Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance Analysis of Methane-Hydrogen Mixture in Combined Type Gas Burners

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1559852

Öz

Energy is becoming one of the most important problems of today due to rapid population growth, significant developments in industry, urbanisation, unplanned use of resources and changing production and consumption methodology as a result of globalisation. In this study, the feasibility of burning a methane-hydrogen fuel mixture without causing any physical changes and power loss in a domestic boiler burner is experimentally investigated and numerically modelled. The study consists of two phases. In the first stage, the hydrogen-methane fuel mixture was burned experimentally in a hermetic condensing boiler. In the second stage, the combustion is modelled in a CFD programme. Realizable κ-ε turbulence model, Eddy-Dissipation combustion model and Gri-Mech 3.0 chemical kinetics for 4-step methane (CH4) and 9-step hydrogen (H2) combustion reactions were used in the numerical analysis. In the CH4-H2 combustion, the amount of CH4 was kept constant at 20 Sl/min and hydrogen was added in 10% increments between 0% and 30% by volume in the fuel mixture. Temperature measurements taken from the combustion chamber increased from 571.1 K at 0% H2 to 636.2 K at 30% H2. In the emission measurement, the carbon monoxide rate decreased from 15 ppm at 0% H2 to 8 ppm at 30% H2, the carbon dioxide rate was measured between 2.6-2.8% and the nitrogen oxide rate was measured between 10-13 ppm. In the numerical analysis, the thermal output of the boiler changed from 13 kW to 14.7 kW for an equivalence ratio of 0.7.

