Derleme
BibTex RIS Kaynak Göster

A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces

Yıl 2024, Cilt: 27 Sayı: 1, 227 - 236, 29.02.2024
https://doi.org/10.2339/politeknik.1001951

Öz

Steel alloys are one of the most used engineering material classes due to their superior properties such as yield and tensile strength, good thermal conductivity, machinability, formability, ductility, magnetic properties, and recyclability. In addition to its advantages, steel suffers from two main factors that limit its use, namely wear and corrosion. Wear and corrosion, separately or in combination, cause a material loss in steel, resulting in increased costs in industrial production. However, with appropriate surface treatments, wear and corrosion of steels can be prevented or kept to a minimum. Corrosion and wear resistances provided by appropriate methods have the potential to reduce costs and also expand the set of suitable materials that designers can choose from. In this study, brief information about steel is given and then preventive applications against wear and corrosion of steel materials are examined. Definitions were made about surface treatments such as hot-dip coatings, electrochemical coatings, electroless coatings, thermochemical surface treatments, sol-gel coatings, chemical vapor deposition (CVD), thermal spray coatings, physical vapor deposition (PVD), and the effects of surface treatments on the wear and corrosion properties of steels were investigated. In addition, the effects of some process parameters of surface treatments and post-treatments such as heat treatment on corrosion and wear behavior are presented.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey (TÜBİTAK) and Trabzon Arms Industry (TİSAŞ)

Proje Numarası

119C073

Teşekkür

This study has been completed with the support provided by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and Trabzon Arms Industry (TİSAŞ) within the scope of the 2244 Industry-Academy cooperation program numbered 119C073, and the authors would like to thank TÜBİTAK and Trabzon Arms Industry for their support.

