Derleme
BibTex RIS Kaynak Göster

Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1720721

Öz

Küresel ısınma, insan faaliyetlerine bağlı olarak atmosfere salınan sera gazlarının artışıyla birlikte dünya genelinde çevresel, ekonomik ve sosyal krizlere neden olmaktadır. Bu çalışmada, küresel ısınmanın nedenleri ve etkileri güneş enerjisi sistemleri çerçevesinde incelenmekte; güneş enerjisinin sürdürülebilir ve düşük karbonlu bir gelecek için stratejik önemi vurgulanmaktadır. Artan sıcaklıklar, buzulların erimesi, deniz seviyesinin yükselmesi, su ve gıda krizleri gibi olumsuzlukların önüne geçebilmek için temiz ve yenilenebilir enerji kaynaklarına yönelmek kaçınılmazdır. Dünya genelinde ve Türkiye özelinde güneş enerjisi teknolojilerinin gelişimi incelenmiş; fotovoltaik (PV) ve solar termal sistemlerdeki kapasite artışları analiz edilmiştir. 2013 yılında 137 GW olan küresel PV kapasitesi, 2023’te 1412 GW’a ulaşarak 10,3 kat büyümüştür. Çin 609,4 GW ile lider konumunu korurken, Türkiye 2015 sonrası hızlı bir artış göstermiştir. Türkiye’nin güneş enerjisi kurulu gücü 2013–2023 döneminde belirgin şekilde artmış, 2025 yılı itibariyle ise 22.5 GW seviyesine ulaşmıştır. Solar termal alanda ise Türkiye, 2020’de ABD’yi geride bırakarak dünya ikinciliğine yükselmiştir. Ancak sahip olduğu potansiyele kıyasla hâlâ kritik gelişim alanları mevcuttur. Türkiye özelinde yapılan karşılaştırmalı analiz, ülkenin güneş enerjisi alanındaki mevcut konumunu küresel liderlerle kıyaslayarak güçlü yönlerini ve geliştirilmesi gereken alanları somut ortaya koyması açısından özellikle değer taşımaktadır. Sonuç olarak, güneş enerjisi; düşük karbonlu bir ekonomi için vazgeçilmezdir. Güneş enerjisi teknolojileri çevresel sürdürülebilirliğin sağlanması, fosil yakıtlara olan bağımlılığın azaltılması ve enerji arz güvenliğinin güçlendirilmesi açısından stratejik bir rol üstlenmektedir. Türkiye’nin sahip olduğu potansiyeli daha etkin değerlendirebilmesi için teşvik ve yatırım politikalarının kararlılıkla sürdürülmesi gerekmektedir.

Etik Beyan

Bu makalenin yazarları çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal özel bir izin gerektirmediğini beyan ederler.

