Konferans Bildirisi
BibTex RIS Kaynak Göster

Fiber Metal Laminat Malzemelerde Kompozit Katman Kalınlığının Düşük Hızda Darbe Davranışına Etkisinin Sayısal ve İstatistiksel Olarak İncelenmesi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1607678

Öz

Havacılık alanında daha hafif araç tasarlayarak yakıt maliyetleri düşürmek böylelikle daha çevreci hava araçları üretmek en önemli konuların başında gelmektedir. Bu durum uçak üretici firmaların daha hafif ve dayanıklı malzeme arayaşına yöneltmiştir. Bu sebepten dolayı özellikle havacılık endüstrisinde üstün yorulma ve darbe dayanımı özelliklerinden dolayı kullanılan Fiber Metal Laminat(FML) yapılar ilgi çekmektedir. FML hibrit yapı ailesinin en özgün üyesi olan karbon elyaf takiviyeli alüminyum plakalara(CARALL) araştırmacıların ilgisini çekmektedir. Bu çalışmada farklı kompozit katman kalınlığına sahip CARALL FML yapıların farklı enerji yüklemesi(8J-12J-18J) ve farklı vurucu tiplerinde(Ø15 ve Ø20) düşük hızda darbe davranışı istatiksel olarak incelenmiştir. CARALL FML yapılar 2/1 dizilimde (Al-〖0°〗_([1])-Al, Al-〖0°〗_([3])-Al, Al-〖0°〗_([5])-Al) olacak şekilde LS-DYNA sonlu elemanlar programında modellenmiştir. Enerji yüklemesinin artmasıyla beraber Fmax tepe yükünün arttığı gözlemlenmiştir. Vurucu çapının artması absorbe edilen enerji miktarını düşürürken geri tepmeyi artırmıştır.