Proje Numarası

FDK-2022-7756

Kaynakça

  • [1] IEA, “CO2 emissions in 2022”, https://www.iea.org/reports/co2-emissions-in-2022, (2023).
  • [2] Dinçer İ. ve Ezan M.A, “Alternatif enerji kaynakları ve doğal gaz lojistiği raporu”, Türkiye Bilimler Akademisi Yayınları, TÜBA Raporları No: 52. https://www.tuba.gov.tr/files/yayinlar/raporlar/TUBA-978-625-8352-60-3.pdf, (2023).
  • [3] Dinçer İ., Javani N., Sorgulu F. ve Öztürk M., “Türkiye’de yeşil hidrojenin üretilip doğal gaza karıştırılması çalışmaları”, Hidrojen Teknolojileri Derneği, https://www.hidrojenteknolojileri.org/HTD/Yesil_Hidrojenin_Uretilip_Dogal_Gaza_Karistirilmasi_Calismalari.pdf, (2021).
  • [4] Zhao Y., McDonnell V. and Samuelsen S., “Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated biogas or hydrogen”, International Journal of Hydrogen Energy, 45(19): 11368-11379, (2020).
  • [5] Manimaran R. “Numerical investigations of hydrogen and air mixture with vortex tube and duct combinations”, International Journal of Hydrogen Energy, 46(36): 19140-19157, (2021).
  • [6] Araoye A.A., Abdelhafez A., Nemitallah M.A., Habib M.A. and Ben-Mansour R., “Experimental and numerical investigation of stability and emissions of hydrogen-assisted oxymethane flames in a multi-hole model gas-turbine burner”, International Journal of Hydrogen Energy, 46(38): 20093-20106, (2021).
  • [7] Ortiz-Imedio R., Ortiz A., Urroz J.C., Dieguez P.M., Gorri D., Gandia L.M. and Ortiz I., “Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine”, International Journal of Hydrogen Energy, 46: 17572-17586, (2021).
  • [8] Bai N.J., Fan W.J., Zhang R.C., Zou Z.P., Zhang C.X. and Yan P.L., “Numerical investigation into the structural characteristics of a hydrogen dual-swirl combustor with slight temperature rise combustion”, International Journal of Hydrogen Energy, 46(43): 22646-22658, (2021).
  • [9] Mayrhofer M., Hochenauer C., Koller M., Seemann P. and Prieler R., “Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces”, International Journal of Hydrogen Energy, 46(41): 21672-21686, (2021).
  • [10] Boulahlib M.S., Medaerts F. and Boukhalfa M.A., “Experimental study of a domestic boiler using hydrogen methane blend and fuel-rich staged combustion”, International Journal of Hydrogen Energy, 46: 37628-37640, (2021).
  • [11] Yılmaz İ., Taştan M., İlbaş M. and Tarhan C., “Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames”, Energy Conversion and Management, 72: 179-186, (2013).
  • [12] İlbaş M. and Karyeyen S., “A numerical study on combustion behaviors of hydrogen-enriched low calorific value coal gases”, International Journal of Hydrogen Energy, 40: 15218-15226, (2015).
  • [13] Karyeyen S. and İlbaş M., “Turbulent diffusion flames of coal derived hydrogen supplied low calorific value syngas mixtures in a new type of burner: An experimental study”, International Journal of Hydrogen Energy, 42: 2411-2423, (2017).
  • [14] İlbaş M. and Karyeyen S., “An experimental and numerical study on turbulent combustion of hydrogen-rich coal gases in a generated non-premixed burner”, Fuel, 194: 274-290, (2017).
  • [15] Karyeyen S. and İlbaş M., “Application of distributed combustion technique to hydrogen-rich coal gases: A numerical investigation”, International Journal of Hydrogen Energy, 45: 3641-3650, (2020).
  • [16] İlbaş M., Kekul O., Bektaş A. and Karyeyen S., “Oxidizer effects on ammonia combustion using a generated non-premixed burner”, International Journal of Hydrogen Energy, 47: 12317-12337, (2022).
  • [17] Amez I., Castells B., Llamas B., Bolonio D., GarcíaMartínez M.J., Lorenzo J.L., García-Torrent J. and Ortega M., “Experimental study of biogas–hydrogen mixtures combustion in conventional natural gas systems”, Applied Science, 11: 6513, (2021).
  • [18] Çeper B.A., “Use of hydrogen-methane blends in internal combustion engines”, Hydrogen Energy-Challenges and Perspectives, IntechOpen; (2021).
  • [19] Riahi Z., Hraiech I., Sautet J.C. and Nasrallah S.B., “Experimental and numerical study of oxidant effect on hythane combustion”, International Journal of Hydrogen Energy, 47: 8105-8117, (2022).
  • [20] Sandalcı T., Işın Ö., Galata S., Karagöz Y. and Güler İ., “Effect of hythane enrichment on performance, emission and combustion characteristics of an ci engine”, International Journal of Hydrogen Energy, 44: 3208-3220, (2019).
  • [21] Ozturk M. and Dincer I., “System development and assessment for green hydrogen generation and blending with natural gas”, Energy, 261: 125233, (2022).
  • [22] İlbaş M., Crayford A.P., Yılmaz İ., Bowen P.J. and Syred N., “Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: An experimental study”, International Journal of Hydrogen Energy, 31: 1768-1779, (2006).
  • [23] Yılmaz İ. and İlbaş M., “An experimental study on hydrogen–methane mixtured fuels”, International Communications in Heat and Mass Transfer, 35: 178-187, (2008).
  • [24] Götz M., Lefebvre J., Mörs F., McDaniel Koch A., Graf F., Bajohr S., Reimert R. and Kolb T., “Renewable Power-to-Gas: A Technological and economic review”, Renewable Energy, 85: 1371-1390, (2016).
  • [25] Birkitt K., Loo-Morrey M., Sanchez C. and O’Sullivan L., “Materials aspects associated with the addition of up to 20 mol% hydrogen into an existing natural gas distribution network”, International Journal of Hydrogen Energy, 46(23): 12290-12299, (2021).
  • [26] Ozturk M. and Dinçer İ., “Development of renewable energy system integrated with hydrogen and natural gas subsystems for cleaner combustion”, Journal of Natural Gas Science and Engineering, 83: 103583, (2020).
  • [27] Zhao Y., McDonell S. and Samuelsen S., “Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cook top burner”, International Journal of Hydrogen Energy, 44(23): 12239-12253, (2019).
  • [28] Ozturk M., Sorgulu F., Javani N. and Dincer I., “An experimental study on the environmental impact of hydrogen and natural gas blend burning”, Chemosphere, 329: 138671, (2023).
  • [29] Sorgulu F., Ozturk M., Javani N. and Dincer I. “Experimental investigation for combustion performance of hydrogen and natural gas fuel blends”, International Journal of Hydrogen Energy, 48: 34476-34485, (2023).
  • [30] Choudhury V.G., McDonell S. and Samuelsen S., “Combustion performance of low-NOx and conventional storage water heaters operated on hydrogen enriched natural gas”, International Journal of Hydrogen Energy, 45(3): 2405-2417, (2020).
  • [31] Zhan X., Chen Z. and Qin C., “Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner”, Case Studies in Thermal Engineering, 37: 102246, (2022).
  • [32] Yan R., Gao W., Zhang Y. and Zhang J., “Combustion performance tests of hydrogen-natural gas mixtures as fuels in domestic gas appliances”, Natural Gas Industry, 38(2): 119-124, (2018).
  • [33] İlbaş M., Candan G., “Küçük bir girdaplı yakıcı ve fırında CO2 seyreltmesinin alev stabilizasyonu ve NOx emisyonu üzerinde”, Politeknik Dergisi, 26(2): 603-608, (2023).
  • [34] Sahın B., Doner N. ve Ilbas M., “Flame and flow analysis of LPG in household cookers with rectangular ports”, Politeknik Dergisi, 27(3): 1121-1128, (2024).
  • [35] Variyenli H.İ. and Khanlari A., “Analyzing the environmental effects of conventional and condensing combi boilers using natural gas”, Politeknik Dergisi, 23(4): 1277-1284, (2020).
  • [36] El-Mahallawy F. and El-Din Habik S., “Fundamentals and Technology of Combustion”, First Edition, Elsevier, (2002).
  • [37] ANSYS fluent theory guide 19.2, ANSYS Inc., (2018).
  • [38] Yılmaz H., Karyeyen S., Tepe A.Ü. and Brüggemann D., “Colourless distributed combustion characteristics of hydrogen/air mixtures in a micro combustor”, Fuel, 332: 126163, (2023).
  • [39] İlbaş M., Akyıldız S., Karyeyen S. and Aktaş A., “Conventional and distributed combustion regime on a model thermoelectir generator (TEG) performance using a swirl burner/furnace”, Fuel, 347: 128487, (2023).
  • [40] Cam O., Yilmaz H., Tangoz S. and Yilmaz I., “A numerical study on combustion and emission characteristics of premixed hydrogen air flames”, International Journal of Hydrogen Energy, 42: 25801-25811, (2017).

Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1559852

Öz

Enerji; hızlı nüfus artışı, sanayideki önemli gelişmeler, şehirleşme, kaynakların plansız kullanılması ve küreselleşme sonucu değişen üretim ve tüketim metodolojisi nedeniyle önemini artırarak korumakta ve günümüzün en önemli sorunlarından biri haline dönüşmektedir. Bu çalışmada, metan-hidrojen yakıt karışımının yanmasının ev tipi kombi brülöründe herhangi fiziksel değişime ve performans kaybına neden olmadan kullanılabilirliği deneysel olarak araştırılmış ve sayısal olarak modellenmiştir. Çalışma iki aşamadan meydana gelmektedir. Birinci aşamada hidrojen-metan yakıt karışımı kondenzasyonlu hermetik tip kombide deneysel olarak yakılmıştır. İkinci aşamada ise bir CFD programında yanma modellenmiştir. Sayısal analizde realizable κ-ε türbülans modeli, Eddy-dissipation yanma modeli ve Gri-Mech 3.0 kimyasal kinetiğinde 4 basamaklı metan (CH4) ile 9 basamaklı hidrojen (H2) yanma reaksiyonları kullanılmıştır. CH4-H2 yanmasında CH4 miktarı 20 Sl/dk değerinde sabit tutulmuş, oluşturulan yakıt karışımında hidrojen, hacimce %0 ile %30 arasında %10’arlık artışlarla eklenmiştir. Yanma odasından alınan sıcaklık ölçümlerinde %0 H2’de 571.1 K’den %30 H2’de 636.2 K’e yükselmiştir. Yapılan emisyon değerleri ölçümünde karbon monoksit oranı %0 H2’de 15 ppm’den %30 H2’de 8 ppm seviyelerine inmiş, karbon dioksit oranı %2.6-2.8 değerleri, azot oksit oranı ise 10-13 ppm seviyeleri arasında ölçülmüştür. Sayısal analizde eşdeğerlik oranı 0.7 için kombinin ısıl güç değeri 13 kW’tan 14.7 kW’a doğru değişim göstermiştir.