Kaynakça

  • [1] Jones MW, Peters GP, Gasser T, Andrew RM, Schwingshackl C, Gütschow J, et al. "National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850". Scientific Data,10, (2023).
  • [2] CO₂ and Greenhouse Gas Emissions - Our World in Data https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed February 15, (2025).
  • [3] Breakdown of carbon dioxide, methane and nitrous oxide emissions by sector - Our World in Data https://ourworldindata.org/emissions-by-sector (accessed February 14, 2025).
  • [4] About the statistical review | Statistical Review of World Energy https://www.energyinst.org/statistical-review/about (accessed March 21, 2025).
  • [5] NASA SVS | Global Temperature Anomalies from 1880 to 2021 https://svs.gsfc.nasa.gov/4964 (accessed March 3, 2025).
  • [6] Voosen P. "The hottest year was even hotter than expected". Science,383, (2024).
  • [7] Luhn A. "2023 was officially the world’s hottest year on record". New Scientist, 261, (2024).
  • [8] Copernicus: 2023 is the hottest year on record, with global temperatures close to the 1.5°C limit | Copernicus https://climate.copernicus.eu/copernicus-2023-hottest-year-record (accessed March 7, 2025).
  • [9] Climate records shatter as 2024 is set to be the hottest year ever - Earth.com https://www.earth.com/news/climate-records-shatter-2024-set-to-be-hottest-year-ever/ (accessed March 7, 2025).
  • [10] STATE OF THE CLIMATE EUROPEAN https://doi.org/10.24381/14j9-s541.
  • [11] IPCC. Global Warming of 1.5°C. 2022. https://doi.org/10.1017/9781009157940.
  • [12] UNEP Climate Action Note | Data you need to know https://www.unep.org/explore-topics/climate-action/what-we-do/climate-action-note/state-of-climate.html (accessed March 10, 2025).
  • [13] Climate Change - NASA Science https://science.nasa.gov/climate-change/ (accessed March 12, 2025).
  • [14] AR5 Synthesis Report: Climate Change 2014 — IPCC https://www.ipcc.ch/report/ar5/syr/ (accessed March 8, 2025).
  • [15] Kulp SA, Strauss BH. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding". Nature Communications,10, (2019).
  • [16] Chart: Rising Sea Levels Will Threaten 200 Million People by 2100 | Statista https://www.statista.com/chart/19884/number-of-people-affected-by-rising-sea-levels-per-country/ (accessed March 9, 2025).
  • [17] Air pollution https://www.who.int/china/health-topics/air-pollution (accessed March 15, 2025).
  • [18] Dönmezçelik O, Koçak E, Örkcü HH. "Net Sıfır Emisyon Hedefine Doğru Türkiye Kara Yolu ve Demir Yolu Taşımacılığının Enerji Modellemesi (2025–2050)". Politeknik Dergisi,227:931–46, (2024).
  • [19] Air pollution effects | OECD https://www.oecd.org/en/data/indicators/air-pollution-effects.html (accessed March 15, 2025).
  • [20] Öztürk Y, Abbasi MN. "Harnessing Photovoltaic Solar Power in Rural Regions: A Case Study of Tehsil Saleh Pat, Sindh, Pakistan". Politeknik Dergisi,28:697–706,(2025).
  • [21] Hasnain SM, Elani UA, Al-Awaji SH, Aba-Oud HA, Smiai MS. "Prospects and proposals for solar energy education programmes". Applied Energy,52:307–14, (1995).
  • [22] Hasnain SM, Alawaji SH, Elani UA. "Solar energy education – a viable pathway for sustainable development". Renewable Energy,14:387–92, (1998).
  • [23] RENEWABLES 2022 GLOBAL STATUS REPORT https://www.ren21.net/gsr-2022/ (accessed March 17, 2025).
  • [24] Renewables in Energy Supply https://www.ren21.net/gsr 2023/modules/energy_supply/01_energy_supply/ (accessed September 3, 2025).
  • [25] Reports and resources https://www.gwec.net/reports?t=87193577191 (accessed March 20, 2025).
  • [26] REN21 RENEWABLES 2022 GLOBAL STATUS REPORT https://www.ren21.net/wpcontent/uploads/2019/05/GSR2022_Full_Report.pdf (accessed September 3, 2024).
  • [27] İstatistikler https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf (accessed July 5, 2025).
  • [28] Elektrik kurulu gücünde rüzgar ve güneşin payı yüzde 30’a yükseldi https://www.aa.com.tr/tr/ekonomi/elektrik-kurulu-gucunde-ruzgar-ve-gunesin-payi-yuzde-30a-yukseldi/3528899 (accessed May 8, 2025).
  • [29] The Paris Agreement | UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement (accessed April 20, 2025).
  • [30] Global Renewables Outlook: Energy transformation 2050 https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020 (accessed April 23, 2025).
  • [31] Open Knowledge Repository https://openknowledge.worldbank.org/entities/publication/58f2a409-9bb7-4ee6-899d-be47835c838f (accessed April 25, 2025).
  • [32] European Commission-Press release European Green Deal: Agreement reached on the Carbon Border Adjustment Mechanism (CBAM) https://ec.europa.eu/commission/presscorner/api/files/document/print/en/ip_22_7719/IP_22_7719_EN.pdf (accessed April 26, 2025).
  • [33] Wettestad J. "EU Emissions Trading for Transport and Buildings: Saved by Synergistic Institutional Interaction?". JCMS: Journal of Common Market Studies, 63:915–31, (2025).
  • [34] South Korea | Climate Action Tracker https://climateactiontracker.org/countries/south-korea/ (accessed April 30, 2025).
  • [35] Boungou W, Dufau B. "EU ETS phase IV and Industrial performance". Economics Letters, 236, (2024).
  • [36] De Clara S, Mayr K. Oxford Energy Insight: 38 – The EU ETS phase IV reform: implications for system functioning and for the carbon price signal. International Emissions Trading Association (IETA); 2018. http://www.ieta.org/resources/EU/EUETS%20Paper%20May_FINAL.pdf (accessed May 8, 2025). (2018)
  • [37] General Law of Climate Change - Mexico pilot ETS – Policies - IEA https://www.iea.org/policies/19298-general-law-of-climate-change-mexico-pilot-ets (accessed May 1, 2025).
  • [38] AB ETS’nin IV. aşama reformu: Sistemin işleyişi ve karbon fiyat sinyali üzerindeki etkileri - Oxford Enerji Araştırmaları Enstitüsü https://www.oxfordenergy.org/publications/eu-ets-phase-iv-reform-implications-system-functioning-carbon-price-signal/ (accessed May 4, 2025).
  • [39] World Energy Balances Highlights - Data product - IEA https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights (accessed May 3, 2025).
  • [40] RENEWABLES 2023 GLOBAL STATUS REPORT https://www.ren21.net/gsr-2023/ (accessed September 3, 2024).
  • [41] REN21 RENEWABLES 2021 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf (accessed September 2, 2024).
  • [42] REN21 RENEWABLES 2020 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf (accessed September 2, 2024).
  • [43] RENEWABLES 2019 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf (accessed September 2, 2024).
  • [44] REN21 RENEWABLES 2018 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf (accessed September 4, 2024).
  • [45] REN21 RENEWABLES 2017 GLOBAL STATUS REPORT 2017. https://www.ren21.net/wp-content/uploads/2019/05/GSR2017_Full-Report_English.pdf (accessed October 2, 2024).
  • [46] REN21 SRENEWABLES 2016 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/ 2019/05/REN21_GSR2016_FullReport_en_11.pdf (accessed October 2, 2024).
  • [47] RENEWABLES 2015 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/GSR2015_Full-Report_English.pdf (accessed October 2, 2024).
  • [48] REN 21 RENEWABLES 2014 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/GSR2014_Full-Report_English.pdf (accessed September 4, 2024).
  • [49] Suresh Babu PJ, Mangaiyarkarasi SP, Gandhi Raj R, Senthilkumar S. "Solving Optimal Power Flow Problem in Hybrid Renewable Energy Systems Through Hybrid Optimization Algorithm". Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1–18, (2025).
  • [50] Valencia-Díaz A, García S. "Stochastic optimization for siting and sizing of renewable distributed generation and D-STATCOMs". E-Prime – Advances in Electrical Engineering, Electronics and Energy, 101026, (2025).
  • [51] Obahiagbon EG, Kosoe EA. "Economic Dimensions of Air Pollution: Cost Analysis, Valuation, and Policy Impacts". In: Sustainable Strategies for Air Pollution Mitigation: Development, Economics, and Technologies. Springer, p. 111–39, (2024).
  • [52] Rovai FF, Mady CEK. "Regional environmental comparison of electrification and ethanol blends in light vehicles". Cleaner Energy Systems,11:100189, (2025).
  • [53] İstatistikler https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf (accessed February 10, 2025).
  • [54] CO2 Observer | kWh to CO2 Calculator https://co2.observer/calculator/?k=230&m=12&m2=53 (accessed February 10, 2025).
  • [55] Greenhouse Gas Equivalencies Calculator | US EPA https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator#results (accessed February 11, 2025).
  • [56] Renewable Energy Agency I. World Energy Transitions Outlook 2023: 1.5°C Pathway. 2023. www.irena.org (accessed February 10, 2025). (2023)
  • [57] Demir A, Dinçer AE, Yılmaz K. "A novel method for the site selection of large-scale PV farms by using AHP and GIS: A case study in İzmir, Türkiye". Solar Energy, 259:235–45, (2023).
  • [58] Ong S, Campbell C, Denholm P, Margolis R, Heath G. "Land-Use Requirements for Solar Power Plants in the United States", (2013).
  • [59] Wang Y, Chao Q, Zhao L, Chang R. "Assessment of wind and photovoltaic power potential in China". Carbon Neutrality,1:1–11. (2022).
  • [60] TÜİK - Veri Portalı https://data.tuik.gov.tr/Kategori/ GetKategori?p=Nufus-ve-Demografi-109 (accessed September 7, 2025).
  • [61] Population, total - China, United States, Germany, Turkiye | Data https://data.worldbank.org/indicator/ SP.POP.TOTL?end=2024&locations=CN-US-DE-TR&name_desc=true&start=1960&view=chart (accessed April 8, 2025).
  • [62] Kandilli C. "Enerjinin ana kaynaktan kullanım enerjisine dönüşüm süreci". Ders Sunumu. (2008).
  • [63] He Q, Zeng S, Wang S. "Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids". Applied Thermal Engineering, 88, (2014).
  • [64] Sharma N, Diaz G. "Performance model of a novel evacuated-tube solar collector based on minichannels". Solar Energy, 85, (2011).
  • [65] Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK. "Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid". Solar Energy, 204, (2020).
