Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Kimyasal Aktifleştiriciler Kullanılarak Bezelye Proteininden Azot Katkılı Aktif Karbon Eldesi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1718141

Öz

Bu çalışma, KOH, K2CO3 ve ZnCl2 olmak üzere üç farklı aktifleştirici ajanın sistematik karşılaştırması yapılarak ilk defa bezelye proteininden azot katkılı karbon eldesini ortaya koymaktadır. N-katkılı aktif karbonlar, bezelye proteininin karbonlaştırılması ve kimyasal aktivasyon işlemlerini içeren iki aşamalı bir ısıl proses ile elde edilmiştir. XPS analizine göre, sentezlenmiş örneklerdeki yüzey azot yüzdeleri %3,7 ile %6,8 arasında değişmekte olup en yüksek katkılama oranı ZnCl2 ile elde edilmiştir. Yüksek çözünürlüklü XPS taramaları, azotun karbon örgüsüne çoğunlukla piridinik, pirolik ve grafitik formlarda olmak üzere başarılı bir şekilde eklemlendiğini göstermiştir. Azot adsorpsiyon deneylerine göre KOH ile aktifleştirilmiş karbon 985 m2/g ile en yüksek yüzey alanına sahip olup, bu değer K2CO3 ile elde edilen ikinci en yüksek yüzey alanından yaklaşık on kat daha yüksektir. Aktifleştirme işlemleri sonucu elde edilen gözeneklerin boyut dağılımları dar olup 4 nm civarında odaklanmakta, ancak istisna olarak ZnCl2 ile aktifleştirilen karbon makrogözenekli bir yapı sergilemektedir. SEM görüntüleri de düz karbon yüzeyinde kimyasal aşınıma bağlı gözenek oluşumlarını açıkça göstermektedir. Sonuçlar bezelye proteinin azot katkılı karbon eldesi için mükemmel bir kaynak olduğunu göstermektedir. Farklı aktifleştirici ajanlar arasından KOH, daha düşük azot katkısına neden olsa da yüksek yüzey alanı eldesi için en etkili seçenektir.

Kaynakça

  • [1] Yang Z., Li Y., Zhang X., Cui X., He S., Liang H. and Ding A., “Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate”, Chem. Eng. J., 384: 123319 (2020).
  • [2] Sun Z., Zhang Y., Guo S., Shi J., Shi C., Qu K., Qi H., Huang Z., Murugadoss V., Huang M. and Guo Z., “Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment”, Adv. Compos. Hybrid Mater., 5: 1566–1581 (2022).
  • [3] Fu Y., Shen Y., Zhang Z., Ge X. and Chen M., “Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption”, Sci. Total Environ., 646: 1567-1577 (2019).
  • [4] Bedin K. C., Martins A. C., Cazetta A. L., Pezoti O. and Almeida V. C., “KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal”, Chem. Eng. J., 286: 476-484 (2016).
  • [5] Peng X., Hu F., Zhang T., Qiu F. and Dai H., “Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study”, Bioresour. Technol., 249: 924-934 (2018).
  • [6] Bora M., Bhattacharjya D. and Saikia B. K., “Coal-derived activated carbon for electrochemical energy storage: Status on supercapacitor, Li-ion battery, and Li–S battery applications”, Energ. Fuel., 35: 18285–18307 (2021).
  • [7] Jeong J. -S. and Kim B. -J., “Preparation of cellulose-based activated carbon fibers with improved yield and their methylene chloride adsorption evaluation”, Molecules, 28: 6997 (2023).
  • [8] Arampatzidou A. C. and Deliyanni E. A., “Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A”, J. Colloid Interface Sci., 466: 101–112 (2016).
  • [9] Heidarinejad Z., Rahmanian O. and Heidari M., “Production of KOH-activated carbon from date press cake: effect of the activating agent on its properties and Pb(II) adsorption potential”, Desalin. Water Treat., 165: 232-243 (2019).
  • [10] Ozdemir I., Şahin M., Orhan R. and Erdem M., “Preparation and characterization of activated carbon from grape stalk by zinc chloride activation”, Fuel Process. Technol., 125: 200-206 (2014).
