Araştırma Makalesi
BibTex RIS Kaynak Göster

Molibden ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi

Yıl 2024, Cilt: 27 Sayı: 3, 839 - 847, 25.07.2024
https://doi.org/10.2339/politeknik.1215548

Öz

Verimliliğin öneminin arttığı günümüz dünyasında, üstün özelliklere sahip mühendislik malzemelerinin istenilen kalitede ve en uygun şartlarda şekillendirilebilmeleri büyük önem kazanmıştır. Refrakter metallerden olan molibden ve alaşımları, yüksek sıcaklık uygulamaları için uzay, havacılık, savunma ve biyomedikal gibi ileri teknolojilerin kullanıldığı sektörlerde bütünün en kritik parçalarının üretiminde yer bulan eşsiz malzemelerdendir. Refrakter metaller zor işlenen malzemeler olarak bilinir ve bu malzemelerin birim maliyetleri nispeten yüksektir. Malzemelerin bu özellikleri işleme verimliliğini olumsuz etkilemekte ve üretim maliyetlerini artırmaktadır. Bu çalışmada saf molibden, TZM (Titanyum-Zirkonyum-Molibden) ve MHC (Molibden-Hafniyum-Karbon) alaşımlarının frezelenmesi sürecinde kesici takımlarda meydana gelen aşınmalar ve takım ömrü incelenmiştir. Deneysel çalışmada kesici takım ve kesme parametrelerinin belirlenmesinde literatürde yer alan çalışmalar dikkate alınarak optimum kesici takım ve kesme parametreleri belirlenmiştir. Deneyler sonucunda aşınan kesici takımların dijital ve taramalı elektron mikroskopları (SEM) ile aşınma görüntüleri alınmış ayrıca EDX ile de aşınmış kesici takımlar incelenmiştir. Her üç malzeme gurubunda da kesici takımlarda hızlı aşınmalar gözlemlenmiştir. Saf molibdenin işlenmesinde yan yüzey aşınması görülürken, TZM ve MHC alaşımlarında krater aşınması dikkat çekici boyutlara ulaşmıştır. 4800 m3 talaş kaldırma miktarında yan yüzey aşınması saf molibdende 0,381 mm, TZM’de 0,072 mm, MHC’de 0,07 mm değerlerindeyken, krater aşınması TZM’de 5,85 mm2, MHC’de 8,348 mm2 değerlerine ulaşmıştır. Saf molibdende ise krater aşınması görülmemiştir. 

Destekleyen Kurum

Karabük Üniversitesi

Proje Numarası

KBÜ-BAP-15/2-DR-002

Teşekkür

Bu çalışma, Karabük Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından KBÜ-BAP-15/2-DR-002 kodlu proje ile desteklenmiştir. Kuruma desteklerinden ötürü teşekkür ederim.