Kaynakça

  • [1] Broadbent, C. Steel’s recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. Int J Life Cycle Assess 21, 1658–1665 (2016).
  • [2] worldsteel.org, “World Steel in Figures”, (2020)
  • [3] Davis, J. R., “Surface Engineering for Corrosion and Wear Resistance”, ASM International, ISBN 0-87170-700-4, Materials Park, Ohio, USA, (2001).
  • [4] Yar-Mukhamedova G., Ved’M., Sakhnenko N., Karakurkchi A., Yermolenko I., “Corrosion and Mechanical Properties of the Fe-W-Wo2 and Fe-Mo-MoO2 Nanocomposites”, Advances in Materials Science and Engineering, 2021:6, (2021).
  • [5] Li, Yj., Dong, Ts., Fu, Bg. et al., “Study of the Microstructure and Properties of Cold Sprayed NiCr Coating”, Journal of Materials Engineering and Performance, (2021).
  • [6] Liu, W., Li, MC., “Corrosion behaviour of hot-dip Al–Zn–Si and Al–Zn–Si–3Mg coatings in NaCl solution”, Corrosion Science, 121, (2017).
  • [7] Sahoo P., Das S.K., Paulo Davim J., “3.3 Surface Finish Coatings”, Comprehensive Materials Finishing, Editor(s): MSJ Hashmi, Elsevier, (2017).
  • [8] Li, J., Du, A., Fan, Y., Zhao, X., Ma, R., Wu, J., “Effect of shot-blasting pretreatment on microstructures of hot-dip galvanized coating”, Surface and Coatings Technology, 364, (2019).
  • [9] Öztürk, F., Evis, Z., Kilic, S., “Comprehensive Materials Finishing-Chapter: Hot-Dip Galvanizing Process”, Reference Module in Materials Science and Materials Engineering, 3:178-190, (2017).
  • [10] Gapsari, F., Setyarini, P. H., Anam, K., Azizah, S., Yuliati, R., “The Effect of Hot Dip Galvanizing Temperature to Corrosion Rate of Steel as the Material for Chopper Machine”, Solid State Phenomena, 291:148–154, (2019).
  • [11] Smith W.J. and Goodwin F., “Hot Dip Coatings”, Reference Module in Materials Science and Materials Engineering, Elsevier, (2017).
  • [12] Xie Y., Du A. Zhao X., Ma R., Fan Y., and Cao X., “Effect of Mg on Fe–Al interface structure of hot-dip galvanized Zn–Al–Mg alloy coatings”. Surface and Coatings Technology, 337:313-320, (2018).
  • [13] Bicao P., Jianhua W., Xuping S., Zhi L., Yin F., “Effects of zinc bath temperature on the coatings of hot-dip galvanizing”, Surface and Coatings Technology, 202:1785-1788, (2008).
  • [14] Awan G., Hasan F., “The morphology of coating/substrate interface in hot-dip aluminized steels”, Materials Science and Engineering: A, 472:157-165, (2008).
  • [15] Su C.W., Lee J.W., Wang C.S., Chao C. and Liu T., “The effect of hot-dipped aluminum coatings on Fe-8Al-30Mn-0.8C alloy”, Surface and Coatings Technology, 202:1847-1852, (2008).
  • [16] Qiu-yu Z., Zhou Y., Liu J.Q., Chen K.M., Mo J.G., Cui X., Wang S., “Comparative research on dry sliding wear of hot-dip aluminized and uncoated AISI H13 steel”, Wear. 344-345:22-31, (2015).
  • [17] Chung, P.P., Wang, J., Durandet, Y. “Deposition processes and properties of coatings on steel fasteners — A review”. Friction 7, 389–416 (2019).
  • [18] Zhou, J., Meng, X., Zhang, R., Liu, H., Liu Z. “Progress on Electrodeposition of Rare Earth Metals and Their Alloys.” Electrocatalysis 1-13 (2021).
  • [19] Kim J.J., Kim, S. “Optimized surface pretreatments for copper electroplating”, Applied Surface Science, Volume 183, Issues 3–4, 311-318, (2001),
  • [20] Torabinejad V., Aliofkhazraei M., Assareh S., Allahyarzadeh M. H. and Sabour R. A., “Electrodeposition of Ni–Fe alloys, composites, and nano coatings- A review”, Journal of Alloys and Compounds, 691:841-859, (2016).
  • [21] Hagen C.M.H., Hognestad A., Knudsen O.Ø., Sørby K., “The effect of surface roughness on corrosion resistance of machined and epoxy coated steel”, Progress in Organic Coatings, 130:17-23, (2019).
  • [22] Sekar R and Jayakrishnan S., “Effect of sulphonic acids on electrodeposition of nickel and its structural and corrosion behaviour”, Transactions of the IMF. 90:324-329, (2012).
  • [23] Banthia S., Sengupta S., Mallik M., and Das S., “Substrate effect on electrodeposited copper morphology and crystal shapes”, Surface Engineering, 34:485-492, (2017).
  • [24] Standish T. E, Zagidulin D, Ramamurthy S, Keech P.G., Noël J.J. and Shoesmith D.W., “Galvanic corrosion of copper-coated carbon steel for used nuclear fuel containers”, Corrosion Engineering, Science and Technology, 1-5, (2017).
  • [25] Kamel, M.M., Abd El-Moemen, A., Rashwan, S.M., Bolbol A.M. “Electrodeposition of nanocrystalline copper deposits using lactic acid-based plating bath”. Metall. 71, 7-8, 282-286 (2018).
  • [26] Wang, S., Ma, C., Walsh F.C., “Alternative tribological coatings to electrodeposited hard chromium: a critical review”, Transactions of the IMF, 98:4, 173-185, (2020).
  • [27] Zhao H., Lei L., Zhu J., Tang Y. and Hu W., “Microstructure and corrosion behavior of electrodeposited nickel prepared from a sulphamate bath”, Materials Letters, 61:1605-1608, (2007).
  • [28] Nurbaş M., Durul E.N.A., “Abrasive Wear Behavior of Different Thermal Spray Coatings and Hard Chromium Electroplating on A286 Super Alloy*”, Advances in Materials Physics and Chemistry, 2:68-70, (2012).
  • [29] Li J., Li Y., Tian X., Zou L., Zhao X., Wang S. and Wang S., “The Hardness and Corrosion Properties of Trivalent Chromium Hard Chromium”, Materials Sciences and Applications, 8:1014-1026, (2017).
  • [30] Varol T., Güler O., Akçay S.B., Aksa H.C., “The effect of silver coated copper particle content on the properties of novel Cu-Ag alloys prepared by hot pressing method”, Powder Technology, 384:236-246, (2021,a).
  • [31] Varol T., Akçay S.B. and Güler O., “Akımsız kaplama yöntemi ile Cu-Ag bimetal parçacıkların üretimi ve karakterizasyonu”, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 11 (2) , 586-596,
