NACA0009 ve NACA4415 Kanat Profillerinin Sayısal ve İstatistiksel Aerodinamik Performans Analizi
Yıl 2024,
Cilt: 27 Sayı: 3, 849 - 856, 25.07.2024
Savaş Evran
,
Salih Zeki Yıldır
Öz
Bu sayısal ve istatistiksel çalışmada, NACA-0009 ve NACA-4415 profillerinin kaldırma ve sürükleme katsayısı performansları, sabit rüzgar hızında çeşitli hücum açılarına göre değerlendirilmiştir. Kanat profillerinin kaldırma ve sürükleme katsayıları, hesaplamalı akışkanlar dinamiği kodu ANSYS FLUENT ile sayısal olarak belirlendi. Sayısal hesaplamaların analiz tasarımı, Taguchi yöntemine dayalı L16 ortogonal dizisi kullanılarak gerçekleştirilmiştir. Hücum açıları ve kanat tipleri kontrol faktörleri olarak kabul edildi. Her kontrol faktörünün tepkiler üzerindeki optimum seviyesi ve etkisi, Sinyal-Gürültü oranı ve varyans analizleri kullanılarak istatistiksel olarak uygulandı. Bu çalışma sonucunda NACA0009 kanat profiline kıyasla NACA4415 kanat profili kullanılarak maksimum kaldırma ve minimum sürükleme katsayısı elde edilmiştir. Hücum açısının artması, her iki kanat profili için kaldırma ve sürükleme katsayılarının artmasına neden olur.
Proje Numarası
1919B012200301
Kaynakça
- [1] Jain, R., Jain, M.S., Bajpai, M.L., "Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent". IRJET, 3: 243-249, (2016).
- [2] Ockfen, A.E., Matveev, K.I., "Aerodynamic characteristics of NACA 4412 airfoil section with flap in extreme
ground effect". International Journal of Naval Architecture and Ocean Engineering, 1: 1-12, (2009).
- [3] Şahin, İ., Acir, A., "Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil". International Journal of Materials, Mechanics and Manufacturing, 3: 22-25, (2015).
- [4] Mehdi, H., Gaurav, S., Sharma, M., "Numerical investigation of fluid flow and aerodynamic performance on a 2D NACA-4412 airfoil". International Journal of Research in Engineering and Innovation, 1: 1-5, (2016).
- [5] Rubel, R.I., Uddin, M.K., Islam, M.Z., Rokunuzzaman, M., "Numerical and experimental investigation of
aerodynamics characteristics of NACA 0015 aerofoil". International Journal of Engineering Technologies IJET, 2:
132-141, (2016).
- [6] Rogowski, K., Królak, G., Bangga, G., "Numerical study on the aerodynamic characteristics of the NACA 0018
airfoil at Low Reynolds number for Darrieus Wind Turbines using the Transition SST model". Processes, 9: 1-26,
(2021).
- [7] Güleren, K.M., Demİr, S., "Rüzgar türbinleri için düşük hücum açılarında farklı kanat profillerinin performans
analizi". Isı Bilimi ve Tekniği Dergisi, 31: 51-59, (2011).
- [8] Seeni, A., Rajendran, P., "Numerical validation of NACA 0009 airfoil in ultra-low reynolds number flows". Int.
Rev. Aerosp. Eng, 12: 83-92, (2019).
- [9] Nordanger, K., Holdahl, R., Kvarving, A.M., Rasheed, A., Kvamsdal, T., "Implementation and comparison of
three isogeometric Navier–Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high
Reynolds number". Computer Methods in Applied Mechanics and Engineering, 284: 664-688, (2015).
- [10] Nordanger, K., Holdahl, R., Kvamsdal, T., Kvarving, A.M., Rasheed, A., "Simulation of airflow past a 2D
NACA0015 airfoil using an isogeometric incompressible Navier–Stokes solver with the Spalart–Allmaras
turbulence model". Computer Methods in Applied Mechanics and Engineering, 290: 183-208, (2015).