  • [11] Li M. and Xiao R., “Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 capture”, Fuel Process. Technol., 186: 35-39 (2019).
  • [12] Alcaniz-Monge J., Roman-Martinez, M. C. and Lillo-Rodenas M. A., “Chemical activation of lignocellulosic precursors and residues: What else to consider?”, Molecules, 27: 1630 (2022).
  • [13] Park S., Kim J. and Kwon K., “A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications”, Chem. Eng. J., 446: 137116 (2022).
  • [14] Matsagar B. M., Yang R. -X., Dutta S., Ok Y. S. and Wu K. C. -W., “Recent progress in the development of biomassderived nitrogen-doped porous carbon”, J. Mater. Chem. A, 9: 3703-3728 (2021).
  • [15] Ferrero G. A., Fuertes A. B. and Sevilla M., “From soybean residue to advanced supercapacitors”, Sci. Rep., 5: 16618 (2015).
  • [16] Faheem M., Li W., Ahmad N., Yang L., Tufail M. K., Zhou Y., Zhou L., Chen R. and Yang W., “Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries”, J. Colloid Interface Sci., 585: 328-336 (2021).
  • [17] Jia H., Zhang F., Yuan Z., Li Y., Sun P., Lu X. and Chong F., “Casein-derived nitrogen and phosphorus co-doped porous carbons via a thermochemical process of molten salt and caustic potash for supercapacitors”, J. Power Sources, 612: 234708 (2024).
  • [18] Cheng Y., Sun Q., Huang L., He Q., Zhang H., Wang P., Zhang Y., Shi S., Zhang X., Gan T., He X. and Ji H., “Protein powder derived nitrogen-doped carbon supported atomically dispersed iron sites for selective oxidation of ethylbenzene”, Dalton Trans., 50: 11711-11715 (2021).
  • [19] Gao Y., Yue Q., Gao B. and Li A., “Insight into activated carbon from different kinds of chemical activating agents: A review”, Sci. Total Environ., 746: 141094 (2020).
  • [20] Hui T. S. and Zaini M. A. A., “Potassium hydroxide activation of activated carbon: a commentary”, Carbon Lett., 16: 275-280 (2015).
  • [21] Adinata D., Daud W. M. A. W. and Aroua M. K., “Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3”, Bioresour. Technol., 98: 145-149 (2007).
  • [22] Zhao H., Zhong H., Jiang Y., Li H., Tang P., Li D. and Feng Y., “Porous ZnCl2-activated carbon from shaddock peel: Methylene blue adsorption behavior”, Materials, 15: 895 (2022).
  • [23] Lee L. Z. and Zaini M. A. A., “Metal chloride salts in the preparation of activated carbon and their hazardous outlook”, Desalin. Water Treat., 57: 16078–16085 (2016).
  • [24] Zhao H., Shen C., Wu Z., Zhang Z. and Xu C., “Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products”, J. Food Biochem., 44: e13157 (2020).
  • [25] Shanthakumar P., Klepacka J., Bains A., Chawla P., Dhull S. B. and Najda A., “The current situation of pea protein and its application in the food industry, Molecules, 27: 5354 (2022).
  • [26] Krefting J., “The appeal of pea protein”, JREN, 27: e31-e33 (2017).
  • [27] https://veggy.com.tr/veggy/bezelye-proteini/, Last accessed: 22.09.2025.
  • [28] Zhang J., Kuang S., Nian S. and Wang G., “The effect of carbonization temperature on the electrocatalytic performance of nitrogen-doped porous carbon as counter electrode of dye-sensitized solar cells”, J. Mater. Sci.: Mater. Electron., 26: 6913–6919 (2015).
  • [29] Lakhi K. S., Park D. -H., Joseph S., Talapaneni S. N., Ravon U., Al-Bahily K. and Vinu A., “Effect of heat treatment on the nitrogen content and its role on the CO2 adsorption capacity of highly ordered mesoporous carbon nitride”, Chem. Asian J., 12: 595-604 (2017).
  • [30] Lu Z. X., He J. F., Zhang Y. C. and Bing D. J., “Composition, physicochemical properties of pea protein and its application in functional foods”, Crit. Rev. Food Sci., 60: 2593-2605 (2020).