  • [66] Ziyadanogullari NB, Yucel HL, Yildiz C. "Thermal performance enhancement of flat-plate solar collectors by means of three different nanofluids". Thermal Science and Engineering Progress, 8, (2018).
  • [67] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes: Fourth Edition, (2013).
  • [68] Tyagi VV, Kaushik SC, Tyagi SK. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology". Renewable and Sustainable Energy Reviews,16, (2012).
  • [69] Sabiha MA, Saidur R, Mekhilef S, Mahian O. "Progress and latest developments of evacuated tube solar collectors". Renewable and Sustainable Energy Reviews, 51, (2015).
  • [70] Zubriski SE, Dick KJ. "Measurement of the efficiency of evacuated tube solar collectors under various operating conditions". Journal of Green Building, 7, (2012).
  • [71] Green MA. "Recent developments in photovoltaics". Solar Energy, 76:3–8, (2004).
  • [72] Al-Ezzi AS, Ansari MNM. "Photovoltaic Solar Cells: A Review". Applied System Innovation, 5, (2022).
  • [73] Olukan TA, Emziane M. "A comparative analysis of PV module temperature models". Energy Procedia, 62:694–703, (2014).
  • [74] State T, Service M. "Modeling Solar Energy Potential in Turkey", 1–10, (2010).
  • [75] Waqas A, Ji J. "Thermal management of conventional PV panel using PCM with movable shutters – A numerical study". Solar Energy, 158:797–807, (2017).
  • [76] Huang BJ, Sun FS. "Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector". Energy Conversion and Management, 48:1273–80, (2007).
  • [77] Osman AI, Chen L, Yang M, Msigwa G, Farghali M, Fawzy S, et al. "Cost, environmental impact, and resilience of renewable energy under a changing climate: a review". Environmental Chemistry Letters, 21, (2023).
  • [78] Kennedy R. "LCOE of grid-scale solar expected to drop 2% globally in 2025". PV Magazine International, (2025).
  • [79] Ustaoglu A, Akgül V, Okajima J. "Performance investigation of truncated low concentrating photovoltaic-thermal systems with V-trough, compound hyperbolic and compound parabolic concentrators". Applied Thermal Engineering, 232, (2023).
  • [80] Nabil T, Mansour TM. "Augmenting the performance of photovoltaic panel by decreasing its temperature using various cooling techniques". Results in Engineering, 15, (2022).
  • [81] Sargunanathan S, Elango A, Mohideen ST. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review". Renewable and Sustainable Energy Reviews, 64, (2016).
  • [82] Wang Y, Gao Y, Huang Q, Hu G, Zhou L. "Experimental study of active phase change cooling technique based on porous media for photovoltaic thermal management and efficiency enhancement". Energy Conversion and Management,199, (2019).
  • [83] Gao Y, Wu D, Dai Z, Wang C, Chen B, Zhang X. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems". Renewable Energy,207, (2023).
  • [84] Hadipour A, Rajabi Zargarabadi M, Rashidi S. "An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis". Renewable Energy,164, (2021).
  • [85] Erdoğan İ, Bilen K, Kivrak S. "Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows". Politeknik Dergisi, 27:699–707, (2024).
  • [86] Gao Y, Wang C, Wu D, Dai Z, Chen B, Zhang X. "A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink". Renewable Energy, 192, (2022).
  • [87] Cui Y, Zhu J, Zhang F, Shao Y, Xue Y. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments". Renewable and Sustainable Energy Reviews, 158, (2022).
  • [88] Amanlou Y, Tavakoli Hashjin T, Ghobadian B, Najafi G. "Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate". Applied Thermal Engineering, 141:413–21, (2018).
  • [89] Ebaid MSY, Ghrair AM, Al-Busoul M. "Experimental investigation of cooling photovoltaic (PV) panels using (TiO₂) nanofluid in water-polyethylene glycol mixture and (Al₂O₃) nanofluid in water-cetyltrimethylammonium bromide mixture". Energy Conversion and Management, 155, (2018).
  • [90] Valeh-E-Sheyda P, Rahimi M, Karimi E, Asadi M. "Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study". Energy Conversion and Management, 69, (2013).
  • [91] Grubišić-Čabo F, Nižetić S, Marinić Kragić I, Čoko D. "Further progress in the research of fin-based passive cooling technique for the free-standing silicon photovoltaic panels". International Journal of Energy Research, 43, (2019).
  • [92] Tao M, Zhenpeng L, Jiaxin Z. "Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection". Renewable and Sustainable Energy Reviews, 116, (2019).
  • [93] Al-Amri F, Maatallah TS, Al-Amri OF, Ali S, Ali S, Ateeq IS, et al. "Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia". Alexandria Engineering Journal, 61, (2022).
  • [94] Hu M, Zhao B, Suhendri, Ao X, Cao J, Wang Q, et al. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects". Renewable and Sustainable Energy Reviews, 160, (2022).
  • [95] Haidar ZA, Orfi J, Kaneesamkandi Z. "Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency". Results in Physics, 11, (2018).
  • [96] Gao Y, Chen B, Wu D, Dai Z, Wang C, Zhang X. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe". Applied Energy, 327, (2022).
  • [97] Fernández-García A, Zarza E, Valenzuela L, Pérez M. "Parabolic-trough solar collectors and their applications". Renewable and Sustainable Energy Reviews, 14, (2010).
  • [98] Ustaoglu A, Kandilli C, Cakmak M, Torlaklı H. "Experimental and economical performance investigation of V-trough concentrator with different reflectance characteristic in photovoltaic applications". Journal of Cleaner Production, (2020).
  • [99] Ustaoglu A, Ozbey U, Torlaklı H. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic–trumpet, V-trough and compound parabolic concentrators". Renewable Energy, 152:1192–208, (2020).
  • [100] Welford WT, Winston R. Optics of Nonimaging Concentrators: Light and Solar Energy, (1978).
  • [101] Winston R, Miñano JC, Benitez P, Shatz N, Bortz JC. Nonimaging Optics, (2005).
  • [102] Hinterberger H, Winston R. "Gas cherenkov counter wıth optımızed lıght collectıng effıcıency". Chicago Univ., Ill. Enrico Fermi Inst. for Nuclear Studies, (1967).
  • [103] Gordon JM, Rabl A. "Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction". Applied Optics, 31:7332, (1992).
  • [104] Proell M, Osgyan P, Karrer H, Brabec CJ. "Experimental efficiency of a low concentrating CPC PVT flat plate collector". Solar Energy, 147:463–9, (2017).
  • [105] Cabral D. "Development and performance comparison of a modified glazed CPC hybrid solar collector coupled with a bifacial PVT receiver". Applied Energy, 325, (2022).
  • [106] Raboaca MS, Badea G, Enache A, Filote C, Rasoi G, Rata M, et al. "Concentrating solar power technologies". Energies (Basel), 12, (2019).
  • [107] Cheng ZD, Zhao XR, He YL, Qiu Y. "A novel optical optimization model for linear Fresnel reflector concentrators". Renewable Energy, 129, (2018).
  • [108] Zhu Y, Shi J, Li Y, Wang L, Huang Q, Xu G. "Design and experimental investigation of a stretched parabolic linear Fresnel reflector collecting system". Energy Conversion and Management, 126, (2016).
  • [109] Kalogirou SA. Solar Energy Engineering: Processes and Systems – Second Edition, (2014).
  • [110] Mawire A, Taole SH. "Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes". Energy for Sustainable Development, 19, (2014).
  • [111] Thirunavukkarasu V, Cheralathan M. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator"ç. Energy, 192, (2020).
  • [112] Neber M, Lee H. "Design of a high temperature cavity receiver for residential scale concentrated solar power". Energy, 47, (2012).
  • [113] Cagnoli M, de la Calle A, Pye J, Savoldi L, Zanino R. "A CFD-supported dynamic system-level model of a sodium-cooled billboard-type receiver for central tower CSP applications". Solar Energy,177, (2019).
  • [114] Awan AB, Chandra Mouli KVV, Zubair M. "Performance enhancement of solar tower power plant: A multi-objective optimization approach". Energy Conversion and Management, 225, (2020).
  • [115] Wang Z. "China Solar Thermal Alliance (CSTA) is a non-profit organization that supports and promotes the development of solar thermal technology and industry with the strength of all CSTA’s members from universities, institutes and industry". The Blue Book of China
  • [116] Energy SP. Technology Roadmap. Technical Report, IEA, (2014).
  • [117] Guo R, Zhuang C, Gao Y. "Energy-efficient and energy-flexible buildings towards net-zero carbon emission". Frontiers in Energy Research, 12:1458006, (2024).
  • [118] Dönmez NFK. "Taxation and incentives in renewable energy investments". Elektronik Sosyal Bilimler Dergisi, 22:220–45, (2023).
  • [119] Kılıç U, Kekezoğlu B. "A review of solar photovoltaic incentives and policy: Selected countries and Turkey". Ain Shams Engineering Journal, 13:101669, (2022).
  • [120] Nyasapoh M, Gyamfi S, Debrah SK, Gabbar H, Derkyi N, Nassar Y, et al. "Navigating Renewable Energy Transition Challenges for a Sustainable Energy Future in Ghana". Solar Energy and Sustainable Development Journal, 14:237–57, (2025).
  • [121] Sareen K, Panigrahi BK, Nagdeve R, Bhalja BR, Suman S. "Energy Transition: A Global Review of Wholesale Energy Markets and Variable Renewable Energy Forecasting-Related Frameworks". IEEE Power and Energy Magazine, 23:53–64, (2025).
  • [122] Haberler – T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://enerji.gov.tr/haber-detay?id=21398 (accessed September 1, 2025).
  • [123] TÜBİTAK 2024-2025 Öncelikli Ar-Ge ve Yenilik Konuları | TÜBİTAK | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu https://tubitak.gov.tr/tr/kurumsal/politikalar/tubitak-2024-2025-oncelikli-ar-ge-ve-yenilik-konulari? (accessed September 1, 2025).
  • [124] Gözkün KA, Orhangazi Ö. "Solar and wind power transition in Türkiye: An input-output analysis of growth, employment, and current account effects". In: Integrated Policy Strategies and Regional Policy Coordination for Resilient, Green and Transformative Development, (2025).
  • [125] "Social and Employment Impacts of Climate Change and Green Economy Policies in Türkiye". Application of the Green Jobs Assessment Model for Türkiye.

