve Mermer Tozu Kullanarak Yol Altyapısının İyileştirilmesi", Politeknik Dergisi Journal of Polytechnic Cilt, 17: 35–42, (2014).
  • [31] Top, S., Vapur, H., and Ekicibil, A., "Characterization of zeolites synthesized from porous wastes using hydrothermal agitational leaching assisted by magnetic separation", Journal of Molecular Structure, 1163: 4–9, (2018).
  • [32] Petrovic, B., Gorbounov, M., and Masoudi Soltani, S., "Synthesis of biomass combustion fly ash derived zeolites for CO2 adsorption: Optimisation of hydrothermal synthetic pathway", Carbon Capture Science and Technology, 12: (2024).
  • [33] Szerement, J., Jurek, K., Mokrzycki, J., Jarosz, R., Oleszczuk, P., and Mierzwa-Hersztek, M., "Zeolite composites from fly ashes mixed with leonardite as a useful addition to fertilizer for accelerating the PAHs degradation in soil", Soil and Tillage Research, 230: (2023).
  • [34] Yang, J., Zheng, Z., Ye, X., Cui, M., Ma, X., Deng, H., and Li, Y., "The coupling action mechanism of NaOH/NaNO3 on the hydrothermal synthesis of fly ash-based zeolites and the Sr-Na exchange capacity", Journal of Environmental Chemical Engineering, 12: (2024).
  • [35] Top, S. and Vapur, H., "Effect of basaltic pumice aggregate addition on the material properties of fly ash based lightweight geopolymer concrete", Journal of Molecular Structure, 1163: 10–17, (2018).
  • [36] Jia-Ni, L., Yun-Ming, L., Cheng-Yong, H., Wei-Hong, T., Wei Ken, P., Pakawanit, P., Hoe-Woon, T., Yong-Jie, H., Shee-Ween, O., and Wan-En, O., "Unveiling physico-mechanical and acoustical characteristics of fly ash geopolymers through the synergistic impact of density and porosity", Journal of Building Engineering, 91: (2024).
  • [37] Li, J., Ma, Z., Guo, Y., and Feng, Z., "In-depth analysis of macro-properties and micro-mechanism of eco-friendly geopolymer based on typical circulating fluidized bed fly ash", Journal of Building Engineering, 95: (2024).
  • [38] Haque, N., Hughes, A., Lim, S., and Vernon, C., "Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact", Resources, 3: 614–635, (2014).
  • [39] Drobniak, A. and Mastalerz, M., "Rare Earth Elements: A brief overview", Indiana Journal of Earth Sciences, 4: (2022).
  • [40] Joseph R. Biden, Ryan, P., Cochran, T., Rogers, H., Mikulski, B., Lowey, N., Simpson, M., Kaptur, M., Alexander, L., and Feinstein, D. Report on Rare Earth Elements from Coal and Coal Byproducts. (January) . (2017).
  • [41] Yıldız, N. "Nadir Toprak Elementi", Necati Yıldız, TMMOB Maden Mühendisleri Odası, Ankara, Türkiye, (2016).
  • [42] Zhang, J.; Zhao, B.; and Schreiner, B. "Separation Hydrometallurgy of Rare Earth Elements", Springer International Publishing, (2016).
  • [43] Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T. Van, Yang, Y., Walton, A., and Buchert, M. Recycling of rare earths: A critical review. Journal of Cleaner Production. , 51, 1–22. (2013).
  • [44] Iea Critical Minerals Market Review. (2023).
  • [45] Skirrow, R.G., Mernagh, T.P., Thorne, J.P., Huston, D.L., Dulfer, H., and Senior, A.B. Critical commodities for a high-tech world: Australia’s potential to supply global demand. (2013).
  • [46] U. S. Geological Survey National Minerals Information Center, Rare earth statistics and information. https://www.usgs.gov/centers/national-minerals-information-center/rare-earths-statistics-and-information (accessed Mar. 13, 2024).
  • [47] Kermer, R., Hedrich, S., Bellenberg, S., Brett, B., Schrader, D., Schönherr, P., Köpcke, M., Siewert, K., Günther, N., Gehrke, T., Sand, W., Räuchle, K., Bertau, M., Heide, G., Weitkämper, L., Wotruba, H., Ludwig, H. M., Partusch, R., Schippers, A., Reichel, S., Glombitza, F., and Janneck, E., "Lignite ash: Waste material or potential resource - Investigation of metal recovery and utilization options", Hydrometallurgy, 168: 141–152, (2017).