Kaynakça

  • [1] Uygur I., “Notch behavior and fatigue life predictions of discontinuously reinforced MMCs”, Archives of Metallurgy and Materials, 56(1): 109–115, (2011).
  • [2] Uygur I., “Tensile Behavior Of Powder Metallurgy Processed (Al-Cu-Mg-Mn) /SiCp Composites”, Iranian Journal of Science & Technology, 28(B2): 239–248, (2004).
  • [3] Uygur I., “Comparison of fatigue crack growth rates for particulate reinforcement composite and base alloy”, in Properties of Materials, I. Uygur (Ed.), Bıdge Pub, 77–87, (2023).
  • [4] Uygur I., Gulenç B., “The effect of shielding gas composition for MIG welding process on mechanical behaviour of low carbon steel”, Metalurgija, 43(1): 35–40, (2004).
  • [5] Uygur I., Evans W., Bache M., Gülenç B., “The fatigue behaviour of aluminium alloy 2124 reinforced with SiC particulates”, Metallofizyka i Novejshie Tekhnologii, 26(7): 927–939, (2004).
  • [6] Uygur I., Dogan I., “The effect of TIG welding on microstructure and mechanical properties of a butt-joined-unalloyed titanium”, Metalurgija, 44(2): 119–123, (2005).
  • [7] Uygur I., Cicek A., Toklu E., Kara R., Saridemir S., “Fatigue life predictions of metal matrix composites using artificial neural networks”, Archives of Metallurgy and Materials, 59(1): 97–103, (2014).
  • [8] Uygur I., “Influence of Particle Sizes and Volume Fractions on Fatigue Crack Growth Rates of Aerospace Al-Alloys Composites”, Archives of Metallurgy and Materials, 69(1): 337–341, (2024).
  • [9] Pang Y., Yan X., Yao H., Qu J., Wu L., “Experimental study of basalt fiber/steel hybrid laminates under low-velocity impact”, Engineering Fracture Mechanics, 259: 108169, (2022).
  • [10] Bienias J., Jakubczak P., Dadej K., “Low-velocity impact resistance of aluminium glass laminates – Experimental and numerical investigation”, Composite Structures, 152: 339–348, (2016).
  • [11] Hou W., Li M., Zhang X., Liu Z., Sang L., “Design and optimization of the bumper beam with corrugated core structure of fiber metal laminate subjected to low-velocity impact”, Thin-Walled Structures, 187: 110746, (2023).
  • [12] Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O., “A review: Fibre metal laminates, background, bonding types and applied test methods”, Materials and Design, 32(7): 3671–3685, (2011).
  • [13] Lu B., Zhang J., Zheng D., Xie J., Zhang L., “Theoretical analysis on carbon fiber reinforced aluminum laminate under off-center impact”, International Journal of Mechanical Sciences, 248: 108247, (2023).
  • [14] Hynes N.R.J., Vignesh N.J., Jappes J.T.W., Velu P.S., Barile C., Ali M.A., Farooq M.U., Pruncu C.I., “Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation”, Composites Science and Technology, 221: 109303, (2022).
  • [15] Song S.H., Byun Y.S., Ku T.W., Song W.J., Kim J., Kang B.S., “Experimental and Numerical Investigation on Impact Performance of Carbon Reinforced Aluminum Laminates”, Journal of Materials Science & Technology, 26(4): 327–332, (2010).
  • [16] Wei S., Zhang X., Li Y., Wang T., Huang Q., Liu C., Guan H., “Study of the dynamic response and damage evolution of carbon fiber/ultra-thin stainless-steel strip fiber metal laminates under low-velocity impact”, Composite Structures, 330: 117772, (2024).
  • [17] Chai G.B., Manikandan P., “Low velocity impact response of fibre-metal laminates – A review”, Composite Structures, 107: 363–381, (2014).
  • [18] Xin H., Tao J., Xiaomin M., Xuefeng S., Xin L., “Dynamic response of single curved fiber-metal hybrid lamina composites subject to low-velocity impact”, International Journal of Impact Engineering, 164: 104209, (2022).
  • [19] Sharma A.P., Khan S.H., Kitey R., Parameswaran V., “Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates”, Polymer Testing, 65: 301–312, (2018).
  • [20] Seyed Yaghoubi A., Liu Y., Liaw B., “Low-Velocity Impact on GLARE 5 Fiber-Metal Laminates: Influences of Specimen Thickness and Impactor Mass”, Journal of Aerospace Engineering, 25(3): 409–420, (2012).
  • [21] Laliberté J.F., Straznicky P.V., Poon C., “Impact Damage in Fiber Metal Laminates, Part 1: Experiment”, AIAA Journal, 43(11): 2445–2453, (2005).
  • [22] Fan J., Cantwell W.J., Guan Z.W., “The low-velocity impact response of fiber-metal laminates”, Journal of Reinforced Plastics and Composites, 30(1): 26–35, (2010).
  • [23] Atas C., “An Experimental Investigation on the Impact Response of Fiberglass/Aluminum Composites”, Journal of Reinforced Plastics and Composites, 26(14): 1479–1491, (2007).
  • [24] Sadighi M., Pärnänen T., Alderliesten R.C., Sayeaftabi M., Benedictus R., “Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates”, Applied Composite Materials, 19(3–4): 545–559, (2012).
  • [25] Mohagheghian I., McShane G.J., Stronge W.J., “Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence”, International Journal of Impact Engineering, 80: 162–176, (2015).
  • [26] Ferrante L., Sarasini F., Tirillò J., Lampani L., Valente T., Gaudenzi P., “Low velocity impact response of basalt-aluminium fibre metal laminates”, Materials & Design, 98: 98–107, (2016).
  • [27] De Cicco D., Asaee Z., Taheri F., “Low-velocity impact damage response of fiberglass/magnesium fiber-metal laminates under different size and shape impactors”, Mechanics of Advanced Materials and Structures, 24(7): 545–555, (2017).
  • [28] Yao L., Wang C., He W., Lu S., Xie D., “Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches”, Thin-Walled Structures, 145: 106399, (2019).
  • [29] Hallquist J.O., LS-DYNA® Theory Manual, (2006).
  • [30] Dhaliwal G.S., Newaz G.M., “Modeling Low Velocity Impact Response of Carbon Fiber Reinforced Aluminum Laminates (CARALL)”, Journal of Dynamic Behavior of Materials, 2(2): 181–193, (2016).
  • [31] Dündar M., Uygur İ., Ekici E., “Optimization of low-velocity impact behavior of FML structures at different environmental temperatures using taguchi method and grey relational analysis”, Journal of Composite Materials, 59(7): 885–906, (2025).
  • [32] Bieniaś J., Jakubczak P., “Impact damage growth in carbon fibre aluminium laminates”, Composite Structures, 172: 147–154, (2017).
  • [33] Sevkat E., Liaw B., Delale F., “Drop-weight impact response of hybrid composites impacted by impactor of various geometries”, Materials & Design (1980–2015), 52: 67–77, (2013).
  • [34] Nakatani H., Kosaka T., Osaka K., Sawada Y., “Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact”, Composites Part A: Applied Science and Manufacturing, 42(7): 772–781, (2011).
  • [35] Fathi A., Liaghat G., Sabouri H., “An experimental investigation on the effect of incorporating graphene nanoplatelets on the low-velocity impact behavior of fiber metal laminates”, Thin-Walled Structures, 167: 108162, (2021).

Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1607678

Öz

In the field of aviation, reducing fuel costs by designing lighter vehicles and thus producing more environmentally friendly aircraft is one of the most important issues. This situation has led aircraft manufacturers to search for lighter and more durable materials. For this reason, Fibre Metal Laminate (FML) structures, which are used especially in the aerospace industry due to their superior fatigue and impact resistance properties, attract attention. Carbon fibre reinforced aluminium plates (CARALL), the most unique member of the FML hybrid structure family, has attracted the attention of researchers. In this study, the low velocity impact behaviour of CARALL FML structures with different composite layer thicknesses at different energy loading (8J-12J-18J) and different impactor types (Ø15 and Ø20) were statistically investigated. CARALL FML structures were modelled in 2/1 arrangement (Al-〖0°〗_([1])-Al, Al-〖0°〗_([3])-Al, Al-〖0°〗_([5])-Al) in LS-DYNA finite element programme. It is observed that the peak load Fmax increases with increasing energy loading. The increase in striker diameter decreased the amount of absorbed energy and increased the rebound.

Kaynakça

  • [1] Uygur I., “Notch behavior and fatigue life predictions of discontinuously reinforced MMCs”, Archives of Metallurgy and Materials, 56(1): 109–115, (2011).
  • [2] Uygur I., “Tensile Behavior Of Powder Metallurgy Processed (Al-Cu-Mg-Mn) /SiCp Composites”, Iranian Journal of Science & Technology, 28(B2): 239–248, (2004).
  • [3] Uygur I., “Comparison of fatigue crack growth rates for particulate reinforcement composite and base alloy”, in Properties of Materials, I. Uygur (Ed.), Bıdge Pub, 77–87, (2023).
  • [4] Uygur I., Gulenç B., “The effect of shielding gas composition for MIG welding process on mechanical behaviour of low carbon steel”, Metalurgija, 43(1): 35–40, (2004).
  • [5] Uygur I., Evans W., Bache M., Gülenç B., “The fatigue behaviour of aluminium alloy 2124 reinforced with SiC particulates”, Metallofizyka i Novejshie Tekhnologii, 26(7): 927–939, (2004).
  • [6] Uygur I., Dogan I., “The effect of TIG welding on microstructure and mechanical properties of a butt-joined-unalloyed titanium”, Metalurgija, 44(2): 119–123, (2005).
  • [7] Uygur I., Cicek A., Toklu E., Kara R., Saridemir S., “Fatigue life predictions of metal matrix composites using artificial neural networks”, Archives of Metallurgy and Materials, 59(1): 97–103, (2014).
  • [8] Uygur I., “Influence of Particle Sizes and Volume Fractions on Fatigue Crack Growth Rates of Aerospace Al-Alloys Composites”, Archives of Metallurgy and Materials, 69(1): 337–341, (2024).
  • [9] Pang Y., Yan X., Yao H., Qu J., Wu L., “Experimental study of basalt fiber/steel hybrid laminates under low-velocity impact”, Engineering Fracture Mechanics, 259: 108169, (2022).
  • [10] Bienias J., Jakubczak P., Dadej K., “Low-velocity impact resistance of aluminium glass laminates – Experimental and numerical investigation”, Composite Structures, 152: 339–348, (2016).
  • [11] Hou W., Li M., Zhang X., Liu Z., Sang L., “Design and optimization of the bumper beam with corrugated core structure of fiber metal laminate subjected to low-velocity impact”, Thin-Walled Structures, 187: 110746, (2023).
  • [12] Sinmazçelik T., Avcu E., Bora M.Ö., Çoban O., “A review: Fibre metal laminates, background, bonding types and applied test methods”, Materials and Design, 32(7): 3671–3685, (2011).
  • [13] Lu B., Zhang J., Zheng D., Xie J., Zhang L., “Theoretical analysis on carbon fiber reinforced aluminum laminate under off-center impact”, International Journal of Mechanical Sciences, 248: 108247, (2023).
  • [14] Hynes N.R.J., Vignesh N.J., Jappes J.T.W., Velu P.S., Barile C., Ali M.A., Farooq M.U., Pruncu C.I., “Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation”, Composites Science and Technology, 221: 109303, (2022).
  • [15] Song S.H., Byun Y.S., Ku T.W., Song W.J., Kim J., Kang B.S., “Experimental and Numerical Investigation on Impact Performance of Carbon Reinforced Aluminum Laminates”, Journal of Materials Science & Technology, 26(4): 327–332, (2010).