Global Warming and Solar Energy: An Analysis on Türkiye and Leading Countries

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1720721

Öz

Global warming, driven by the increase in greenhouse gas emissions resulting from human activities, has led to environmental, economic, and social crises worldwide. This study examines the causes and impacts of global warming within the framework of solar energy systems and highlights the strategic importance of solar energy for a sustainable, low-carbon future. Rising temperatures, melting glaciers, sea-level rise, and crises in water and food security make the transition to clean and renewable energy sources inevitable. The development of solar energy technologies worldwide and in Turkey has been analyzed, with particular focus on capacity growth in photovoltaic (PV) and solar thermal systems. Global PV capacity, which was 137 GW in 2013, reached 1,412 GW in 2023, marking a 10.3-fold increase. China maintained its leading position with 609.4 GW, while Turkey experienced rapid growth after 2015. Turkey’s installed solar capacity increased significantly between 2013 and 2023 and reached 22.5 GW by 2025. In solar thermal energy, Turkey surpassed the United States in 2020 to become the world’s second largest. Nevertheless, there remain critical areas for further development compared to its potential. The comparative analysis conducted for Turkey is particularly valuable as it clearly identifies the country’s current position in the field of solar energy relative to global leaders, highlighting both its strengths and the areas that require further development. In conclusion, solar energy is indispensable for a low-carbon economy. Solar energy technologies play a strategic role in achieving environmental sustainability, reducing dependence on fossil fuels, and strengthening energy supply security. To make more effective use of its potential, Turkey must continue to pursue investment and incentive policies with determination.