  • [48] Akar, G., Polat, M., Galecki, G., and Ipekoglu, U., "Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants", Fuel Processing Technology, 104: 50–56, (2012).
  • [49] Tanrıverdi, M., Şen, G. A., Çiçek, T., Şen, S., and Önel, Ö., "Leachability of Heavy Metals from Autoclaved Fly Ash-Lime Building Bricks", Inżynieria Mineralna, 1: (2021).
  • [50] TS EN 197-1 Cement – Part 1: Composition, specification and conformity criteria for common cements, Turkish Standards Institute. (2012).
  • [51] ASTM C 618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, ASTM International. (2023).
  • [52] TS EN 197-1 Cement – Part 1: Composition, specification and conformity criteria for common cements, Turkish Standards Institute. Cement – Part 1: Composition, specification and conformity criteria for common cements,Türk Standartları Enstitüsü. . (2012).
  • [53] Risdanareni, P., Puspitasari, P., and Januarti Jaya, E., "Chemical and Physical Characterization of Fly Ash as Geopolymer Material", MATEC Web of Conferences, 97: (2017).
  • [54] Silva, R. G., Morais, C. A., and Oliveira, É. D., "Selective cerium removal by thermal treatment of mixed rare earth oxalates or carbonates obtained from non-purified rare earth sulphate liquor", Minerals Engineering, 139: (2019).
  • [55] Goode, J. R., "Early Separation of Cerium from Mixed Rare Earths: A Review of Methods and Preliminary Economic Analysis", Extraction 2018, Springer International Publishing, Cham, pp. 2743–2752, (2018).
  • [56] Sandeep, P., Maity, S., Mishra, S., Chaudhary, D. K., Dusane, C. B., Pillai, A. S., and Kumar, A. V., "Estimation of rare earth elements in Indian coal fly ashes for recovery feasibility as a secondary source", Journal of Hazardous Materials Advances, 10: 100257, (2023).
  • [57] Lin, R., Howard, B. H., Roth, E. A., Bank, T. L., Granite, E. J., and Soong, Y., "Enrichment of rare earth elements from coal and coal by-products by physical separations", Fuel, 200: 506–520, (2017).
  • [58] Wang, Z., Dai, S., Zou, J., French, D., and Graham, I. T., "Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction", International Journal of Coal Geology, 203: 1–14, (2019).
  • [59] Ketris, M. P. and Yudovich, Y. E., "Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals", International Journal of Coal Geology, 78: 135–148, (2009).
  • [60] Dai, S. F., Zhou, Y. P., Ren, D. Y., Wang, X. B., Li, D., and Zhao, L., "Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China", Science in China, Series D: Earth Sciences, 50: 678–688, (2007).
  • [61] Cao, S., Zhou, C., Pan, J., Liu, C., Tang, M., Ji, W., Hu, T., and Zhang, N., "Study on Influence Factors of Leaching of Rare Earth Elements from Coal Fly Ash", Energy and Fuels, 32: 8000–8005, (2018).
  • [62] Peiravi, M., Ackah, L., Guru, R., Mohanty, M., Liu, J., Xu, B., Zhu, X., and Chen, L., "Chemical extraction of rare earth elements from coal ash", Minerals & Metallurgical Processing, 34: 170–177, (2017).
  • [63] Zhang, S., Yan, L., Xing, W., Chen, P., Zhang, Y., and Wang, W., "Acidithiobacillus ferrooxidans and its potential application", Extremophiles, 22: 563–579, (2018).
  • [64] Yang, L., Zhao, D., Yang, J., Wang, W., Chen, P., Zhang, S., and Yan, L., "Acidithiobacillus thiooxidans and its potential application", Applied Microbiology and Biotechnology, 103: 7819–7833, (2019).
  • [65] Schippers, A. and Sand, W., "Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur", Applied and Environmental Microbiology, 65: 319–321, (1999).
  • [66] Haddadin, J., Dagot, C., and Fick, M., "Models of bacterial leaching", Enzyme and Microbial Technology, 17: 290–305, (1995).
  • [67] Rawlings, D. E., Dew, D., and Plessis, C. du, "Biomineralization of metal-containing ores and concentrates", Trends in Biotechnology, 21: 38–44, (2003).