Kaynakça

  • [1] Fan J., Lu M., Cheng H., Tian J. and Huang B., “Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum”, International Journal of Refractory Metals and Hard Materials, 27: 78-82, (2009).
  • [2] Henckens M.L.C.M., Driessen P.P.J. and Worrell E., “Molybdenum resources: Their depletion and safeguarding for future generations”, Resources, Conservation & Recycling, 134: 61-69, (2018).
  • [3] www.plansee.com/en/materials/molybdenum.htm, “Molybdenum”, (2019).
  • [4] www.imoa.info/download_files/molyreview/IMOA_Newsletter/IMOANews_07-07.pdf, “Traditional and emerging applications of molybdenum metal and its alloys”, (2007).
  • [5] Pavelek M. and Donic T., “Simulation study of dynamic heating process of molybdenum for sheet suited for rigid transport components design”, Transportation Research Procedia, 40: 442-448, (2019).
  • [6] www.astm.org/Standards/B387.htm, “Standart specification for molybdenum and molybdenum alloy bar, rod and wire”, (2019).
  • [7] Park J.B. and Lakes R.S., “Biomaterials, Planum Pres”, New York and London, 66: 115, (2007).
  • [8] Janabi H.N.A., Gökçe H. and Sarıfakıoğlu E., “Seismic analysis of oil storage tanks with different geometries”, Journal of Polytechnic, *(*): *, (*). Doi: 10.2339/politeknik.1127303.
  • [9] Demellayer R. and Richard J., “High precision electro discharge machining of Molybdenum and Tungsten”, Procedia CIRP, 6: 89-94, (2013).
  • [10] Kuljanic E., Sortino M. and Totis G., “Machinability of difficult machining materials”, 14th International Research/Expert Conference – Trends in the Development of Machinery and Associated Technology, Mediterranean Cruise, I1-I14, (2010).
  • [11] Zlatin N., Field M. and Gould J., “Machining of refractory materials”, Armed Services Technical Information Agency, ASD Interim Report Unclassifield, Virginia, 7-532a(IX), (1963).
  • [12] Sortino M., Totis G. and Prosperi F., “Dry turning of sintered molybdenum”, Journal of Materials Processing Technology, 213: 1179-1190, (2013).
  • [13] www.edfagan.com/molybdenum-and-molybdenum-alloys-machining-guide.php, “General Guide to Machining Molybdenum and molybdenum Alloy”, (2017).
  • [14] Chandler H.E., “Machining of specific metals and alloys”, ASM Handbook 16 Machining, ASM International, U.S.A., 858-870, (1990).
  • [15] Mouralova K., Benes L., Zahradnicek R., Bednar J., Otoupalik J., Fiserova Z. and Fiala Z., “Micro-milling machinability of pure molybdenum”, The International Journal of Advanced Manufacturing Technology, 102: 4153-4165, (2019).
  • [16] www.matweb.com/search/DataSheet.aspx?MatGUID=ef57c33963404798ad0301a05692312a&ckck=1, “Molybdenum, Mo, Annealed”, (2019).
  • [17] www.imoa.info/download_files/molybdenum/Applications_Mo_Metal.pdf, “Applications of molybdenum metal and its alloys”, (2013).
  • [18] Çiftçi İ. and Gökçe H., “Optimisation of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi Method”, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1): 201-213, (2019).
  • [19] Braun J., Kaserer L., Stajkovic J., Leitz K.-H., Tabernig B., Singer P., Leibenguth P., Gspan C., Kestler H. and Leichtfried G., “Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms”, International Journal of Refractory Metals & Hard Materials, 84: 104999, (2019).
  • [20] Wang X., Tang H., Shao M., Jin H. and Liu H., “Laser impact welding: Investigation on microstructure and mechanical properties of molybdenum-copper welding joint”, International Journal of Refractory Metals & Hard Materials, 80: 1-10, (2019).
  • [21] Allen P. and Chen X., “Process simulation of micro electro-discharge machining on molybdenum”, Journal of Materials Processing Technology, 186: 346-355, (2007).
  • [22] Fan J., Lu M., Cheng H., Tian J. and Huang, B., “Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum”, International Journal of Refractory Metals and Hard Materials, 27: 78-82, (2009).
  • [23] Warren J., “The 700ºC tensile behavior of Mo-0.5Ti-0.08Zr-0.025C (TZM) extruded bar measured transverse and parallel to the billet extrusion axis”, International Journal of Refractory Metals & Materials, 16: 149-157, (1998).
  • [24] Stütz M., Buzolin R., Pixner F., Poletti C. and Enzinger N., “Microstructure development of molybdenum during rotary friction welding”, Materials Characterization, 151: 506-518, (2019).
  • [25] Raffo P.L., “Thermomechanical processing of molybdenum–hafnium–carbon alloys”, NASA Technical Note TN D-5645, Washington D.C., (1970).
  • [26] Calderon H.A., Kostorz G. and Ullrich G., “Microstructure and plasticity of two molybdenum-based alloys (TZM)”, Materials Science and Engineering A, 160 (2): 189-199, (1993).
  • [27] Pöhl C., Schatte J. and Leitner H., “Metallographic characterization of the molybdenum based alloy MHC by a color etching technique”, Materials Characterization, 77: 63-69, (2013).
  • [28] Kalpakjian S. and Schmid S.R., “Manufacturing Engineering and Technology”, 6th ed., Pearson Education, (2009).
  • [29] Gökçe H., Çiftçi İ. amd Demir H., “Cutting parameter optimization in shoulder milling of commercially pure molybdenum”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40: 360, (2018).
  • [30] Sandvik Koromant, “Modern metal cutting – A practical handbook”, English Edition, Sandvik Coromant, Sweden, I-III, (1994).
  • [31] Gökçe H., Yavuz M. and Çiftçi İ., “An investigation into the performance of HSS drills when drilling commercially pure molybdenum”, Sigma Journal of Engineering and Natural Sciences, 38(1): 61-70, (2020).
  • [32] Akkaş G. and Korkut İ., “Kinematic analysis of tapping machine and simulation with simmechanics”, Politeknik Dergisi, 22(2): 431-436, (2019).
  • [33] Gökçe H., Çiftçi İ. and Gökçe H., “Frezeleme operasyonlarında kesme kuvvetlerinin deneysel ve sonlu elemanlar analizi ile incelenmesi: Saf molibdenin işlenmesi üzerine bir çalışma”, Politeknik Dergisi , 22(4): 947- 954, (2019).
  • [34] Gökçe H. and Yavuz M., “Ticari saflıktaki molibdene HSS kılavuzlarla vida açma işleminde kesme hızının etkisi”, Gazi Mühendislik Bilimleri Dergisi (GMBD), 5(3): 237-243, (2019).
  • [35] Tüzüner S., Metin A.B. and Saraloğlu E.G., “Optimization of processing parameters for minimum residual stress and maximum wear resistance during gas nitration of 4140 steel”, Journal of Polytechnic, *(*): *, (*). Doi: 10.2339/politeknik.993934.
  • [36] Gökçe H., “Modelling and Optimization for Thrust Force, Temperature and Burr Height in Drilling of Custom 450”, Experimental Techniques, 46: 707–721 (2022).
  • [37] Çiftçi İ. and Gökçe H., “Ti6Al4V Titanyum Alaşımının Delinmesinde Delme Yönteminin Aşınmaya Etkisinin İncelenmesi”, Politeknik Dergisi, 22(3); 627-631, (2019).