- [11] Kapsalis, P.-C.S., Voutsinas, S., Vlachos, N.S., "Comparing the effect of three transition models on the CFD
predictions of a NACA0012 airfoil aerodynamics". Journal of Wind Engineering and Industrial Aerodynamics, 157:
158-170, (2016).
- [12] Coles, D., Wadcock, A.J., "Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift". AIAA
Journal, 17: 321-329, (1979).
- [13] Phillips, W.F., Alley, N.R., "Predicting maximum lift coefficient for twisted wings using lifting-line theory".
Journal of aircraft, 44: 898-910, (2007).
- [14] Tanürün, H.E., İsmail, A., Canli, M.E., Adem, A., "Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat
modeli performansının sayısal ve deneysel incelenmesi". Politeknik Dergisi, 23: 371-381, (2020).
- [15] Tanürün, H.E., Adem, A., "Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi".
Politeknik Dergisi, 22: 185-195, (2019).
- [16] Tanürün, H.E., Akin, A.G., Adem, A., "Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak
İncelenmesi". Politeknik Dergisi, 24: 1219-1226, (2021).
- [17] Yilmaz, İ., Ömer, Ç., Taştan, M., Karci, A., "Farklı rüzgar türbin kanat profillerinin aerodinamik performansının
deneysel incelenmesi". Politeknik dergisi, 19: 577-584, (2016).
- [18] Kaya, A.F., Tanürün, H.E., Adem, A., "Numerical investigation of radius dependent solidity effect on H-type
vertical axis wind turbines". Politeknik Dergisi, 25: 1007-1019, (2021).
- [19] Körpe, D.S., Kanat, Ö.Ö., Oktay, T., "The Effects of Initial y plus: Numerical Analysis of 3D NACA 4412 Wing Using
γ-Reθ SST Turbulence Model". Avrupa Bilim ve Teknoloji Dergisi: 692-702, (2019).
- [20] Oktay, T., Eraslan, Y., "Numerical Investigation of Effects of Airspeed and Rotational Speed on Quadrotor
UAV Propeller Thrust Coefficient". Journal of Aviation, 5: 9-15, (2021).
- [21] Almohammadi, K.M., "Assessment of several modeling strategies on the prediction of lift-drag coefficients
of a NACA0012 airfoil at a moderate Reynold number". Alexandria Engineering Journal, 61: 2242-2249, (2022).
- [22] Oukassou, K., Mouhsine, S.E., Hajjaji, A.E., Kharbouch, B., "Comparison of the power, lift and drag coefficients
of wind turbine blade from aerodynamics characteristics of Naca0012 and Naca2412". Procedia Manufacturing,
32: 983-990, (2019).
- [23] Görgülü, Y.F., Özgür, M.A., Ramazan, K., "CFD analysis of a NACA 0009 aerofoil at a low reynolds number".
Politeknik Dergisi, 24: 1237-1242, (2021).
- [24] Tefera, G., Bright, G., Adali, S., "Theoretical and computational studies on the optimal positions of NACA
airfoils used in horizontal axis wind turbine blades". Journal of Energy Systems, 6: 369-386, (2022).
- [25] Bayram, H., "Numerical investigation of airfoils aerodynamic performances". International Journal of
Energy Applications and Technologies, 9: 1-5, (2022).
- [26] Yilmaz, M., Köten, H., Çetinkaya, E., Coşar, Z., "A comparative CFD analysis of NACA0012 and NACA4412
airfoils". Journal of Energy Systems, 2: 145-159, (2018).
- [27] İ̇brahim, G., Doğru, M.H., "Aerodynamic Optimization of Naca 0012 Airfoil". The International Journal of
Energy and Engineering Sciences, 5: 146-155, (2020).
- [28] Gökdemİr, M., Ürgün, S., "Benzer Kamburluğa Sahip Kanat Profillerinin Aerodinamik Analizi". Journal of
Aviation, 4: 25-35, (2020).