Destekleyen Kurum

Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

FDK-2022-7756

Kaynakça

  • [1] IEA, “CO2 emissions in 2022”, https://www.iea.org/reports/co2-emissions-in-2022, (2023).
  • [2] Dinçer İ. ve Ezan M.A, “Alternatif enerji kaynakları ve doğal gaz lojistiği raporu”, Türkiye Bilimler Akademisi Yayınları, TÜBA Raporları No: 52. https://www.tuba.gov.tr/files/yayinlar/raporlar/TUBA-978-625-8352-60-3.pdf, (2023).
  • [3] Dinçer İ., Javani N., Sorgulu F. ve Öztürk M., “Türkiye’de yeşil hidrojenin üretilip doğal gaza karıştırılması çalışmaları”, Hidrojen Teknolojileri Derneği, https://www.hidrojenteknolojileri.org/HTD/Yesil_Hidrojenin_Uretilip_Dogal_Gaza_Karistirilmasi_Calismalari.pdf, (2021).
  • [4] Zhao Y., McDonnell V. and Samuelsen S., “Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated biogas or hydrogen”, International Journal of Hydrogen Energy, 45(19): 11368-11379, (2020).
  • [5] Manimaran R. “Numerical investigations of hydrogen and air mixture with vortex tube and duct combinations”, International Journal of Hydrogen Energy, 46(36): 19140-19157, (2021).
  • [6] Araoye A.A., Abdelhafez A., Nemitallah M.A., Habib M.A. and Ben-Mansour R., “Experimental and numerical investigation of stability and emissions of hydrogen-assisted oxymethane flames in a multi-hole model gas-turbine burner”, International Journal of Hydrogen Energy, 46(38): 20093-20106, (2021).
  • [7] Ortiz-Imedio R., Ortiz A., Urroz J.C., Dieguez P.M., Gorri D., Gandia L.M. and Ortiz I., “Comparative performance of coke oven gas, hydrogen and methane in a spark ignition engine”, International Journal of Hydrogen Energy, 46: 17572-17586, (2021).
  • [8] Bai N.J., Fan W.J., Zhang R.C., Zou Z.P., Zhang C.X. and Yan P.L., “Numerical investigation into the structural characteristics of a hydrogen dual-swirl combustor with slight temperature rise combustion”, International Journal of Hydrogen Energy, 46(43): 22646-22658, (2021).
  • [9] Mayrhofer M., Hochenauer C., Koller M., Seemann P. and Prieler R., “Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces”, International Journal of Hydrogen Energy, 46(41): 21672-21686, (2021).
  • [10] Boulahlib M.S., Medaerts F. and Boukhalfa M.A., “Experimental study of a domestic boiler using hydrogen methane blend and fuel-rich staged combustion”, International Journal of Hydrogen Energy, 46: 37628-37640, (2021).
  • [11] Yılmaz İ., Taştan M., İlbaş M. and Tarhan C., “Effect of turbulence and radiation models on combustion characteristics in propane–hydrogen diffusion flames”, Energy Conversion and Management, 72: 179-186, (2013).
  • [12] İlbaş M. and Karyeyen S., “A numerical study on combustion behaviors of hydrogen-enriched low calorific value coal gases”, International Journal of Hydrogen Energy, 40: 15218-15226, (2015).
  • [13] Karyeyen S. and İlbaş M., “Turbulent diffusion flames of coal derived hydrogen supplied low calorific value syngas mixtures in a new type of burner: An experimental study”, International Journal of Hydrogen Energy, 42: 2411-2423, (2017).
  • [14] İlbaş M. and Karyeyen S., “An experimental and numerical study on turbulent combustion of hydrogen-rich coal gases in a generated non-premixed burner”, Fuel, 194: 274-290, (2017).
  • [15] Karyeyen S. and İlbaş M., “Application of distributed combustion technique to hydrogen-rich coal gases: A numerical investigation”, International Journal of Hydrogen Energy, 45: 3641-3650, (2020).
  • [16] İlbaş M., Kekul O., Bektaş A. and Karyeyen S., “Oxidizer effects on ammonia combustion using a generated non-premixed burner”, International Journal of Hydrogen Energy, 47: 12317-12337, (2022).
  • [17] Amez I., Castells B., Llamas B., Bolonio D., GarcíaMartínez M.J., Lorenzo J.L., García-Torrent J. and Ortega M., “Experimental study of biogas–hydrogen mixtures combustion in conventional natural gas systems”, Applied Science, 11: 6513, (2021).
  • [18] Çeper B.A., “Use of hydrogen-methane blends in internal combustion engines”, Hydrogen Energy-Challenges and Perspectives, IntechOpen; (2021).
  • [19] Riahi Z., Hraiech I., Sautet J.C. and Nasrallah S.B., “Experimental and numerical study of oxidant effect on hythane combustion”, International Journal of Hydrogen Energy, 47: 8105-8117, (2022).