Investigation of Tool Wear When Milling Molybdenum and Its Alloys

Yıl 2024, Cilt: 27 Sayı: 3, 839 - 847, 25.07.2024
https://doi.org/10.2339/politeknik.1215548

Öz

In our current world, where the importance of productivity increases, it is of great importance that the engineering materials with superior properties can be shaped in the desired quality and under the most favorable conditions. Molybdenum and its alloys, which are refractory metals, are among the unique materials found in the production of the most critical parts of the whole in high-tech applications such as space, aviation, defense and biomedical industries. Refractory metals are known as difficult-to-cut materials, and their unit costs are relatively high. These properties of materials adversely affect processing efficiency and increase production costs. In this study, wear and tool life of the cutting tools were examined during the milling operation of pure molybdenum, TZM (titanium-zirconium-molybdenum) and MHC (molybdenum-hafnium-carbon) alloys. In the experimental study, optimum cutting tools and cutting parameters were determined by considering the publications in literature. As a result of the experiments, wear images of the cutting tools were taken by digital and scanning optical microscopes (SEM). In addition, EDX analysis was also carried out on these cutting tools. In all three material groups, rapidly increasing wear was observed on the cutting tools. Flank wear was observed in machining of pure molybdenum while crater wear in was observed in machining of TZM and MHC alloys. At 4800 m3 metal removal rate, the flank wear was 0.381 mm for pure molybdenum, 0.072 mm for TZM, 0.07 mm for MHC, while crater wear reached 5.85 mm2 for TZM and 8.348 mm2 for MHC. No crater wear was observed in pure molybdenum.