- [29] Nacaairfoiltools. "http://airfoiltools.com/airfoil/naca4digit ". (2023).
- [30] Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z., "Turbulence modeling of deep dynamic stall at
relatively low Reynolds number". Journal of Fluids and Structures, 33: 191-209, (2012).
- [31] Ansys. "ANSYS FLUENT User’s Guide". Inc., Canonsburd, PA, (2015).
- [32] Ross, P.J. Taguchi Techniques for Quality Engineering, McGraw-Hill International Editions, 2nd Edition, New
York, USA, 1996.
Numerical and Statistical Aerodynamic Performance Analysis of NACA0009 and NACA4415 Airfoils
Yıl 2024,
Cilt: 27 Sayı: 3, 849 - 856, 25.07.2024
Savaş Evran
,
Salih Zeki Yıldır
Öz
In this numerical and statistical study, lift and drag coefficient performances of NACA-0009 and NACA-4415 airfoils were evaluated in accordance with various attack angle at constant velocity of wind. Lift and drag coefficients of airfoils was numerically determined by computational fluid dynamics code ANSYS FLUENT. Analysis design of numerical calculations was implemented using L16 orthogonal array based on Taguchi method. Angles of attack and airfoil types were considered as control factors. The optimum level and effect of each control factor on responses was statistically implemented using analyses of Signal-to-Noise ratio and variance. As a result of this study, maximum lift and minimum drag coefficient were achieved by using NACA4415 airfoil compared to NACA0009 airfoil. The increase of the angle of attack leads to the increase on the lift and drag coefficients for both airfoils.
Destekleyen Kurum
The research was supported financially by the Scientific and Technological Research Council of Turkey (TÜBİTAK-2209A)
Proje Numarası
1919B012200301
Kaynakça
- [1] Jain, R., Jain, M.S., Bajpai, M.L., "Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent". IRJET, 3: 243-249, (2016).
- [2] Ockfen, A.E., Matveev, K.I., "Aerodynamic characteristics of NACA 4412 airfoil section with flap in extreme
ground effect". International Journal of Naval Architecture and Ocean Engineering, 1: 1-12, (2009).
- [3] Şahin, İ., Acir, A., "Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil". International Journal of Materials, Mechanics and Manufacturing, 3: 22-25, (2015).
- [4] Mehdi, H., Gaurav, S., Sharma, M., "Numerical investigation of fluid flow and aerodynamic performance on a 2D NACA-4412 airfoil". International Journal of Research in Engineering and Innovation, 1: 1-5, (2016).
- [5] Rubel, R.I., Uddin, M.K., Islam, M.Z., Rokunuzzaman, M., "Numerical and experimental investigation of
aerodynamics characteristics of NACA 0015 aerofoil". International Journal of Engineering Technologies IJET, 2:
132-141, (2016).
- [6] Rogowski, K., Królak, G., Bangga, G., "Numerical study on the aerodynamic characteristics of the NACA 0018
airfoil at Low Reynolds number for Darrieus Wind Turbines using the Transition SST model". Processes, 9: 1-26,
(2021).
- [7] Güleren, K.M., Demİr, S., "Rüzgar türbinleri için düşük hücum açılarında farklı kanat profillerinin performans
analizi". Isı Bilimi ve Tekniği Dergisi, 31: 51-59, (2011).
- [8] Seeni, A., Rajendran, P., "Numerical validation of NACA 0009 airfoil in ultra-low reynolds number flows". Int.
Rev. Aerosp. Eng, 12: 83-92, (2019).
- [9] Nordanger, K., Holdahl, R., Kvarving, A.M., Rasheed, A., Kvamsdal, T., "Implementation and comparison of
three isogeometric Navier–Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high
Reynolds number". Computer Methods in Applied Mechanics and Engineering, 284: 664-688, (2015).
- [10] Nordanger, K., Holdahl, R., Kvamsdal, T., Kvarving, A.M., Rasheed, A., "Simulation of airflow past a 2D
NACA0015 airfoil using an isogeometric incompressible Navier–Stokes solver with the Spalart–Allmaras
turbulence model". Computer Methods in Applied Mechanics and Engineering, 290: 183-208, (2015).