Kaynakça

  • [1] Jones MW, Peters GP, Gasser T, Andrew RM, Schwingshackl C, Gütschow J, et al. "National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850". Scientific Data,10, (2023).
  • [2] CO₂ and Greenhouse Gas Emissions - Our World in Data https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed February 15, (2025).
  • [3] Breakdown of carbon dioxide, methane and nitrous oxide emissions by sector - Our World in Data https://ourworldindata.org/emissions-by-sector (accessed February 14, 2025).
  • [4] About the statistical review | Statistical Review of World Energy https://www.energyinst.org/statistical-review/about (accessed March 21, 2025).
  • [5] NASA SVS | Global Temperature Anomalies from 1880 to 2021 https://svs.gsfc.nasa.gov/4964 (accessed March 3, 2025).
  • [6] Voosen P. "The hottest year was even hotter than expected". Science,383, (2024).
  • [7] Luhn A. "2023 was officially the world’s hottest year on record". New Scientist, 261, (2024).
  • [8] Copernicus: 2023 is the hottest year on record, with global temperatures close to the 1.5°C limit | Copernicus https://climate.copernicus.eu/copernicus-2023-hottest-year-record (accessed March 7, 2025).
  • [9] Climate records shatter as 2024 is set to be the hottest year ever - Earth.com https://www.earth.com/news/climate-records-shatter-2024-set-to-be-hottest-year-ever/ (accessed March 7, 2025).
  • [10] STATE OF THE CLIMATE EUROPEAN https://doi.org/10.24381/14j9-s541.
  • [11] IPCC. Global Warming of 1.5°C. 2022. https://doi.org/10.1017/9781009157940.
  • [12] UNEP Climate Action Note | Data you need to know https://www.unep.org/explore-topics/climate-action/what-we-do/climate-action-note/state-of-climate.html (accessed March 10, 2025).
  • [13] Climate Change - NASA Science https://science.nasa.gov/climate-change/ (accessed March 12, 2025).
  • [14] AR5 Synthesis Report: Climate Change 2014 — IPCC https://www.ipcc.ch/report/ar5/syr/ (accessed March 8, 2025).
  • [15] Kulp SA, Strauss BH. "New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding". Nature Communications,10, (2019).
  • [16] Chart: Rising Sea Levels Will Threaten 200 Million People by 2100 | Statista https://www.statista.com/chart/19884/number-of-people-affected-by-rising-sea-levels-per-country/ (accessed March 9, 2025).
  • [17] Air pollution https://www.who.int/china/health-topics/air-pollution (accessed March 15, 2025).
  • [18] Dönmezçelik O, Koçak E, Örkcü HH. "Net Sıfır Emisyon Hedefine Doğru Türkiye Kara Yolu ve Demir Yolu Taşımacılığının Enerji Modellemesi (2025–2050)". Politeknik Dergisi,227:931–46, (2024).
  • [19] Air pollution effects | OECD https://www.oecd.org/en/data/indicators/air-pollution-effects.html (accessed March 15, 2025).
  • [20] Öztürk Y, Abbasi MN. "Harnessing Photovoltaic Solar Power in Rural Regions: A Case Study of Tehsil Saleh Pat, Sindh, Pakistan". Politeknik Dergisi,28:697–706,(2025).
  • [21] Hasnain SM, Elani UA, Al-Awaji SH, Aba-Oud HA, Smiai MS. "Prospects and proposals for solar energy education programmes". Applied Energy,52:307–14, (1995).
  • [22] Hasnain SM, Alawaji SH, Elani UA. "Solar energy education – a viable pathway for sustainable development". Renewable Energy,14:387–92, (1998).
  • [23] RENEWABLES 2022 GLOBAL STATUS REPORT https://www.ren21.net/gsr-2022/ (accessed March 17, 2025).
  • [24] Renewables in Energy Supply https://www.ren21.net/gsr 2023/modules/energy_supply/01_energy_supply/ (accessed September 3, 2025).
  • [25] Reports and resources https://www.gwec.net/reports?t=87193577191 (accessed March 20, 2025).
  • [26] REN21 RENEWABLES 2022 GLOBAL STATUS REPORT https://www.ren21.net/wpcontent/uploads/2019/05/GSR2022_Full_Report.pdf (accessed September 3, 2024).
  • [27] İstatistikler https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf (accessed July 5, 2025).
  • [28] Elektrik kurulu gücünde rüzgar ve güneşin payı yüzde 30’a yükseldi https://www.aa.com.tr/tr/ekonomi/elektrik-kurulu-gucunde-ruzgar-ve-gunesin-payi-yuzde-30a-yukseldi/3528899 (accessed May 8, 2025).
  • [29] The Paris Agreement | UNFCCC https://unfccc.int/process-and-meetings/the-paris-agreement (accessed April 20, 2025).
  • [30] Global Renewables Outlook: Energy transformation 2050 https://www.irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020 (accessed April 23, 2025).
  • [31] Open Knowledge Repository https://openknowledge.worldbank.org/entities/publication/58f2a409-9bb7-4ee6-899d-be47835c838f (accessed April 25, 2025).
  • [32] European Commission-Press release European Green Deal: Agreement reached on the Carbon Border Adjustment Mechanism (CBAM) https://ec.europa.eu/commission/presscorner/api/files/document/print/en/ip_22_7719/IP_22_7719_EN.pdf (accessed April 26, 2025).
  • [33] Wettestad J. "EU Emissions Trading for Transport and Buildings: Saved by Synergistic Institutional Interaction?". JCMS: Journal of Common Market Studies, 63:915–31, (2025).
  • [34] South Korea | Climate Action Tracker https://climateactiontracker.org/countries/south-korea/ (accessed April 30, 2025).
  • [35] Boungou W, Dufau B. "EU ETS phase IV and Industrial performance". Economics Letters, 236, (2024).
  • [36] De Clara S, Mayr K. Oxford Energy Insight: 38 – The EU ETS phase IV reform: implications for system functioning and for the carbon price signal. International Emissions Trading Association (IETA); 2018. http://www.ieta.org/resources/EU/EUETS%20Paper%20May_FINAL.pdf (accessed May 8, 2025). (2018)
  • [37] General Law of Climate Change - Mexico pilot ETS – Policies - IEA https://www.iea.org/policies/19298-general-law-of-climate-change-mexico-pilot-ets (accessed May 1, 2025).
  • [38] AB ETS’nin IV. aşama reformu: Sistemin işleyişi ve karbon fiyat sinyali üzerindeki etkileri - Oxford Enerji Araştırmaları Enstitüsü https://www.oxfordenergy.org/publications/eu-ets-phase-iv-reform-implications-system-functioning-carbon-price-signal/ (accessed May 4, 2025).
  • [39] World Energy Balances Highlights - Data product - IEA https://www.iea.org/data-and-statistics/data-product/world-energy-balances-highlights (accessed May 3, 2025).
  • [40] RENEWABLES 2023 GLOBAL STATUS REPORT https://www.ren21.net/gsr-2023/ (accessed September 3, 2024).
  • [41] REN21 RENEWABLES 2021 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf (accessed September 2, 2024).
  • [42] REN21 RENEWABLES 2020 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf (accessed September 2, 2024).
  • [43] RENEWABLES 2019 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf (accessed September 2, 2024).
  • [44] REN21 RENEWABLES 2018 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf (accessed September 4, 2024).
  • [45] REN21 RENEWABLES 2017 GLOBAL STATUS REPORT 2017. https://www.ren21.net/wp-content/uploads/2019/05/GSR2017_Full-Report_English.pdf (accessed October 2, 2024).