Türkiye'deki Uçucu Küllerden Nadir Toprak Elementlerinin (NTE) Zenginleştirilmesi için Karakterizasyonu

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1528068

Öz

Teknolojinin hızla gelişmesi, nadir toprak elementlerine (NTE) olan talebi her geçen gün artırmaktadır. Stratejik öneme sahip bu metaller, ülkelerin ihtiyaçlarını karşılamak için birincil kaynaklardan temin edilmekte, bu kaynaklar yetersiz kaldığında ise ikincil kaynaklar araştırılmaktadır. Üretim sonrası ortaya çıkan atık ürünleri önemli sorunlara yol açsa da kömür yakıtlı termik santral uçucu külü içerdiği yüksek miktarda NTE nedeniyle ikincil kaynak olarak değerlendirilebilir. Bu çalışmada, Türkiye'deki termik santrallerden çıkan altı uçucu külün karakterizasyon analizleri gerçekleştirilmiş ve tespit edilen NTE'lerin zenginleştirme olasılıkları araştırılmıştır. Uçucu küller, atomik absorpsiyon spektrofotometresi (AAS), indüktif eşleşmiş plazma kütle spektrometrisi (ICP-MS), X-ışını floresansı (XRF) ve X-ışını kırınımı (XRD) yöntemleri kullanılarak analiz edilmiştir. Seçilen iki uçucu külde NTE'lerin zenginleştirme potansiyeli incelenmiştir. Toplam NTE değerlerinin 168.9 ve 244.9 ppm olduğu tespit edilmiştir. Elde edilen sonuçlar, uçucu küllerin ikincil NTE kaynağı olarak kullanılabilirliğini ortaya koymaktadır. Ayrıca, biyoliç yönteminin uçucu küllerden NTE zenginleştirilmesinde uygulanmasının ekonomik ve çevre dostu bir alternatif sunacağı düşünülmektedir. Bu bağlamda, Türkiye'den elde edilen uçucu külün, NTE’nin geri kazanımı için önemli bir potansiyele sahip olduğu ve bu yöntemin, mevcut kaynakların sürdürülebilir kullanımına katkı sağlayacağı sonucuna varılmıştır. Bu çalışma, geçmişte yapılan çalışmalarla da karşılaştırılarak elde edilen bulguların doğruluğunu pekiştirmektedir.