  • (2021, b) .
  • [32] Parkinson R., “Properties and applications of electroless nickel”, Nickel Development Institute, (2001).
  • [33] Hofinger M., “Thermomechanical Fatigue Resistant Dual Hardening Steels”, Doctora Thesis, Montan Universitat, Leoben, (2020).
  • [34] Czerwinski, F., “Thermochemical Treatment of Metals, Heat Treatment - Conventional and Novel Applications”, IntechOpen, (2012).
  • [35] Grabarczyk J., Batory D., Kaczorowski W., Pązik B., Januszewicz B., Burnat B., Czerniak-Reczulska M., Makówka M., Niedzielski P., “Comparison of Different Thermo-Chemical Treatments Methods of Ti-6Al-4V Alloy in Terms of Tribological and Corrosion Properties”, Materials, 13(22):5192, (2020).
  • [36] Izciler M., Tabur M., “Abrasive wear behavior of different case depth gas carburized AISI 8620 gear steel”, Wear,260. 90-98, (2006).
  • [37] Agarwal N., Kahn H., Avishai A., Michal G., Ernst F., “Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization”, Acta Materialia, 55:5572- 5580, (2007).
  • [38] Arulbrittoraj A., Padmanabhan P., Duraiselvam M., Srinivasan R., Ebenezer G., “The effect of sliding wear parameters on carburized AISI1040 steel”, Journal of Mechanical Science and Technology, 30:1825-1833, (2016).
  • [39] Somers M. and Christiansen T., “Nitriding of Steels”, Reference Module in Materials Science and Materials Engineering, Elsevier, (2020).
  • [40] Kikuchi S., Nakahara Y., Komotori J., “Fatigue properties of gas nitrided austenitic stainless steel pre-treated with fine particle peening”, International Journal of Fatigue, 32:403-410, (2010).
  • [41] Menthe E., Bulak A., Olfe J., Zimmermann A., Rie K.-T., “Improvement of mechanical properties of austenitic stainless steel after plasma nitriding”, Surface and Coatings Technology, 133:259-263, (2000).
  • [42] Podgornik B., Vizintin J., Leskovšek V., “Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel”, Surface and Coatings Technology, 108:454-460, (1998).
  • [43] Genel K., Demirkol M., Çapa M., “Effect of ion nitriding on fatigue behaviour of AISI 4140 steel”, Materials Science and Engineering: A, 279:207-216, (2000).
  • [44] Xuan A., Nhung L., Chieu and Nguyen D., “Control gas nitriding process: A review”, Journal of Mechanical Engineering Research and Development, 42:17-25, (2019).
  • [45] Pessin M., Tier M., Strohaecker T., Bloyce A., Sun Y., Bell T., “The effects of plasma nitriding process parameters on the wear characteristics of AISI M2 tool steel”, Tribology Letters, 8:223-228, (2000).
  • [46] Yang C.-C.,“The Optimization of Carbonitriding Process for 1022 Self-drilling Tapping Screw with Taguchi Technique”, International journal of scientific and technical research in engineering, 2:13-22, (2017).
  • [47] Zhang J., Lu L., Shiozawa K., Zhou W.N. and Zhang W.H., “Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime”, International Journal of Fatigue, 33:880-886, (2011).
  • [48] Wen, D.-C., “Erosion and wear behavior of nitrocarburized DC53 tool steel”, Wear, 268: 629-636, (2010).
  • [49] Tabur M., Izciler M., Gül F. and Karacan I., “Abrasive wear behavior of boronized AISI 8620 steel”, Wear, 266:1106-1112, (2009).
  • [50] Kulka M., “Current Trends in Boriding. Techniques”, 1st edition, Springer, (2019).
  • [51] Özbek İ., Bindal C., “Mechanical properties of boronized AISI W4 steel”, Surface and Coatings Technology., 154:14-20, (2002).
  • [52] Mattox, D. M., “Handbook of physical vapor deposition (PVD) processing”, Elsevier, Amsterdam, (2010).
  • [53] Aliofkhazraei M. and Ali N., “7.04 - PVD Technology in Fabrication of Micro- and Nanostructured Coatings”, Editor(s): Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B. Comprehensive Materials Processing, Elsevier, pp. 49-84, ISBN 9780080965338, (2014).
  • [54] Deng Y., Chen W., Li B., Tongchun K., Li Y., “Physical vapor deposition technology for coated cutting tools: A review”, Ceramics International, 46, (2020).
  • [55] Baptista A., Silva F., Porteiro J., Míguez J., Pinto G., “Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands”, Coatings, 8(11):402, (2018).
  • [56] Conde A., Navas C., Cristóbal A., Housden J., de Damborenea J., “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings”, Surface and Coatings Technology, 201:2690-2695, (2006).
  • [57] Fotovvati B., Navid N. and Amir D., “On Coating Techniques for Surface Protection: A Review”, Journal of Manufacturing and Materials Processing, 3,1:28, (2019).
  • [58] Guglielmi M., “Sol-gel coatings on metals”, Journal of Sol-Gel Science and Technology, 8, 443–449, (1997).
  • [59] Krzak J., Szczurek A., Babiarczuk B., Gąsiorek J., Borak B., “Chapter 5 - Sol–gel surface functionalization regardless of form and type of substrate”, Handbook of Nanomaterials for Manufacturing Applications, Editor(s): Chaudhery Mustansar Hussain, Elsevier, pp. 111-147, (2020).
  • [60] Ruhi G., Modi O.P., Sinha A., Singh I.B., “Effect of sintering temperatures on corrosion and wear properties of sol–gel alumina coatings on surface pre-treated mild steel”, Corrosion Science, 50:639-649, (2008).
  • [61] Amushahi M.H., Ashrafizadeh F., Shamanian M., “Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes”, Surface and Coatings Technology, 204:2723-2728, (2010).
  • [62] Al-Mangour B., Mongrain R., Irissou E., Yue S., “Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray”, Surface and Coatings Technology, 216:297–30, (2013).
  • [63] Akhtari-Zavareh M., Aadm S., BintiAbd B., Basirun, W., “The tribological and electrochemical behavior of HVOF-sprayed Cr3C2-NiCr ceramic coating on carbon steel”, Ceramics International, 41:5387-5396, (2015).