  • [46] REN21 SRENEWABLES 2016 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/ 2019/05/REN21_GSR2016_FullReport_en_11.pdf (accessed October 2, 2024).
  • [47] RENEWABLES 2015 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/GSR2015_Full-Report_English.pdf (accessed October 2, 2024).
  • [48] REN 21 RENEWABLES 2014 GLOBAL STATUS REPORT https://www.ren21.net/wp-content/uploads/2019/05/GSR2014_Full-Report_English.pdf (accessed September 4, 2024).
  • [49] Suresh Babu PJ, Mangaiyarkarasi SP, Gandhi Raj R, Senthilkumar S. "Solving Optimal Power Flow Problem in Hybrid Renewable Energy Systems Through Hybrid Optimization Algorithm". Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1–18, (2025).
  • [50] Valencia-Díaz A, García S. "Stochastic optimization for siting and sizing of renewable distributed generation and D-STATCOMs". E-Prime – Advances in Electrical Engineering, Electronics and Energy, 101026, (2025).
  • [51] Obahiagbon EG, Kosoe EA. "Economic Dimensions of Air Pollution: Cost Analysis, Valuation, and Policy Impacts". In: Sustainable Strategies for Air Pollution Mitigation: Development, Economics, and Technologies. Springer, p. 111–39, (2024).
  • [52] Rovai FF, Mady CEK. "Regional environmental comparison of electrification and ethanol blends in light vehicles". Cleaner Energy Systems,11:100189, (2025).
  • [53] İstatistikler https://ytbsbilgi.teias.gov.tr/ytbsbilgi/frm_istatistikler.jsf (accessed February 10, 2025).
  • [54] CO2 Observer | kWh to CO2 Calculator https://co2.observer/calculator/?k=230&m=12&m2=53 (accessed February 10, 2025).
  • [55] Greenhouse Gas Equivalencies Calculator | US EPA https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator#results (accessed February 11, 2025).
  • [56] Renewable Energy Agency I. World Energy Transitions Outlook 2023: 1.5°C Pathway. 2023. www.irena.org (accessed February 10, 2025). (2023)
  • [57] Demir A, Dinçer AE, Yılmaz K. "A novel method for the site selection of large-scale PV farms by using AHP and GIS: A case study in İzmir, Türkiye". Solar Energy, 259:235–45, (2023).
  • [58] Ong S, Campbell C, Denholm P, Margolis R, Heath G. "Land-Use Requirements for Solar Power Plants in the United States", (2013).
  • [59] Wang Y, Chao Q, Zhao L, Chang R. "Assessment of wind and photovoltaic power potential in China". Carbon Neutrality,1:1–11. (2022).
  • [60] TÜİK - Veri Portalı https://data.tuik.gov.tr/Kategori/ GetKategori?p=Nufus-ve-Demografi-109 (accessed September 7, 2025).
  • [61] Population, total - China, United States, Germany, Turkiye | Data https://data.worldbank.org/indicator/ SP.POP.TOTL?end=2024&locations=CN-US-DE-TR&name_desc=true&start=1960&view=chart (accessed April 8, 2025).
  • [62] Kandilli C. "Enerjinin ana kaynaktan kullanım enerjisine dönüşüm süreci". Ders Sunumu. (2008).
  • [63] He Q, Zeng S, Wang S. "Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids". Applied Thermal Engineering, 88, (2014).
  • [64] Sharma N, Diaz G. "Performance model of a novel evacuated-tube solar collector based on minichannels". Solar Energy, 85, (2011).
  • [65] Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK. "Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid". Solar Energy, 204, (2020).
  • [66] Ziyadanogullari NB, Yucel HL, Yildiz C. "Thermal performance enhancement of flat-plate solar collectors by means of three different nanofluids". Thermal Science and Engineering Progress, 8, (2018).
  • [67] Duffie JA, Beckman WA. Solar Engineering of Thermal Processes: Fourth Edition, (2013).
  • [68] Tyagi VV, Kaushik SC, Tyagi SK. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology". Renewable and Sustainable Energy Reviews,16, (2012).
  • [69] Sabiha MA, Saidur R, Mekhilef S, Mahian O. "Progress and latest developments of evacuated tube solar collectors". Renewable and Sustainable Energy Reviews, 51, (2015).
  • [70] Zubriski SE, Dick KJ. "Measurement of the efficiency of evacuated tube solar collectors under various operating conditions". Journal of Green Building, 7, (2012).
  • [71] Green MA. "Recent developments in photovoltaics". Solar Energy, 76:3–8, (2004).
  • [72] Al-Ezzi AS, Ansari MNM. "Photovoltaic Solar Cells: A Review". Applied System Innovation, 5, (2022).
  • [73] Olukan TA, Emziane M. "A comparative analysis of PV module temperature models". Energy Procedia, 62:694–703, (2014).
  • [74] State T, Service M. "Modeling Solar Energy Potential in Turkey", 1–10, (2010).
  • [75] Waqas A, Ji J. "Thermal management of conventional PV panel using PCM with movable shutters – A numerical study". Solar Energy, 158:797–807, (2017).
  • [76] Huang BJ, Sun FS. "Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector". Energy Conversion and Management, 48:1273–80, (2007).
  • [77] Osman AI, Chen L, Yang M, Msigwa G, Farghali M, Fawzy S, et al. "Cost, environmental impact, and resilience of renewable energy under a changing climate: a review". Environmental Chemistry Letters, 21, (2023).
  • [78] Kennedy R. "LCOE of grid-scale solar expected to drop 2% globally in 2025". PV Magazine International, (2025).
  • [79] Ustaoglu A, Akgül V, Okajima J. "Performance investigation of truncated low concentrating photovoltaic-thermal systems with V-trough, compound hyperbolic and compound parabolic concentrators". Applied Thermal Engineering, 232, (2023).
  • [80] Nabil T, Mansour TM. "Augmenting the performance of photovoltaic panel by decreasing its temperature using various cooling techniques". Results in Engineering, 15, (2022).
  • [81] Sargunanathan S, Elango A, Mohideen ST. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review". Renewable and Sustainable Energy Reviews, 64, (2016).
  • [82] Wang Y, Gao Y, Huang Q, Hu G, Zhou L. "Experimental study of active phase change cooling technique based on porous media for photovoltaic thermal management and efficiency enhancement". Energy Conversion and Management,199, (2019).
  • [83] Gao Y, Wu D, Dai Z, Wang C, Chen B, Zhang X. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems". Renewable Energy,207, (2023).
  • [84] Hadipour A, Rajabi Zargarabadi M, Rashidi S. "An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis". Renewable Energy,164, (2021).
  • [85] Erdoğan İ, Bilen K, Kivrak S. "Experimental Investigation of the Efficiency of Solar Panel Over Which Water Film Flows". Politeknik Dergisi, 27:699–707, (2024).
  • [86] Gao Y, Wang C, Wu D, Dai Z, Chen B, Zhang X. "A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink". Renewable Energy, 192, (2022).
  • [87] Cui Y, Zhu J, Zhang F, Shao Y, Xue Y. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments". Renewable and Sustainable Energy Reviews, 158, (2022).