  • [20] Sandalcı T., Işın Ö., Galata S., Karagöz Y. and Güler İ., “Effect of hythane enrichment on performance, emission and combustion characteristics of an ci engine”, International Journal of Hydrogen Energy, 44: 3208-3220, (2019).
  • [21] Ozturk M. and Dincer I., “System development and assessment for green hydrogen generation and blending with natural gas”, Energy, 261: 125233, (2022).
  • [22] İlbaş M., Crayford A.P., Yılmaz İ., Bowen P.J. and Syred N., “Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: An experimental study”, International Journal of Hydrogen Energy, 31: 1768-1779, (2006).
  • [23] Yılmaz İ. and İlbaş M., “An experimental study on hydrogen–methane mixtured fuels”, International Communications in Heat and Mass Transfer, 35: 178-187, (2008).
  • [24] Götz M., Lefebvre J., Mörs F., McDaniel Koch A., Graf F., Bajohr S., Reimert R. and Kolb T., “Renewable Power-to-Gas: A Technological and economic review”, Renewable Energy, 85: 1371-1390, (2016).
  • [25] Birkitt K., Loo-Morrey M., Sanchez C. and O’Sullivan L., “Materials aspects associated with the addition of up to 20 mol% hydrogen into an existing natural gas distribution network”, International Journal of Hydrogen Energy, 46(23): 12290-12299, (2021).
  • [26] Ozturk M. and Dinçer İ., “Development of renewable energy system integrated with hydrogen and natural gas subsystems for cleaner combustion”, Journal of Natural Gas Science and Engineering, 83: 103583, (2020).
  • [27] Zhao Y., McDonell S. and Samuelsen S., “Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cook top burner”, International Journal of Hydrogen Energy, 44(23): 12239-12253, (2019).
  • [28] Ozturk M., Sorgulu F., Javani N. and Dincer I., “An experimental study on the environmental impact of hydrogen and natural gas blend burning”, Chemosphere, 329: 138671, (2023).
  • [29] Sorgulu F., Ozturk M., Javani N. and Dincer I. “Experimental investigation for combustion performance of hydrogen and natural gas fuel blends”, International Journal of Hydrogen Energy, 48: 34476-34485, (2023).
  • [30] Choudhury V.G., McDonell S. and Samuelsen S., “Combustion performance of low-NOx and conventional storage water heaters operated on hydrogen enriched natural gas”, International Journal of Hydrogen Energy, 45(3): 2405-2417, (2020).
  • [31] Zhan X., Chen Z. and Qin C., “Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner”, Case Studies in Thermal Engineering, 37: 102246, (2022).
  • [32] Yan R., Gao W., Zhang Y. and Zhang J., “Combustion performance tests of hydrogen-natural gas mixtures as fuels in domestic gas appliances”, Natural Gas Industry, 38(2): 119-124, (2018).
  • [33] İlbaş M., Candan G., “Küçük bir girdaplı yakıcı ve fırında CO2 seyreltmesinin alev stabilizasyonu ve NOx emisyonu üzerinde”, Politeknik Dergisi, 26(2): 603-608, (2023).
  • [34] Sahın B., Doner N. ve Ilbas M., “Flame and flow analysis of LPG in household cookers with rectangular ports”, Politeknik Dergisi, 27(3): 1121-1128, (2024).
  • [35] Variyenli H.İ. and Khanlari A., “Analyzing the environmental effects of conventional and condensing combi boilers using natural gas”, Politeknik Dergisi, 23(4): 1277-1284, (2020).
  • [36] El-Mahallawy F. and El-Din Habik S., “Fundamentals and Technology of Combustion”, First Edition, Elsevier, (2002).
  • [37] ANSYS fluent theory guide 19.2, ANSYS Inc., (2018).
  • [38] Yılmaz H., Karyeyen S., Tepe A.Ü. and Brüggemann D., “Colourless distributed combustion characteristics of hydrogen/air mixtures in a micro combustor”, Fuel, 332: 126163, (2023).
  • [39] İlbaş M., Akyıldız S., Karyeyen S. and Aktaş A., “Conventional and distributed combustion regime on a model thermoelectir generator (TEG) performance using a swirl burner/furnace”, Fuel, 347: 128487, (2023).
  • [40] Cam O., Yilmaz H., Tangoz S. and Yilmaz I., “A numerical study on combustion and emission characteristics of premixed hydrogen air flames”, International Journal of Hydrogen Energy, 42: 25801-25811, (2017).
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Mert Ökten 0000-0003-0077-4471