Aşınma ve Korozyona Dirençli Çelik Yüzeyler Oluşturmak Için Kullanılan Yüzey İşlemleri Üzerine Bir Derleme

Yıl 2024, Cilt: 27 Sayı: 1, 227 - 236, 29.02.2024
https://doi.org/10.2339/politeknik.1001951

Öz

Çelik alaşımları, akma ve çekme mukavemeti, iyi ısıl iletkenlik, işlenebilirlik, şekillendirilebilirlik, süneklik, manyetik özellikler ve geri dönüştürülebilirlik gibi üstün özelliklerinden dolayı en çok kullanılan mühendislik malzemesi sınıflarından biridir. Avantajlarına ek olarak, çelik, kullanımını sınırlayan iki ana faktörden muzdariptir: aşınma ve korozyon. Aşınma ve korozyon, ayrı ayrı veya bir arada, çeliklerde malzeme kaybına neden olarak endüstriyel üretimde maliyetlerin artmasına neden olur. Ancak uygun yüzey işlemleri ile çeliklerin aşınması ve korozyonu önlenebilir veya minimumda tutulabilir. Uygun yöntemlerle sağlanan korozyon ve aşınma direnci, maliyetleri düşürme potansiyeline sahiptir ve endüstriyel tasarımcılara geniş bir malzeme seçimi yelpazesi sunar. Bu çalışmada çelikler hakkında kısaca bilgi verilmiş ardından çelik malzemelerin aşınma ve korozyona karşı önleyici uygulamaları incelenmiştir. Sıcak daldırma kaplamalar, elektrokimyasal kaplamalar, akımsız kaplamalar, termokimyasal yüzey işlemleri, sol-jel, termal sprey kaplamalar, fiziksel buhar biriktirme, kimyasal buhar biriktirme, gibi yüzey işlemleri ile yüzey işlemlerinin çeliklerin aşınma ve korozyon direnci üzerindeki etkileri hakkında tanımlamalar yapılmıştır. Ayrıca proses parametrelerinin ve yüzey işleminden sonra uygulanan ısıl işlem gibi ardıl işlemlerin çeliklerin korozyon ve aşınma davranışı üzerindeki etkileri sunulmaktadır.  