  • [88] Amanlou Y, Tavakoli Hashjin T, Ghobadian B, Najafi G. "Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate". Applied Thermal Engineering, 141:413–21, (2018).
  • [89] Ebaid MSY, Ghrair AM, Al-Busoul M. "Experimental investigation of cooling photovoltaic (PV) panels using (TiO₂) nanofluid in water-polyethylene glycol mixture and (Al₂O₃) nanofluid in water-cetyltrimethylammonium bromide mixture". Energy Conversion and Management, 155, (2018).
  • [90] Valeh-E-Sheyda P, Rahimi M, Karimi E, Asadi M. "Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study". Energy Conversion and Management, 69, (2013).
  • [91] Grubišić-Čabo F, Nižetić S, Marinić Kragić I, Čoko D. "Further progress in the research of fin-based passive cooling technique for the free-standing silicon photovoltaic panels". International Journal of Energy Research, 43, (2019).
  • [92] Tao M, Zhenpeng L, Jiaxin Z. "Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection". Renewable and Sustainable Energy Reviews, 116, (2019).
  • [93] Al-Amri F, Maatallah TS, Al-Amri OF, Ali S, Ali S, Ateeq IS, et al. "Innovative technique for achieving uniform temperatures across solar panels using heat pipes and liquid immersion cooling in the harsh climate in the Kingdom of Saudi Arabia". Alexandria Engineering Journal, 61, (2022).
  • [94] Hu M, Zhao B, Suhendri, Ao X, Cao J, Wang Q, et al. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects". Renewable and Sustainable Energy Reviews, 160, (2022).
  • [95] Haidar ZA, Orfi J, Kaneesamkandi Z. "Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency". Results in Physics, 11, (2018).
  • [96] Gao Y, Chen B, Wu D, Dai Z, Wang C, Zhang X. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe". Applied Energy, 327, (2022).
  • [97] Fernández-García A, Zarza E, Valenzuela L, Pérez M. "Parabolic-trough solar collectors and their applications". Renewable and Sustainable Energy Reviews, 14, (2010).
  • [98] Ustaoglu A, Kandilli C, Cakmak M, Torlaklı H. "Experimental and economical performance investigation of V-trough concentrator with different reflectance characteristic in photovoltaic applications". Journal of Cleaner Production, (2020).
  • [99] Ustaoglu A, Ozbey U, Torlaklı H. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic–trumpet, V-trough and compound parabolic concentrators". Renewable Energy, 152:1192–208, (2020).
  • [100] Welford WT, Winston R. Optics of Nonimaging Concentrators: Light and Solar Energy, (1978).
  • [101] Winston R, Miñano JC, Benitez P, Shatz N, Bortz JC. Nonimaging Optics, (2005).
  • [102] Hinterberger H, Winston R. "Gas cherenkov counter wıth optımızed lıght collectıng effıcıency". Chicago Univ., Ill. Enrico Fermi Inst. for Nuclear Studies, (1967).
  • [103] Gordon JM, Rabl A. "Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction". Applied Optics, 31:7332, (1992).
  • [104] Proell M, Osgyan P, Karrer H, Brabec CJ. "Experimental efficiency of a low concentrating CPC PVT flat plate collector". Solar Energy, 147:463–9, (2017).
  • [105] Cabral D. "Development and performance comparison of a modified glazed CPC hybrid solar collector coupled with a bifacial PVT receiver". Applied Energy, 325, (2022).
  • [106] Raboaca MS, Badea G, Enache A, Filote C, Rasoi G, Rata M, et al. "Concentrating solar power technologies". Energies (Basel), 12, (2019).
  • [107] Cheng ZD, Zhao XR, He YL, Qiu Y. "A novel optical optimization model for linear Fresnel reflector concentrators". Renewable Energy, 129, (2018).
  • [108] Zhu Y, Shi J, Li Y, Wang L, Huang Q, Xu G. "Design and experimental investigation of a stretched parabolic linear Fresnel reflector collecting system". Energy Conversion and Management, 126, (2016).
  • [109] Kalogirou SA. Solar Energy Engineering: Processes and Systems – Second Edition, (2014).
  • [110] Mawire A, Taole SH. "Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes". Energy for Sustainable Development, 19, (2014).
  • [111] Thirunavukkarasu V, Cheralathan M. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator"ç. Energy, 192, (2020).
  • [112] Neber M, Lee H. "Design of a high temperature cavity receiver for residential scale concentrated solar power". Energy, 47, (2012).
  • [113] Cagnoli M, de la Calle A, Pye J, Savoldi L, Zanino R. "A CFD-supported dynamic system-level model of a sodium-cooled billboard-type receiver for central tower CSP applications". Solar Energy,177, (2019).
  • [114] Awan AB, Chandra Mouli KVV, Zubair M. "Performance enhancement of solar tower power plant: A multi-objective optimization approach". Energy Conversion and Management, 225, (2020).
  • [115] Wang Z. "China Solar Thermal Alliance (CSTA) is a non-profit organization that supports and promotes the development of solar thermal technology and industry with the strength of all CSTA’s members from universities, institutes and industry". The Blue Book of China
  • [116] Energy SP. Technology Roadmap. Technical Report, IEA, (2014).
  • [117] Guo R, Zhuang C, Gao Y. "Energy-efficient and energy-flexible buildings towards net-zero carbon emission". Frontiers in Energy Research, 12:1458006, (2024).
  • [118] Dönmez NFK. "Taxation and incentives in renewable energy investments". Elektronik Sosyal Bilimler Dergisi, 22:220–45, (2023).
  • [119] Kılıç U, Kekezoğlu B. "A review of solar photovoltaic incentives and policy: Selected countries and Turkey". Ain Shams Engineering Journal, 13:101669, (2022).
  • [120] Nyasapoh M, Gyamfi S, Debrah SK, Gabbar H, Derkyi N, Nassar Y, et al. "Navigating Renewable Energy Transition Challenges for a Sustainable Energy Future in Ghana". Solar Energy and Sustainable Development Journal, 14:237–57, (2025).
  • [121] Sareen K, Panigrahi BK, Nagdeve R, Bhalja BR, Suman S. "Energy Transition: A Global Review of Wholesale Energy Markets and Variable Renewable Energy Forecasting-Related Frameworks". IEEE Power and Energy Magazine, 23:53–64, (2025).
  • [122] Haberler – T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://enerji.gov.tr/haber-detay?id=21398 (accessed September 1, 2025).
  • [123] TÜBİTAK 2024-2025 Öncelikli Ar-Ge ve Yenilik Konuları | TÜBİTAK | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu https://tubitak.gov.tr/tr/kurumsal/politikalar/tubitak-2024-2025-oncelikli-ar-ge-ve-yenilik-konulari? (accessed September 1, 2025).
  • [124] Gözkün KA, Orhangazi Ö. "Solar and wind power transition in Türkiye: An input-output analysis of growth, employment, and current account effects". In: Integrated Policy Strategies and Regional Policy Coordination for Resilient, Green and Transformative Development, (2025).
  • [125] "Social and Employment Impacts of Climate Change and Green Economy Policies in Türkiye". Application of the Green Jobs Assessment Model for Türkiye.
Toplam 125 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Derleme Makalesi
Yazarlar