  • [31] Kim J. -H., Lee G., Park J. -E. and Kim S. -H., “Limitation of K2CO3 as a chemical agent for upgrading activated carbon, Processes, 9: 1000 (2021).
  • [32] Nie Z., Huang Y., Ma B., Qiu X., Zhang N., Xie X. and Wu Z., “Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage”, Sci. Rep., 9: 15032 (2019).
  • [33] Shakil A., Amiri A. and Polycarpou A. A., “Effect of carbon configuration on mechanical, friction and wear behavior of nitrogen‑doped diamond‑like carbon films for magnetic storage applications”, Tribol. Lett., 69: 151 (2021).
  • [34] Nguyen K. G., Baragau I. -A., Gromicova R., Nicolaev A., Thomson S. A. J., Rennie A., Power N. P., Sajjad M. T. and Kellici S., Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening, Sci. Rep., 12: 13806 (2022).
  • [35] Teng H. and Wang S. -C., “Influence of oxidation on the preparation of porous carbons from phenol−formaldehyde resins with KOH activation”, Ind. Eng. Chem. Res., 39: 673–678 (2000).
  • [36] Lee J. Y., Kim N. Y., Shin D. Y., Park H. -Y., Lee S. -S., Kwon S. J., Lim D. -H., Bong K. W., Son J. G. and Kim J. Y., “Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts”, J. Nanoparticle Res., 19: 98 (2017).
  • [37] Maddi C., Bourquard F., Barnier V., Avila J., Asensio M. -J., Tite T., Donnet C. and Garrelie F., “Nano-architecture of nitrogen-doped graphene films synthesized from a solid CN source”, Sci. Rep., 8: 3247 (2018).
  • [38] Wang N., Lu B., Li L., Niu W., Tang Z., Kang X. and Chen S., “Graphitic nitrogen is responsible for oxygen electroreduction on nitrogen-doped carbons in alkaline electrolytes: Insights from activity attenuation studies and theoretical calculations”, ACS Catal., 8: 6827–6836 (2018).
  • [39] Thommes M., Kaneko K., Neimark A. V., Olivier, J. P, Rodriguez-Reinoso F., Rouquerol J. and Sing K. S. W., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”, Pure Appl. Chem., 87: 1051–1069 (2015).
  • [40] Giraldo L., Vargas D. P. and Moreno-Pirajan J. C., “Study of CO2 adsorption on chemically modified activated carbon with nitric acid and ammonium aqueous”, Front. Chem., 8: 543452 (2020).
  • [41] Mestre A. S., Pires R. A., Aroso I., Fernandes E. M., Pinto M. L., Reis R. L., Andrade M. A., Pires J., Silva S. P. and Carvalho A. P., “Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal”, Chem. Eng. J., 253: 408-417 (2014).
  • [42] Khalid B., Meng Q., Akram R. and Cao B., “Effects of KOH activation on surface area, porosity and desalination performance of coconut carbon electrodes”, Desalin. Water Treat., 57: 2195-2202 (2016).
  • [43] Jawad A. H., Abdulhameed A. S., Wilson L. D., Syed-Hassan S. S. A., Al-Othman Z. A. and Khan M. R., “High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study”, Chin. J. Chem. Eng., 32: 281-290 (2021).
  • [44] Panomsuwan G., Hussakan C., Kaewtrakulchai N., Techapiesancharoenkij R., Serizawa A., Ishizaki T. and Eiad-Ua A., “Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction”, RSC Adv., 12: 17481-17489 (2022).
  • [45] Lu C., Xu S. and Liu C., “The role of K2CO3 during the chemical activation of petroleum coke with KOH”, J. Anal. Appl. Pyrol., 87: 282-287 (2010).

Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1718141

Öz

This study demonstrates the first-time use of pea protein for derivation of nitrogen-doped activated carbons, employing a systematic comparison of three different chemical activators, namely, KOH, K2CO3 and ZnCl2. The N-doped activated carbons were synthesized using a two step thermal process, involving the carbonization of pea protein followed by chemical activation. According to the XPS analysis, the surface nitrogen percentages in the as-synthesized samples varied between 3.7% and 6.8%, with the highest doping obtained by ZnCl2. High-resolution XPS scans showed that nitrogen was successfully incorporated into the carbon backbone, mainly in the form of pyridinic, pyrrolic and graphitic states. Nitrogen adsorption studies showed that KOH-activated carbon had the highest surface area with 985 m2/g, which was almost ten-times higher than the next highest obtained by K2CO3. The activations led to narrow pore size distributions with the mean pore sizes centering around 4 nm, with the exception of ZnCl2 which gave a macroporous structure. The SEM images also revealed the pore formations on carbon flat surface due to chemical consumption of carbon. Results show that pea protein is an excellent source for production of N-doped carbons. Among different activating agents, KOH is the most effective option to obtain high surface area, although leading to a lower nitrogen content.

Kaynakça

  • [1] Yang Z., Li Y., Zhang X., Cui X., He S., Liang H. and Ding A., “Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate”, Chem. Eng. J., 384: 123319 (2020).
  • [2] Sun Z., Zhang Y., Guo S., Shi J., Shi C., Qu K., Qi H., Huang Z., Murugadoss V., Huang M. and Guo Z., “Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment”, Adv. Compos. Hybrid Mater., 5: 1566–1581 (2022).
  • [3] Fu Y., Shen Y., Zhang Z., Ge X. and Chen M., “Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption”, Sci. Total Environ., 646: 1567-1577 (2019).
  • [4] Bedin K. C., Martins A. C., Cazetta A. L., Pezoti O. and Almeida V. C., “KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal”, Chem. Eng. J., 286: 476-484 (2016).
  • [5] Peng X., Hu F., Zhang T., Qiu F. and Dai H., “Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study”, Bioresour. Technol., 249: 924-934 (2018).
  • [6] Bora M., Bhattacharjya D. and Saikia B. K., “Coal-derived activated carbon for electrochemical energy storage: Status on supercapacitor, Li-ion battery, and Li–S battery applications”, Energ. Fuel., 35: 18285–18307 (2021).
  • [7] Jeong J. -S. and Kim B. -J., “Preparation of cellulose-based activated carbon fibers with improved yield and their methylene chloride adsorption evaluation”, Molecules, 28: 6997 (2023).
  • [8] Arampatzidou A. C. and Deliyanni E. A., “Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A”, J. Colloid Interface Sci., 466: 101–112 (2016).
  • [9] Heidarinejad Z., Rahmanian O. and Heidari M., “Production of KOH-activated carbon from date press cake: effect of the activating agent on its properties and Pb(II) adsorption potential”, Desalin. Water Treat., 165: 232-243 (2019).
  • [10] Ozdemir I., Şahin M., Orhan R. and Erdem M., “Preparation and characterization of activated carbon from grape stalk by zinc chloride activation”, Fuel Process. Technol., 125: 200-206 (2014).
  • [11] Li M. and Xiao R., “Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 capture”, Fuel Process. Technol., 186: 35-39 (2019).
  • [12] Alcaniz-Monge J., Roman-Martinez, M. C. and Lillo-Rodenas M. A., “Chemical activation of lignocellulosic precursors and residues: What else to consider?”, Molecules, 27: 1630 (2022).
  • [13] Park S., Kim J. and Kwon K., “A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications”, Chem. Eng. J., 446: 137116 (2022).
  • [14] Matsagar B. M., Yang R. -X., Dutta S., Ok Y. S. and Wu K. C. -W., “Recent progress in the development of biomassderived nitrogen-doped porous carbon”, J. Mater. Chem. A, 9: 3703-3728 (2021).
  • [15] Ferrero G. A., Fuertes A. B. and Sevilla M., “From soybean residue to advanced supercapacitors”, Sci. Rep., 5: 16618 (2015).
  • [16] Faheem M., Li W., Ahmad N., Yang L., Tufail M. K., Zhou Y., Zhou L., Chen R. and Yang W., “Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries”, J. Colloid Interface Sci., 585: 328-336 (2021).