Proje Numarası

119C073

Kaynakça

  • [1] Broadbent, C. Steel’s recyclability: demonstrating the benefits of recycling steel to achieve a circular economy. Int J Life Cycle Assess 21, 1658–1665 (2016).
  • [2] worldsteel.org, “World Steel in Figures”, (2020)
  • [3] Davis, J. R., “Surface Engineering for Corrosion and Wear Resistance”, ASM International, ISBN 0-87170-700-4, Materials Park, Ohio, USA, (2001).
  • [4] Yar-Mukhamedova G., Ved’M., Sakhnenko N., Karakurkchi A., Yermolenko I., “Corrosion and Mechanical Properties of the Fe-W-Wo2 and Fe-Mo-MoO2 Nanocomposites”, Advances in Materials Science and Engineering, 2021:6, (2021).
  • [5] Li, Yj., Dong, Ts., Fu, Bg. et al., “Study of the Microstructure and Properties of Cold Sprayed NiCr Coating”, Journal of Materials Engineering and Performance, (2021).
  • [6] Liu, W., Li, MC., “Corrosion behaviour of hot-dip Al–Zn–Si and Al–Zn–Si–3Mg coatings in NaCl solution”, Corrosion Science, 121, (2017).
  • [7] Sahoo P., Das S.K., Paulo Davim J., “3.3 Surface Finish Coatings”, Comprehensive Materials Finishing, Editor(s): MSJ Hashmi, Elsevier, (2017).
  • [8] Li, J., Du, A., Fan, Y., Zhao, X., Ma, R., Wu, J., “Effect of shot-blasting pretreatment on microstructures of hot-dip galvanized coating”, Surface and Coatings Technology, 364, (2019).
  • [9] Öztürk, F., Evis, Z., Kilic, S., “Comprehensive Materials Finishing-Chapter: Hot-Dip Galvanizing Process”, Reference Module in Materials Science and Materials Engineering, 3:178-190, (2017).
  • [10] Gapsari, F., Setyarini, P. H., Anam, K., Azizah, S., Yuliati, R., “The Effect of Hot Dip Galvanizing Temperature to Corrosion Rate of Steel as the Material for Chopper Machine”, Solid State Phenomena, 291:148–154, (2019).
  • [11] Smith W.J. and Goodwin F., “Hot Dip Coatings”, Reference Module in Materials Science and Materials Engineering, Elsevier, (2017).
  • [12] Xie Y., Du A. Zhao X., Ma R., Fan Y., and Cao X., “Effect of Mg on Fe–Al interface structure of hot-dip galvanized Zn–Al–Mg alloy coatings”. Surface and Coatings Technology, 337:313-320, (2018).
  • [13] Bicao P., Jianhua W., Xuping S., Zhi L., Yin F., “Effects of zinc bath temperature on the coatings of hot-dip galvanizing”, Surface and Coatings Technology, 202:1785-1788, (2008).
  • [14] Awan G., Hasan F., “The morphology of coating/substrate interface in hot-dip aluminized steels”, Materials Science and Engineering: A, 472:157-165, (2008).
  • [15] Su C.W., Lee J.W., Wang C.S., Chao C. and Liu T., “The effect of hot-dipped aluminum coatings on Fe-8Al-30Mn-0.8C alloy”, Surface and Coatings Technology, 202:1847-1852, (2008).
  • [16] Qiu-yu Z., Zhou Y., Liu J.Q., Chen K.M., Mo J.G., Cui X., Wang S., “Comparative research on dry sliding wear of hot-dip aluminized and uncoated AISI H13 steel”, Wear. 344-345:22-31, (2015).
  • [17] Chung, P.P., Wang, J., Durandet, Y. “Deposition processes and properties of coatings on steel fasteners — A review”. Friction 7, 389–416 (2019).
  • [18] Zhou, J., Meng, X., Zhang, R., Liu, H., Liu Z. “Progress on Electrodeposition of Rare Earth Metals and Their Alloys.” Electrocatalysis 1-13 (2021).
  • [19] Kim J.J., Kim, S. “Optimized surface pretreatments for copper electroplating”, Applied Surface Science, Volume 183, Issues 3–4, 311-318, (2001),
  • [20] Torabinejad V., Aliofkhazraei M., Assareh S., Allahyarzadeh M. H. and Sabour R. A., “Electrodeposition of Ni–Fe alloys, composites, and nano coatings- A review”, Journal of Alloys and Compounds, 691:841-859, (2016).
  • [21] Hagen C.M.H., Hognestad A., Knudsen O.Ø., Sørby K., “The effect of surface roughness on corrosion resistance of machined and epoxy coated steel”, Progress in Organic Coatings, 130:17-23, (2019).
  • [22] Sekar R and Jayakrishnan S., “Effect of sulphonic acids on electrodeposition of nickel and its structural and corrosion behaviour”, Transactions of the IMF. 90:324-329, (2012).