Proje Numarası

KBÜ-BAP-15/2-DR-002

Kaynakça

  • [1] Fan J., Lu M., Cheng H., Tian J. and Huang B., “Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum”, International Journal of Refractory Metals and Hard Materials, 27: 78-82, (2009).
  • [2] Henckens M.L.C.M., Driessen P.P.J. and Worrell E., “Molybdenum resources: Their depletion and safeguarding for future generations”, Resources, Conservation & Recycling, 134: 61-69, (2018).
  • [3] www.plansee.com/en/materials/molybdenum.htm, “Molybdenum”, (2019).
  • [4] www.imoa.info/download_files/molyreview/IMOA_Newsletter/IMOANews_07-07.pdf, “Traditional and emerging applications of molybdenum metal and its alloys”, (2007).
  • [5] Pavelek M. and Donic T., “Simulation study of dynamic heating process of molybdenum for sheet suited for rigid transport components design”, Transportation Research Procedia, 40: 442-448, (2019).
  • [6] www.astm.org/Standards/B387.htm, “Standart specification for molybdenum and molybdenum alloy bar, rod and wire”, (2019).
  • [7] Park J.B. and Lakes R.S., “Biomaterials, Planum Pres”, New York and London, 66: 115, (2007).
  • [8] Janabi H.N.A., Gökçe H. and Sarıfakıoğlu E., “Seismic analysis of oil storage tanks with different geometries”, Journal of Polytechnic, *(*): *, (*). Doi: 10.2339/politeknik.1127303.
  • [9] Demellayer R. and Richard J., “High precision electro discharge machining of Molybdenum and Tungsten”, Procedia CIRP, 6: 89-94, (2013).
  • [10] Kuljanic E., Sortino M. and Totis G., “Machinability of difficult machining materials”, 14th International Research/Expert Conference – Trends in the Development of Machinery and Associated Technology, Mediterranean Cruise, I1-I14, (2010).
  • [11] Zlatin N., Field M. and Gould J., “Machining of refractory materials”, Armed Services Technical Information Agency, ASD Interim Report Unclassifield, Virginia, 7-532a(IX), (1963).
  • [12] Sortino M., Totis G. and Prosperi F., “Dry turning of sintered molybdenum”, Journal of Materials Processing Technology, 213: 1179-1190, (2013).
  • [13] www.edfagan.com/molybdenum-and-molybdenum-alloys-machining-guide.php, “General Guide to Machining Molybdenum and molybdenum Alloy”, (2017).
  • [14] Chandler H.E., “Machining of specific metals and alloys”, ASM Handbook 16 Machining, ASM International, U.S.A., 858-870, (1990).
  • [15] Mouralova K., Benes L., Zahradnicek R., Bednar J., Otoupalik J., Fiserova Z. and Fiala Z., “Micro-milling machinability of pure molybdenum”, The International Journal of Advanced Manufacturing Technology, 102: 4153-4165, (2019).
  • [16] www.matweb.com/search/DataSheet.aspx?MatGUID=ef57c33963404798ad0301a05692312a&ckck=1, “Molybdenum, Mo, Annealed”, (2019).
  • [17] www.imoa.info/download_files/molybdenum/Applications_Mo_Metal.pdf, “Applications of molybdenum metal and its alloys”, (2013).
  • [18] Çiftçi İ. and Gökçe H., “Optimisation of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi Method”, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1): 201-213, (2019).
  • [19] Braun J., Kaserer L., Stajkovic J., Leitz K.-H., Tabernig B., Singer P., Leibenguth P., Gspan C., Kestler H. and Leichtfried G., “Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms”, International Journal of Refractory Metals & Hard Materials, 84: 104999, (2019).
  • [20] Wang X., Tang H., Shao M., Jin H. and Liu H., “Laser impact welding: Investigation on microstructure and mechanical properties of molybdenum-copper welding joint”, International Journal of Refractory Metals & Hard Materials, 80: 1-10, (2019).
  • [21] Allen P. and Chen X., “Process simulation of micro electro-discharge machining on molybdenum”, Journal of Materials Processing Technology, 186: 346-355, (2007).
  • [22] Fan J., Lu M., Cheng H., Tian J. and Huang, B., “Effect of alloying elements Ti, Zr on the property and microstructure of molybdenum”, International Journal of Refractory Metals and Hard Materials, 27: 78-82, (2009).
  • [23] Warren J., “The 700ºC tensile behavior of Mo-0.5Ti-0.08Zr-0.025C (TZM) extruded bar measured transverse and parallel to the billet extrusion axis”, International Journal of Refractory Metals & Materials, 16: 149-157, (1998).
  • [24] Stütz M., Buzolin R., Pixner F., Poletti C. and Enzinger N., “Microstructure development of molybdenum during rotary friction welding”, Materials Characterization, 151: 506-518, (2019).
  • [25] Raffo P.L., “Thermomechanical processing of molybdenum–hafnium–carbon alloys”, NASA Technical Note TN D-5645, Washington D.C., (1970).
  • [26] Calderon H.A., Kostorz G. and Ullrich G., “Microstructure and plasticity of two molybdenum-based alloys (TZM)”, Materials Science and Engineering A, 160 (2): 189-199, (1993).
  • [27] Pöhl C., Schatte J. and Leitner H., “Metallographic characterization of the molybdenum based alloy MHC by a color etching technique”, Materials Characterization, 77: 63-69, (2013).
  • [28] Kalpakjian S. and Schmid S.R., “Manufacturing Engineering and Technology”, 6th ed., Pearson Education, (2009).
  • [29] Gökçe H., Çiftçi İ. amd Demir H., “Cutting parameter optimization in shoulder milling of commercially pure molybdenum”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40: 360, (2018).
  • [30] Sandvik Koromant, “Modern metal cutting – A practical handbook”, English Edition, Sandvik Coromant, Sweden, I-III, (1994).
  • [31] Gökçe H., Yavuz M. and Çiftçi İ., “An investigation into the performance of HSS drills when drilling commercially pure molybdenum”, Sigma Journal of Engineering and Natural Sciences, 38(1): 61-70, (2020).
  • [32] Akkaş G. and Korkut İ., “Kinematic analysis of tapping machine and simulation with simmechanics”, Politeknik Dergisi, 22(2): 431-436, (2019).
  • [33] Gökçe H., Çiftçi İ. and Gökçe H., “Frezeleme operasyonlarında kesme kuvvetlerinin deneysel ve sonlu elemanlar analizi ile incelenmesi: Saf molibdenin işlenmesi üzerine bir çalışma”, Politeknik Dergisi , 22(4): 947- 954, (2019).
  • [34] Gökçe H. and Yavuz M., “Ticari saflıktaki molibdene HSS kılavuzlarla vida açma işleminde kesme hızının etkisi”, Gazi Mühendislik Bilimleri Dergisi (GMBD), 5(3): 237-243, (2019).
  • [35] Tüzüner S., Metin A.B. and Saraloğlu E.G., “Optimization of processing parameters for minimum residual stress and maximum wear resistance during gas nitration of 4140 steel”, Journal of Polytechnic, *(*): *, (*). Doi: 10.2339/politeknik.993934.
  • [36] Gökçe H., “Modelling and Optimization for Thrust Force, Temperature and Burr Height in Drilling of Custom 450”, Experimental Techniques, 46: 707–721 (2022).
  • [37] Çiftçi İ. and Gökçe H., “Ti6Al4V Titanyum Alaşımının Delinmesinde Delme Yönteminin Aşınmaya Etkisinin İncelenmesi”, Politeknik Dergisi, 22(3); 627-631, (2019).
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin Gökçe 0000-0002-2113-1611