Destekleyen Kurum

Çukurova Üniversitesi

Proje Numarası

FDK-2019-12004

Kaynakça

  • [1] Belviso, C., "State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues", Progress in Energy and Combustion Science, 65: 109–135, (2018).
  • [2] Republic of Türkiye Ministry of Energy and Natural Resources. https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (accessed Mar. 14, 2024).
  • [3] TEIAŞ. https://www.teias.gov.tr/turkiye-elektrik-uretim-iletim-istatistikleri
  • [4] Topal, M., Topal Arslan, I. E., Aslan, S., and Kılıç, M., "Termik Santral Uçucu Külü, Termik ve Arıtma Çamurundan Ağır Metallerin Liçlenebilirliği", SAÜ. Fen Bilimleri Dergisi, 15: 97–104, (2011).
  • [5] Dipta, O. B., Sobhan, S. K. F., and Shuvo, A. K., "Assessment of the combined effect of silica fume, fly ash, and steel slag on the mechanical behavior of concrete", Journal of Civil Engineering and Construction, 12: 78–85, (2023).
  • [6] Seidler, M. and Malloy, K., "A Comprehensive Survey of Coal Ash Law and Commercialization", 1–94, (2020).
  • [7] Liu, P., Zhao, S., Xie, N., Yang, L., Wang, Q., Wen, Y., Chen, H., and Tang, Y., "Green Approach for Rare Earth Element (REE) Recovery from Coal Fly Ash", Environmental Science and Technology, 57: 5414–5423, (2023).
  • [8] Türker, P.; Erdoğan, B.; Katnaş, F.; and Yeğinobalı, A. "Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri", Fersa Matbaacılık, Ankara, (2009).
  • [9] Bayat, O., "Uçucu kül değerlendi̇ri̇lmesi̇ni̇n mali̇yet anali̇zi̇", Bilimsel Madencilik Dergisi, 34: 21–36, (1995).
  • [10] Bayat, O., "Characterisation of Turkish fly ashes", Fuel, 77: 1059–1066, (1998).
  • [11] Görhan, G., Kahraman, E., Başpınar, M. S., and Demir, İ., "Uçucu Kül Bölüm I : Oluşumu , Sınıflandırılması ve Kullanım", Yapı Teknolojileri Elektronik Dergisi, 4: 85–94, (2008).
  • [12] Kaplan, G. and Gültekin, A. B. In The Investigation of Fly Ash Usage in Terms of Environmental and Social Effects In Construction Sector, Ankara, Türkiye, (2010).
  • [13] Fatih, T. and Ümit, A. In Utilization of Fly Ash in Manufacturing of Building Bricks, Center for Applied Energy Research University of Kentucky, (2001).
  • [14] Poon, C. S., Kou, S. C., and Lam, L., "Use of recycled aggregates in molded concrete bricks and blocks", Construction and Building Materials, 16: 281–289, (2002).
  • [15] Bilici, H., Türkoz, M., and Savaş, H., "Üç farklı termik santralden alınan uçucu külün ince taneli zeminin kompaksiyon ve dayanım özellikleri üzerinde performansı", ESOGÜ Müh Mim Fak Derg., 30: 379–388, (2022).
  • [16] Dehghanian, K. “Killi zeminlerin özelliklerinin uçucu kül kullanarak iyileştirilmesi”. ALKÜ Fen Bilimleri Dergisi., (2021).
  • [17] Ünal, O., Güçlüer, K., and Öz, V., "An Investigation of Usability of Yatağan Fly Ash in Structural Areas", Afyon Kocatepe University Journal of Sciences and Engineering, 15: 1–7, (2015).
  • [18] Hirajima, T., Petrus, H. T. B. M., Oosako, Y., Nonaka, M., Sasaki, K., and Ando, T., "Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application", International Journal of Mineral Processing, 95: 18–24, (2010).
  • [19] Kolay, P. K. and Bhusal, S., "Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization", Fuel, 117: 118–124, (2014).
  • [20] Zyrkowski, M., Neto, R. C., Santos, L. F., and Witkowski, K., "Characterization of fly-ash cenospheres from coal-fired power plant unit", Fuel, 174: 49–53, (2016).
  • [21] Ranjbar, N. and Kuenzel, C., "Cenospheres: A review", Fuel, 207: 1–12, (2017).
  • [22] Urunkar, Y., Pandit, A., Bhargava, P., Joshi, J., Mathpati, C., Vasanthakumaran, S., Jain, D., Hussain, Z., Patel, S., and More, V., "Light-weight thermal insulating fly ash cenosphere ceramics", International Journal of Applied Ceramic Technology, 15: 1467–1477, (2018).
  • [23] Ramme, B.W., Noegel, J.J., and Rohatgi, Pradeep.K. Separation of cenospheres from fly ash. (2013).
  • [24] Çiçek, T. and Tanrıverdi, M. In Kömüre dayalı termik santral uçucu küllerinden otoklav yöntemi ile hafif tuğla üretimi, İzmir, (2004).
  • [25] Topçu, İ. B. and Karakurt, C. In Uçucu kül ve yüksek fırın cürufunun çimento üretiminde katkı olarak kullanımı, 7. Ulusal Beton Kongresi, İstanbul: İstanbul, (2007).
  • [26] Çiçek, T. and Çinçin, Y., "Use of fly ash in production of light-weight building bricks", Construction and Building Materials, 94: 521–527, (2015).