  • [23] Banthia S., Sengupta S., Mallik M., and Das S., “Substrate effect on electrodeposited copper morphology and crystal shapes”, Surface Engineering, 34:485-492, (2017).
  • [24] Standish T. E, Zagidulin D, Ramamurthy S, Keech P.G., Noël J.J. and Shoesmith D.W., “Galvanic corrosion of copper-coated carbon steel for used nuclear fuel containers”, Corrosion Engineering, Science and Technology, 1-5, (2017).
  • [25] Kamel, M.M., Abd El-Moemen, A., Rashwan, S.M., Bolbol A.M. “Electrodeposition of nanocrystalline copper deposits using lactic acid-based plating bath”. Metall. 71, 7-8, 282-286 (2018).
  • [26] Wang, S., Ma, C., Walsh F.C., “Alternative tribological coatings to electrodeposited hard chromium: a critical review”, Transactions of the IMF, 98:4, 173-185, (2020).
  • [27] Zhao H., Lei L., Zhu J., Tang Y. and Hu W., “Microstructure and corrosion behavior of electrodeposited nickel prepared from a sulphamate bath”, Materials Letters, 61:1605-1608, (2007).
  • [28] Nurbaş M., Durul E.N.A., “Abrasive Wear Behavior of Different Thermal Spray Coatings and Hard Chromium Electroplating on A286 Super Alloy*”, Advances in Materials Physics and Chemistry, 2:68-70, (2012).
  • [29] Li J., Li Y., Tian X., Zou L., Zhao X., Wang S. and Wang S., “The Hardness and Corrosion Properties of Trivalent Chromium Hard Chromium”, Materials Sciences and Applications, 8:1014-1026, (2017).
  • [30] Varol T., Güler O., Akçay S.B., Aksa H.C., “The effect of silver coated copper particle content on the properties of novel Cu-Ag alloys prepared by hot pressing method”, Powder Technology, 384:236-246, (2021,a).
  • [31] Varol T., Akçay S.B. and Güler O., “Akımsız kaplama yöntemi ile Cu-Ag bimetal parçacıkların üretimi ve karakterizasyonu”, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 11 (2) , 586-596,
  • (2021, b) .
  • [32] Parkinson R., “Properties and applications of electroless nickel”, Nickel Development Institute, (2001).
  • [33] Hofinger M., “Thermomechanical Fatigue Resistant Dual Hardening Steels”, Doctora Thesis, Montan Universitat, Leoben, (2020).
  • [34] Czerwinski, F., “Thermochemical Treatment of Metals, Heat Treatment - Conventional and Novel Applications”, IntechOpen, (2012).
  • [35] Grabarczyk J., Batory D., Kaczorowski W., Pązik B., Januszewicz B., Burnat B., Czerniak-Reczulska M., Makówka M., Niedzielski P., “Comparison of Different Thermo-Chemical Treatments Methods of Ti-6Al-4V Alloy in Terms of Tribological and Corrosion Properties”, Materials, 13(22):5192, (2020).
  • [36] Izciler M., Tabur M., “Abrasive wear behavior of different case depth gas carburized AISI 8620 gear steel”, Wear,260. 90-98, (2006).
  • [37] Agarwal N., Kahn H., Avishai A., Michal G., Ernst F., “Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization”, Acta Materialia, 55:5572- 5580, (2007).
  • [38] Arulbrittoraj A., Padmanabhan P., Duraiselvam M., Srinivasan R., Ebenezer G., “The effect of sliding wear parameters on carburized AISI1040 steel”, Journal of Mechanical Science and Technology, 30:1825-1833, (2016).
  • [39] Somers M. and Christiansen T., “Nitriding of Steels”, Reference Module in Materials Science and Materials Engineering, Elsevier, (2020).
  • [40] Kikuchi S., Nakahara Y., Komotori J., “Fatigue properties of gas nitrided austenitic stainless steel pre-treated with fine particle peening”, International Journal of Fatigue, 32:403-410, (2010).
  • [41] Menthe E., Bulak A., Olfe J., Zimmermann A., Rie K.-T., “Improvement of mechanical properties of austenitic stainless steel after plasma nitriding”, Surface and Coatings Technology, 133:259-263, (2000).
  • [42] Podgornik B., Vizintin J., Leskovšek V., “Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel”, Surface and Coatings Technology, 108:454-460, (1998).