Halil İbrahim Variyenli 0000-0001-6313-1786

Serhat Karyeyen 0000-0002-8383-5518

Koray Göktekin Bu kişi benim

Proje Numarası FDK-2022-7756
Erken Görünüm Tarihi 22 Kasım 2024
Yayımlanma Tarihi
Gönderilme Tarihi 2 Ekim 2024
Kabul Tarihi 8 Kasım 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Ökten, M., Variyenli, H. İ., Karyeyen, S., Göktekin, K. (2024). Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1559852
AMA Ökten M, Variyenli Hİ, Karyeyen S, Göktekin K. Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi. Politeknik Dergisi. Published online 01 Kasım 2024:1-1. doi:10.2339/politeknik.1559852
Chicago Ökten, Mert, Halil İbrahim Variyenli, Serhat Karyeyen, ve Koray Göktekin. “Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi”. Politeknik Dergisi, Kasım (Kasım 2024), 1-1. https://doi.org/10.2339/politeknik.1559852.
EndNote Ökten M, Variyenli Hİ, Karyeyen S, Göktekin K (01 Kasım 2024) Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi. Politeknik Dergisi 1–1.
IEEE M. Ökten, H. İ. Variyenli, S. Karyeyen, ve K. Göktekin, “Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi”, Politeknik Dergisi, ss. 1–1, Kasım 2024, doi: 10.2339/politeknik.1559852.
ISNAD Ökten, Mert vd. “Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi”. Politeknik Dergisi. Kasım 2024. 1-1. https://doi.org/10.2339/politeknik.1559852.
JAMA Ökten M, Variyenli Hİ, Karyeyen S, Göktekin K. Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi. Politeknik Dergisi. 2024;:1–1.
MLA Ökten, Mert vd. “Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1559852.
Vancouver Ökten M, Variyenli Hİ, Karyeyen S, Göktekin K. Birleşik Tip Gaz Yakıcı Cihazlarda Metan-Hidrojen Karışımının Performans Analizi. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.