  • [16] Wei S., Zhang X., Li Y., Wang T., Huang Q., Liu C., Guan H., “Study of the dynamic response and damage evolution of carbon fiber/ultra-thin stainless-steel strip fiber metal laminates under low-velocity impact”, Composite Structures, 330: 117772, (2024).
  • [17] Chai G.B., Manikandan P., “Low velocity impact response of fibre-metal laminates – A review”, Composite Structures, 107: 363–381, (2014).
  • [18] Xin H., Tao J., Xiaomin M., Xuefeng S., Xin L., “Dynamic response of single curved fiber-metal hybrid lamina composites subject to low-velocity impact”, International Journal of Impact Engineering, 164: 104209, (2022).
  • [19] Sharma A.P., Khan S.H., Kitey R., Parameswaran V., “Effect of through thickness metal layer distribution on the low velocity impact response of fiber metal laminates”, Polymer Testing, 65: 301–312, (2018).
  • [20] Seyed Yaghoubi A., Liu Y., Liaw B., “Low-Velocity Impact on GLARE 5 Fiber-Metal Laminates: Influences of Specimen Thickness and Impactor Mass”, Journal of Aerospace Engineering, 25(3): 409–420, (2012).
  • [21] Laliberté J.F., Straznicky P.V., Poon C., “Impact Damage in Fiber Metal Laminates, Part 1: Experiment”, AIAA Journal, 43(11): 2445–2453, (2005).
  • [22] Fan J., Cantwell W.J., Guan Z.W., “The low-velocity impact response of fiber-metal laminates”, Journal of Reinforced Plastics and Composites, 30(1): 26–35, (2010).
  • [23] Atas C., “An Experimental Investigation on the Impact Response of Fiberglass/Aluminum Composites”, Journal of Reinforced Plastics and Composites, 26(14): 1479–1491, (2007).
  • [24] Sadighi M., Pärnänen T., Alderliesten R.C., Sayeaftabi M., Benedictus R., “Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates”, Applied Composite Materials, 19(3–4): 545–559, (2012).
  • [25] Mohagheghian I., McShane G.J., Stronge W.J., “Impact perforation of monolithic polyethylene plates: Projectile nose shape dependence”, International Journal of Impact Engineering, 80: 162–176, (2015).
  • [26] Ferrante L., Sarasini F., Tirillò J., Lampani L., Valente T., Gaudenzi P., “Low velocity impact response of basalt-aluminium fibre metal laminates”, Materials & Design, 98: 98–107, (2016).
  • [27] De Cicco D., Asaee Z., Taheri F., “Low-velocity impact damage response of fiberglass/magnesium fiber-metal laminates under different size and shape impactors”, Mechanics of Advanced Materials and Structures, 24(7): 545–555, (2017).
  • [28] Yao L., Wang C., He W., Lu S., Xie D., “Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches”, Thin-Walled Structures, 145: 106399, (2019).
  • [29] Hallquist J.O., LS-DYNA® Theory Manual, (2006).
  • [30] Dhaliwal G.S., Newaz G.M., “Modeling Low Velocity Impact Response of Carbon Fiber Reinforced Aluminum Laminates (CARALL)”, Journal of Dynamic Behavior of Materials, 2(2): 181–193, (2016).
  • [31] Dündar M., Uygur İ., Ekici E., “Optimization of low-velocity impact behavior of FML structures at different environmental temperatures using taguchi method and grey relational analysis”, Journal of Composite Materials, 59(7): 885–906, (2025).
  • [32] Bieniaś J., Jakubczak P., “Impact damage growth in carbon fibre aluminium laminates”, Composite Structures, 172: 147–154, (2017).
  • [33] Sevkat E., Liaw B., Delale F., “Drop-weight impact response of hybrid composites impacted by impactor of various geometries”, Materials & Design (1980–2015), 52: 67–77, (2013).
  • [34] Nakatani H., Kosaka T., Osaka K., Sawada Y., “Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact”, Composites Part A: Applied Science and Manufacturing, 42(7): 772–781, (2011).
  • [35] Fathi A., Liaghat G., Sabouri H., “An experimental investigation on the effect of incorporating graphene nanoplatelets on the low-velocity impact behavior of fiber metal laminates”, Thin-Walled Structures, 167: 108162, (2021).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri, Makine Mühendisliğinde Sayısal Yöntemler, Malzeme Tasarım ve Davranışları, Kompozit ve Hibrit Malzemeler, Havacılık Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Dündar 0000-0002-3956-8088