  • [17] Jia H., Zhang F., Yuan Z., Li Y., Sun P., Lu X. and Chong F., “Casein-derived nitrogen and phosphorus co-doped porous carbons via a thermochemical process of molten salt and caustic potash for supercapacitors”, J. Power Sources, 612: 234708 (2024).
  • [18] Cheng Y., Sun Q., Huang L., He Q., Zhang H., Wang P., Zhang Y., Shi S., Zhang X., Gan T., He X. and Ji H., “Protein powder derived nitrogen-doped carbon supported atomically dispersed iron sites for selective oxidation of ethylbenzene”, Dalton Trans., 50: 11711-11715 (2021).
  • [19] Gao Y., Yue Q., Gao B. and Li A., “Insight into activated carbon from different kinds of chemical activating agents: A review”, Sci. Total Environ., 746: 141094 (2020).
  • [20] Hui T. S. and Zaini M. A. A., “Potassium hydroxide activation of activated carbon: a commentary”, Carbon Lett., 16: 275-280 (2015).
  • [21] Adinata D., Daud W. M. A. W. and Aroua M. K., “Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3”, Bioresour. Technol., 98: 145-149 (2007).
  • [22] Zhao H., Zhong H., Jiang Y., Li H., Tang P., Li D. and Feng Y., “Porous ZnCl2-activated carbon from shaddock peel: Methylene blue adsorption behavior”, Materials, 15: 895 (2022).
  • [23] Lee L. Z. and Zaini M. A. A., “Metal chloride salts in the preparation of activated carbon and their hazardous outlook”, Desalin. Water Treat., 57: 16078–16085 (2016).
  • [24] Zhao H., Shen C., Wu Z., Zhang Z. and Xu C., “Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products”, J. Food Biochem., 44: e13157 (2020).
  • [25] Shanthakumar P., Klepacka J., Bains A., Chawla P., Dhull S. B. and Najda A., “The current situation of pea protein and its application in the food industry, Molecules, 27: 5354 (2022).
  • [26] Krefting J., “The appeal of pea protein”, JREN, 27: e31-e33 (2017).
  • [27] https://veggy.com.tr/veggy/bezelye-proteini/, Last accessed: 22.09.2025.
  • [28] Zhang J., Kuang S., Nian S. and Wang G., “The effect of carbonization temperature on the electrocatalytic performance of nitrogen-doped porous carbon as counter electrode of dye-sensitized solar cells”, J. Mater. Sci.: Mater. Electron., 26: 6913–6919 (2015).
  • [29] Lakhi K. S., Park D. -H., Joseph S., Talapaneni S. N., Ravon U., Al-Bahily K. and Vinu A., “Effect of heat treatment on the nitrogen content and its role on the CO2 adsorption capacity of highly ordered mesoporous carbon nitride”, Chem. Asian J., 12: 595-604 (2017).
  • [30] Lu Z. X., He J. F., Zhang Y. C. and Bing D. J., “Composition, physicochemical properties of pea protein and its application in functional foods”, Crit. Rev. Food Sci., 60: 2593-2605 (2020).
  • [31] Kim J. -H., Lee G., Park J. -E. and Kim S. -H., “Limitation of K2CO3 as a chemical agent for upgrading activated carbon, Processes, 9: 1000 (2021).
  • [32] Nie Z., Huang Y., Ma B., Qiu X., Zhang N., Xie X. and Wu Z., “Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage”, Sci. Rep., 9: 15032 (2019).
  • [33] Shakil A., Amiri A. and Polycarpou A. A., “Effect of carbon configuration on mechanical, friction and wear behavior of nitrogen‑doped diamond‑like carbon films for magnetic storage applications”, Tribol. Lett., 69: 151 (2021).
  • [34] Nguyen K. G., Baragau I. -A., Gromicova R., Nicolaev A., Thomson S. A. J., Rennie A., Power N. P., Sajjad M. T. and Kellici S., Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening, Sci. Rep., 12: 13806 (2022).
  • [35] Teng H. and Wang S. -C., “Influence of oxidation on the preparation of porous carbons from phenol−formaldehyde resins with KOH activation”, Ind. Eng. Chem. Res., 39: 673–678 (2000).