  • [43] Genel K., Demirkol M., Çapa M., “Effect of ion nitriding on fatigue behaviour of AISI 4140 steel”, Materials Science and Engineering: A, 279:207-216, (2000).
  • [44] Xuan A., Nhung L., Chieu and Nguyen D., “Control gas nitriding process: A review”, Journal of Mechanical Engineering Research and Development, 42:17-25, (2019).
  • [45] Pessin M., Tier M., Strohaecker T., Bloyce A., Sun Y., Bell T., “The effects of plasma nitriding process parameters on the wear characteristics of AISI M2 tool steel”, Tribology Letters, 8:223-228, (2000).
  • [46] Yang C.-C.,“The Optimization of Carbonitriding Process for 1022 Self-drilling Tapping Screw with Taguchi Technique”, International journal of scientific and technical research in engineering, 2:13-22, (2017).
  • [47] Zhang J., Lu L., Shiozawa K., Zhou W.N. and Zhang W.H., “Effect of nitrocarburizing and post-oxidation on fatigue behavior of 35CrMo alloy steel in very high cycle fatigue regime”, International Journal of Fatigue, 33:880-886, (2011).
  • [48] Wen, D.-C., “Erosion and wear behavior of nitrocarburized DC53 tool steel”, Wear, 268: 629-636, (2010).
  • [49] Tabur M., Izciler M., Gül F. and Karacan I., “Abrasive wear behavior of boronized AISI 8620 steel”, Wear, 266:1106-1112, (2009).
  • [50] Kulka M., “Current Trends in Boriding. Techniques”, 1st edition, Springer, (2019).
  • [51] Özbek İ., Bindal C., “Mechanical properties of boronized AISI W4 steel”, Surface and Coatings Technology., 154:14-20, (2002).
  • [52] Mattox, D. M., “Handbook of physical vapor deposition (PVD) processing”, Elsevier, Amsterdam, (2010).
  • [53] Aliofkhazraei M. and Ali N., “7.04 - PVD Technology in Fabrication of Micro- and Nanostructured Coatings”, Editor(s): Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B. Comprehensive Materials Processing, Elsevier, pp. 49-84, ISBN 9780080965338, (2014).
  • [54] Deng Y., Chen W., Li B., Tongchun K., Li Y., “Physical vapor deposition technology for coated cutting tools: A review”, Ceramics International, 46, (2020).
  • [55] Baptista A., Silva F., Porteiro J., Míguez J., Pinto G., “Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands”, Coatings, 8(11):402, (2018).
  • [56] Conde A., Navas C., Cristóbal A., Housden J., de Damborenea J., “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings”, Surface and Coatings Technology, 201:2690-2695, (2006).
  • [57] Fotovvati B., Navid N. and Amir D., “On Coating Techniques for Surface Protection: A Review”, Journal of Manufacturing and Materials Processing, 3,1:28, (2019).
  • [58] Guglielmi M., “Sol-gel coatings on metals”, Journal of Sol-Gel Science and Technology, 8, 443–449, (1997).
  • [59] Krzak J., Szczurek A., Babiarczuk B., Gąsiorek J., Borak B., “Chapter 5 - Sol–gel surface functionalization regardless of form and type of substrate”, Handbook of Nanomaterials for Manufacturing Applications, Editor(s): Chaudhery Mustansar Hussain, Elsevier, pp. 111-147, (2020).
  • [60] Ruhi G., Modi O.P., Sinha A., Singh I.B., “Effect of sintering temperatures on corrosion and wear properties of sol–gel alumina coatings on surface pre-treated mild steel”, Corrosion Science, 50:639-649, (2008).
  • [61] Amushahi M.H., Ashrafizadeh F., Shamanian M., “Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes”, Surface and Coatings Technology, 204:2723-2728, (2010).
  • [62] Al-Mangour B., Mongrain R., Irissou E., Yue S., “Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray”, Surface and Coatings Technology, 216:297–30, (2013).
  • [63] Akhtari-Zavareh M., Aadm S., BintiAbd B., Basirun, W., “The tribological and electrochemical behavior of HVOF-sprayed Cr3C2-NiCr ceramic coating on carbon steel”, Ceramics International, 41:5387-5396, (2015).
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Uğur Temel Yıldız 0000-0002-2172-1873