İlyas Uygur 0000-0002-8744-5082

Ergün Ekici 0000-0002-5217-872X

Cihat Taşçıoğlu 0000-0002-6770-8308

Behçet Gülenç 0000-0001-8434-8183

Erken Görünüm Tarihi 22 Mayıs 2025
Yayımlanma Tarihi 17 Kasım 2025
Gönderilme Tarihi 26 Aralık 2024
Kabul Tarihi 10 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Dündar, M., Uygur, İ., Ekici, E., … Taşçıoğlu, C. (2025). Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1607678
AMA Dündar M, Uygur İ, Ekici E, Taşçıoğlu C, Gülenç B. Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials. Politeknik Dergisi. Published online 01 Mayıs 2025:1-1. doi:10.2339/politeknik.1607678
Chicago Dündar, Mustafa, İlyas Uygur, Ergün Ekici, Cihat Taşçıoğlu, ve Behçet Gülenç. “Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials”. Politeknik Dergisi, Mayıs (Mayıs 2025), 1-1. https://doi.org/10.2339/politeknik.1607678.
EndNote Dündar M, Uygur İ, Ekici E, Taşçıoğlu C, Gülenç B (01 Mayıs 2025) Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials. Politeknik Dergisi 1–1.
IEEE M. Dündar, İ. Uygur, E. Ekici, C. Taşçıoğlu, ve B. Gülenç, “Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials”, Politeknik Dergisi, ss. 1–1, Mayıs2025, doi: 10.2339/politeknik.1607678.
ISNAD Dündar, Mustafa vd. “Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials”. Politeknik Dergisi. Mayıs2025. 1-1. https://doi.org/10.2339/politeknik.1607678.
JAMA Dündar M, Uygur İ, Ekici E, Taşçıoğlu C, Gülenç B. Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials. Politeknik Dergisi. 2025;:1–1.
MLA Dündar, Mustafa vd. “Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1607678.
Vancouver Dündar M, Uygur İ, Ekici E, Taşçıoğlu C, Gülenç B. Numerical and Statistical İnvestigation Of The Effect Of Composite Layer Thickness On Low-Velocity İmpact Behaviour in Fibre Metal Laminate Materials. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.