  • [36] Lee J. Y., Kim N. Y., Shin D. Y., Park H. -Y., Lee S. -S., Kwon S. J., Lim D. -H., Bong K. W., Son J. G. and Kim J. Y., “Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts”, J. Nanoparticle Res., 19: 98 (2017).
  • [37] Maddi C., Bourquard F., Barnier V., Avila J., Asensio M. -J., Tite T., Donnet C. and Garrelie F., “Nano-architecture of nitrogen-doped graphene films synthesized from a solid CN source”, Sci. Rep., 8: 3247 (2018).
  • [38] Wang N., Lu B., Li L., Niu W., Tang Z., Kang X. and Chen S., “Graphitic nitrogen is responsible for oxygen electroreduction on nitrogen-doped carbons in alkaline electrolytes: Insights from activity attenuation studies and theoretical calculations”, ACS Catal., 8: 6827–6836 (2018).
  • [39] Thommes M., Kaneko K., Neimark A. V., Olivier, J. P, Rodriguez-Reinoso F., Rouquerol J. and Sing K. S. W., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)”, Pure Appl. Chem., 87: 1051–1069 (2015).
  • [40] Giraldo L., Vargas D. P. and Moreno-Pirajan J. C., “Study of CO2 adsorption on chemically modified activated carbon with nitric acid and ammonium aqueous”, Front. Chem., 8: 543452 (2020).
  • [41] Mestre A. S., Pires R. A., Aroso I., Fernandes E. M., Pinto M. L., Reis R. L., Andrade M. A., Pires J., Silva S. P. and Carvalho A. P., “Activated carbons prepared from industrial pre-treated cork: Sustainable adsorbents for pharmaceutical compounds removal”, Chem. Eng. J., 253: 408-417 (2014).
  • [42] Khalid B., Meng Q., Akram R. and Cao B., “Effects of KOH activation on surface area, porosity and desalination performance of coconut carbon electrodes”, Desalin. Water Treat., 57: 2195-2202 (2016).
  • [43] Jawad A. H., Abdulhameed A. S., Wilson L. D., Syed-Hassan S. S. A., Al-Othman Z. A. and Khan M. R., “High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study”, Chin. J. Chem. Eng., 32: 281-290 (2021).
  • [44] Panomsuwan G., Hussakan C., Kaewtrakulchai N., Techapiesancharoenkij R., Serizawa A., Ishizaki T. and Eiad-Ua A., “Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction”, RSC Adv., 12: 17481-17489 (2022).
  • [45] Lu C., Xu S. and Liu C., “The role of K2CO3 during the chemical activation of petroleum coke with KOH”, J. Anal. Appl. Pyrol., 87: 282-287 (2010).
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimyasal Reaksiyon, Malzeme Bilimi ve Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Silver Güneş 0000-0001-7608-3779

Erken Görünüm Tarihi 27 Ekim 2025
Yayımlanma Tarihi 19 Kasım 2025
Gönderilme Tarihi 12 Haziran 2025
Kabul Tarihi 10 Ekim 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Güneş, S. (2025). Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1718141
AMA Güneş S. Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents. Politeknik Dergisi. Published online 01 Ekim 2025:1-1. doi:10.2339/politeknik.1718141
Chicago Güneş, Silver. “Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents”. Politeknik Dergisi, Ekim (Ekim 2025), 1-1. https://doi.org/10.2339/politeknik.1718141.
EndNote Güneş S (01 Ekim 2025) Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents. Politeknik Dergisi 1–1.
IEEE S. Güneş, “Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents”, Politeknik Dergisi, ss. 1–1, Ekim2025, doi: 10.2339/politeknik.1718141.
ISNAD Güneş, Silver. “Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents”. Politeknik Dergisi. Ekim2025. 1-1. https://doi.org/10.2339/politeknik.1718141.
JAMA Güneş S. Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents. Politeknik Dergisi. 2025;:1–1.
MLA Güneş, Silver. “Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1718141.
Vancouver Güneş S. Nitrogen-Doped Activated Carbon Derived from Pea Protein Using Different Chemical Activating Agents. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.