İbrahim Çiftçi 0000-0001-7875-6324

Proje Numarası KBÜ-BAP-15/2-DR-002
Erken Görünüm Tarihi 27 Mart 2024
Yayımlanma Tarihi 25 Temmuz 2024
Gönderilme Tarihi 6 Aralık 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 3

Kaynak Göster

APA Gökçe, H., & Çiftçi, İ. (2024). Molibden ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi. Politeknik Dergisi, 27(3), 839-847. https://doi.org/10.2339/politeknik.1215548
AMA Gökçe H, Çiftçi İ. Molibden ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi. Politeknik Dergisi. Temmuz 2024;27(3):839-847. doi:10.2339/politeknik.1215548
Chicago Gökçe, Hüseyin, ve İbrahim Çiftçi. “Molibden Ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi”. Politeknik Dergisi 27, sy. 3 (Temmuz 2024): 839-47. https://doi.org/10.2339/politeknik.1215548.
EndNote Gökçe H, Çiftçi İ (01 Temmuz 2024) Molibden ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi. Politeknik Dergisi 27 3 839–847.
IEEE H. Gökçe ve İ. Çiftçi, “Molibden ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi”, Politeknik Dergisi, c. 27, sy. 3, ss. 839–847, 2024, doi: 10.2339/politeknik.1215548.
ISNAD Gökçe, Hüseyin - Çiftçi, İbrahim. “Molibden Ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi”. Politeknik Dergisi 27/3 (Temmuz 2024), 839-847. https://doi.org/10.2339/politeknik.1215548.
JAMA Gökçe H, Çiftçi İ. Molibden ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi. Politeknik Dergisi. 2024;27:839–847.
MLA Gökçe, Hüseyin ve İbrahim Çiftçi. “Molibden Ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi”. Politeknik Dergisi, c. 27, sy. 3, 2024, ss. 839-47, doi:10.2339/politeknik.1215548.
Vancouver Gökçe H, Çiftçi İ. Molibden ve Alaşımlarının Frezelenmesinde Takım Aşınmasının İncelenmesi. Politeknik Dergisi. 2024;27(3):839-47.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.