  • [27] Gupta, N., Gedam, V. V., Moghe, C., and Labhasetwar, P., "Investigation of characteristics and leaching behavior of coal fly ash, coal fly ash bricks and clay bricks", Environmental Technology and Innovation, 7: 152–159, (2017).
  • [28] Onel, O., Tanriverdi, M., and Cicek, T. In Utilization of Yatagan Power Plant Fly Ash in Production of Building Bricks, Institute of Physics Publishing: (2017).
  • [29] Çinçin, Y., Önel, Ö., Tanrıverdi, M., and Çiçek, T. In Katkı malzemesi kullanılmadan uçucu küllerden tuğla üretim olanaklarının değerlendirilmesi, Kahramanmaraş, (2019).
  • [30] Ontürk, K., Firat, S., Vural, I., Khatib, J. M., Üniversitesi, S., Meslek, G., Mimari, Y., Bölümü, R., Üniversitesi, G., Fakültesi, T., and Bölümü, İ. M., "Uçucu Kül ve Mermer Tozu Kullanarak Yol Altyapısının İyileştirilmesi", Politeknik Dergisi Journal of Polytechnic Cilt, 17: 35–42, (2014).
  • [31] Top, S., Vapur, H., and Ekicibil, A., "Characterization of zeolites synthesized from porous wastes using hydrothermal agitational leaching assisted by magnetic separation", Journal of Molecular Structure, 1163: 4–9, (2018).
  • [32] Petrovic, B., Gorbounov, M., and Masoudi Soltani, S., "Synthesis of biomass combustion fly ash derived zeolites for CO2 adsorption: Optimisation of hydrothermal synthetic pathway", Carbon Capture Science and Technology, 12: (2024).
  • [33] Szerement, J., Jurek, K., Mokrzycki, J., Jarosz, R., Oleszczuk, P., and Mierzwa-Hersztek, M., "Zeolite composites from fly ashes mixed with leonardite as a useful addition to fertilizer for accelerating the PAHs degradation in soil", Soil and Tillage Research, 230: (2023).
  • [34] Yang, J., Zheng, Z., Ye, X., Cui, M., Ma, X., Deng, H., and Li, Y., "The coupling action mechanism of NaOH/NaNO3 on the hydrothermal synthesis of fly ash-based zeolites and the Sr-Na exchange capacity", Journal of Environmental Chemical Engineering, 12: (2024).
  • [35] Top, S. and Vapur, H., "Effect of basaltic pumice aggregate addition on the material properties of fly ash based lightweight geopolymer concrete", Journal of Molecular Structure, 1163: 10–17, (2018).
  • [36] Jia-Ni, L., Yun-Ming, L., Cheng-Yong, H., Wei-Hong, T., Wei Ken, P., Pakawanit, P., Hoe-Woon, T., Yong-Jie, H., Shee-Ween, O., and Wan-En, O., "Unveiling physico-mechanical and acoustical characteristics of fly ash geopolymers through the synergistic impact of density and porosity", Journal of Building Engineering, 91: (2024).
  • [37] Li, J., Ma, Z., Guo, Y., and Feng, Z., "In-depth analysis of macro-properties and micro-mechanism of eco-friendly geopolymer based on typical circulating fluidized bed fly ash", Journal of Building Engineering, 95: (2024).
  • [38] Haque, N., Hughes, A., Lim, S., and Vernon, C., "Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact", Resources, 3: 614–635, (2014).
  • [39] Drobniak, A. and Mastalerz, M., "Rare Earth Elements: A brief overview", Indiana Journal of Earth Sciences, 4: (2022).
  • [40] Joseph R. Biden, Ryan, P., Cochran, T., Rogers, H., Mikulski, B., Lowey, N., Simpson, M., Kaptur, M., Alexander, L., and Feinstein, D. Report on Rare Earth Elements from Coal and Coal Byproducts. (January) . (2017).
  • [41] Yıldız, N. "Nadir Toprak Elementi", Necati Yıldız, TMMOB Maden Mühendisleri Odası, Ankara, Türkiye, (2016).
  • [42] Zhang, J.; Zhao, B.; and Schreiner, B. "Separation Hydrometallurgy of Rare Earth Elements", Springer International Publishing, (2016).
  • [43] Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T. Van, Yang, Y., Walton, A., and Buchert, M. Recycling of rare earths: A critical review. Journal of Cleaner Production. , 51, 1–22. (2013).
  • [44] Iea Critical Minerals Market Review. (2023).
  • [45] Skirrow, R.G., Mernagh, T.P., Thorne, J.P., Huston, D.L., Dulfer, H., and Senior, A.B. Critical commodities for a high-tech world: Australia’s potential to supply global demand. (2013).
  • [46] U. S. Geological Survey National Minerals Information Center, Rare earth statistics and information. https://www.usgs.gov/centers/national-minerals-information-center/rare-earths-statistics-and-information (accessed Mar. 13, 2024).