Temel Varol 0000-0002-1159-5383

Gençağa Pürçek 0000-0002-4726-2257

Serhatcan Berk Akçay 0000-0002-7492-4287

Proje Numarası 119C073
Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 29 Eylül 2021
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 1

Kaynak Göster

APA Yıldız, U. T., Varol, T., Pürçek, G., Akçay, S. B. (2024). A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces. Politeknik Dergisi, 27(1), 227-236. https://doi.org/10.2339/politeknik.1001951
AMA Yıldız UT, Varol T, Pürçek G, Akçay SB. A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces. Politeknik Dergisi. Şubat 2024;27(1):227-236. doi:10.2339/politeknik.1001951
Chicago Yıldız, Uğur Temel, Temel Varol, Gençağa Pürçek, ve Serhatcan Berk Akçay. “A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces”. Politeknik Dergisi 27, sy. 1 (Şubat 2024): 227-36. https://doi.org/10.2339/politeknik.1001951.
EndNote Yıldız UT, Varol T, Pürçek G, Akçay SB (01 Şubat 2024) A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces. Politeknik Dergisi 27 1 227–236.
IEEE U. T. Yıldız, T. Varol, G. Pürçek, ve S. B. Akçay, “A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces”, Politeknik Dergisi, c. 27, sy. 1, ss. 227–236, 2024, doi: 10.2339/politeknik.1001951.
ISNAD Yıldız, Uğur Temel vd. “A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces”. Politeknik Dergisi 27/1 (Şubat 2024), 227-236. https://doi.org/10.2339/politeknik.1001951.
JAMA Yıldız UT, Varol T, Pürçek G, Akçay SB. A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces. Politeknik Dergisi. 2024;27:227–236.
MLA Yıldız, Uğur Temel vd. “A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces”. Politeknik Dergisi, c. 27, sy. 1, 2024, ss. 227-36, doi:10.2339/politeknik.1001951.
Vancouver Yıldız UT, Varol T, Pürçek G, Akçay SB. A Review on the Surface Treatments Used to Create Wear and Corrosion Resistant Steel Surfaces. Politeknik Dergisi. 2024;27(1):227-36.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.