Abid Ustaoğlu 0000-0003-3391-5015

Süheyl Bilal Sungur 0009-0004-7571-0493

Erken Görünüm Tarihi 28 Ekim 2025
Yayımlanma Tarihi 8 Kasım 2025
Gönderilme Tarihi 16 Haziran 2025
Kabul Tarihi 10 Ekim 2025
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Ustaoğlu, A., & Sungur, S. B. (2025). Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1720721
AMA Ustaoğlu A, Sungur SB. Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz. Politeknik Dergisi. Published online 01 Ekim 2025:1-1. doi:10.2339/politeknik.1720721
Chicago Ustaoğlu, Abid, ve Süheyl Bilal Sungur. “Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz”. Politeknik Dergisi, Ekim (Ekim 2025), 1-1. https://doi.org/10.2339/politeknik.1720721.
EndNote Ustaoğlu A, Sungur SB (01 Ekim 2025) Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz. Politeknik Dergisi 1–1.
IEEE A. Ustaoğlu ve S. B. Sungur, “Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz”, Politeknik Dergisi, ss. 1–1, Ekim2025, doi: 10.2339/politeknik.1720721.
ISNAD Ustaoğlu, Abid - Sungur, Süheyl Bilal. “Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz”. Politeknik Dergisi. Ekim2025. 1-1. https://doi.org/10.2339/politeknik.1720721.
JAMA Ustaoğlu A, Sungur SB. Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz. Politeknik Dergisi. 2025;:1–1.
MLA Ustaoğlu, Abid ve Süheyl Bilal Sungur. “Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1720721.
Vancouver Ustaoğlu A, Sungur SB. Küresel Isınma ve Güneş Enerjisi: Türkiye ve Lider Ülkeler Üzerine Bir Analiz. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.