  • [47] Kermer, R., Hedrich, S., Bellenberg, S., Brett, B., Schrader, D., Schönherr, P., Köpcke, M., Siewert, K., Günther, N., Gehrke, T., Sand, W., Räuchle, K., Bertau, M., Heide, G., Weitkämper, L., Wotruba, H., Ludwig, H. M., Partusch, R., Schippers, A., Reichel, S., Glombitza, F., and Janneck, E., "Lignite ash: Waste material or potential resource - Investigation of metal recovery and utilization options", Hydrometallurgy, 168: 141–152, (2017).
  • [48] Akar, G., Polat, M., Galecki, G., and Ipekoglu, U., "Leaching behavior of selected trace elements in coal fly ash samples from Yenikoy coal-fired power plants", Fuel Processing Technology, 104: 50–56, (2012).
  • [49] Tanrıverdi, M., Şen, G. A., Çiçek, T., Şen, S., and Önel, Ö., "Leachability of Heavy Metals from Autoclaved Fly Ash-Lime Building Bricks", Inżynieria Mineralna, 1: (2021).
  • [50] TS EN 197-1 Cement – Part 1: Composition, specification and conformity criteria for common cements, Turkish Standards Institute. (2012).
  • [51] ASTM C 618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, ASTM International. (2023).
  • [52] TS EN 197-1 Cement – Part 1: Composition, specification and conformity criteria for common cements, Turkish Standards Institute. Cement – Part 1: Composition, specification and conformity criteria for common cements,Türk Standartları Enstitüsü. . (2012).
  • [53] Risdanareni, P., Puspitasari, P., and Januarti Jaya, E., "Chemical and Physical Characterization of Fly Ash as Geopolymer Material", MATEC Web of Conferences, 97: (2017).
  • [54] Silva, R. G., Morais, C. A., and Oliveira, É. D., "Selective cerium removal by thermal treatment of mixed rare earth oxalates or carbonates obtained from non-purified rare earth sulphate liquor", Minerals Engineering, 139: (2019).
  • [55] Goode, J. R., "Early Separation of Cerium from Mixed Rare Earths: A Review of Methods and Preliminary Economic Analysis", Extraction 2018, Springer International Publishing, Cham, pp. 2743–2752, (2018).
  • [56] Sandeep, P., Maity, S., Mishra, S., Chaudhary, D. K., Dusane, C. B., Pillai, A. S., and Kumar, A. V., "Estimation of rare earth elements in Indian coal fly ashes for recovery feasibility as a secondary source", Journal of Hazardous Materials Advances, 10: 100257, (2023).
  • [57] Lin, R., Howard, B. H., Roth, E. A., Bank, T. L., Granite, E. J., and Soong, Y., "Enrichment of rare earth elements from coal and coal by-products by physical separations", Fuel, 200: 506–520, (2017).
  • [58] Wang, Z., Dai, S., Zou, J., French, D., and Graham, I. T., "Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction", International Journal of Coal Geology, 203: 1–14, (2019).
  • [59] Ketris, M. P. and Yudovich, Y. E., "Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals", International Journal of Coal Geology, 78: 135–148, (2009).
  • [60] Dai, S. F., Zhou, Y. P., Ren, D. Y., Wang, X. B., Li, D., and Zhao, L., "Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China", Science in China, Series D: Earth Sciences, 50: 678–688, (2007).
  • [61] Cao, S., Zhou, C., Pan, J., Liu, C., Tang, M., Ji, W., Hu, T., and Zhang, N., "Study on Influence Factors of Leaching of Rare Earth Elements from Coal Fly Ash", Energy and Fuels, 32: 8000–8005, (2018).
  • [62] Peiravi, M., Ackah, L., Guru, R., Mohanty, M., Liu, J., Xu, B., Zhu, X., and Chen, L., "Chemical extraction of rare earth elements from coal ash", Minerals & Metallurgical Processing, 34: 170–177, (2017).
  • [63] Zhang, S., Yan, L., Xing, W., Chen, P., Zhang, Y., and Wang, W., "Acidithiobacillus ferrooxidans and its potential application", Extremophiles, 22: 563–579, (2018).
  • [64] Yang, L., Zhao, D., Yang, J., Wang, W., Chen, P., Zhang, S., and Yan, L., "Acidithiobacillus thiooxidans and its potential application", Applied Microbiology and Biotechnology, 103: 7819–7833, (2019).
  • [65] Schippers, A. and Sand, W., "Bacterial Leaching of Metal Sulfides Proceeds by Two Indirect Mechanisms via Thiosulfate or via Polysulfides and Sulfur", Applied and Environmental Microbiology, 65: 319–321, (1999).
  • [66] Haddadin, J., Dagot, C., and Fick, M., "Models of bacterial leaching", Enzyme and Microbial Technology, 17: 290–305, (1995).
  • [67] Rawlings, D. E., Dew, D., and Plessis, C. du, "Biomineralization of metal-containing ores and concentrates", Trends in Biotechnology, 21: 38–44, (2003).
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm, Kimyasal-Biyolojik Kazanma Teknikleri ve Cevher Hazırlama
Bölüm Araştırma Makalesi
Yazarlar

Yasin Çinçin 0000-0002-1781-0371

Oktay Bayat 0000-0003-2330-3074

Proje Numarası FDK-2019-12004
Erken Görünüm Tarihi 11 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 6 Ağustos 2024
Kabul Tarihi 4 Ekim 2024
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Çinçin, Y., & Bayat, O. (2024). Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1528068
AMA Çinçin Y, Bayat O. Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye. Politeknik Dergisi. Published online 01 Ekim 2024:1-1. doi:10.2339/politeknik.1528068
Chicago Çinçin, Yasin, ve Oktay Bayat. “Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye”. Politeknik Dergisi, Ekim (Ekim 2024), 1-1. https://doi.org/10.2339/politeknik.1528068.
EndNote Çinçin Y, Bayat O (01 Ekim 2024) Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye. Politeknik Dergisi 1–1.
IEEE Y. Çinçin ve O. Bayat, “Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye”, Politeknik Dergisi, ss. 1–1, Ekim 2024, doi: 10.2339/politeknik.1528068.
ISNAD Çinçin, Yasin - Bayat, Oktay. “Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye”. Politeknik Dergisi. Ekim 2024. 1-1. https://doi.org/10.2339/politeknik.1528068.
JAMA Çinçin Y, Bayat O. Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye. Politeknik Dergisi. 2024;:1–1.
MLA Çinçin, Yasin ve Oktay Bayat. “Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1528068.
Vancouver Çinçin Y, Bayat O. Fly Ash Characterisation for Rare Earth Elements (REEs) Beneficiation in Türkiye. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.