- [11] Kapsalis, P.-C.S., Voutsinas, S., Vlachos, N.S., "Comparing the effect of three transition models on the CFD
predictions of a NACA0012 airfoil aerodynamics". Journal of Wind Engineering and Industrial Aerodynamics, 157:
158-170, (2016).
- [12] Coles, D., Wadcock, A.J., "Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift". AIAA
Journal, 17: 321-329, (1979).
- [13] Phillips, W.F., Alley, N.R., "Predicting maximum lift coefficient for twisted wings using lifting-line theory".
Journal of aircraft, 44: 898-910, (2007).
- [14] Tanürün, H.E., İsmail, A., Canli, M.E., Adem, A., "Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat
modeli performansının sayısal ve deneysel incelenmesi". Politeknik Dergisi, 23: 371-381, (2020).
- [15] Tanürün, H.E., Adem, A., "Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi".
Politeknik Dergisi, 22: 185-195, (2019).
- [16] Tanürün, H.E., Akin, A.G., Adem, A., "Rüzgâr Türbinlerinde Kiriş Yapısının Performansa Etkisinin Sayısal Olarak
İncelenmesi". Politeknik Dergisi, 24: 1219-1226, (2021).
- [17] Yilmaz, İ., Ömer, Ç., Taştan, M., Karci, A., "Farklı rüzgar türbin kanat profillerinin aerodinamik performansının
deneysel incelenmesi". Politeknik dergisi, 19: 577-584, (2016).
- [18] Kaya, A.F., Tanürün, H.E., Adem, A., "Numerical investigation of radius dependent solidity effect on H-type
vertical axis wind turbines". Politeknik Dergisi, 25: 1007-1019, (2021).
- [19] Körpe, D.S., Kanat, Ö.Ö., Oktay, T., "The Effects of Initial y plus: Numerical Analysis of 3D NACA 4412 Wing Using
γ-Reθ SST Turbulence Model". Avrupa Bilim ve Teknoloji Dergisi: 692-702, (2019).
- [20] Oktay, T., Eraslan, Y., "Numerical Investigation of Effects of Airspeed and Rotational Speed on Quadrotor
UAV Propeller Thrust Coefficient". Journal of Aviation, 5: 9-15, (2021).
- [21] Almohammadi, K.M., "Assessment of several modeling strategies on the prediction of lift-drag coefficients
of a NACA0012 airfoil at a moderate Reynold number". Alexandria Engineering Journal, 61: 2242-2249, (2022).
- [22] Oukassou, K., Mouhsine, S.E., Hajjaji, A.E., Kharbouch, B., "Comparison of the power, lift and drag coefficients
of wind turbine blade from aerodynamics characteristics of Naca0012 and Naca2412". Procedia Manufacturing,
32: 983-990, (2019).
- [23] Görgülü, Y.F., Özgür, M.A., Ramazan, K., "CFD analysis of a NACA 0009 aerofoil at a low reynolds number".
Politeknik Dergisi, 24: 1237-1242, (2021).
- [24] Tefera, G., Bright, G., Adali, S., "Theoretical and computational studies on the optimal positions of NACA
airfoils used in horizontal axis wind turbine blades". Journal of Energy Systems, 6: 369-386, (2022).
- [25] Bayram, H., "Numerical investigation of airfoils aerodynamic performances". International Journal of
Energy Applications and Technologies, 9: 1-5, (2022).
- [26] Yilmaz, M., Köten, H., Çetinkaya, E., Coşar, Z., "A comparative CFD analysis of NACA0012 and NACA4412
airfoils". Journal of Energy Systems, 2: 145-159, (2018).
- [27] İ̇brahim, G., Doğru, M.H., "Aerodynamic Optimization of Naca 0012 Airfoil". The International Journal of
Energy and Engineering Sciences, 5: 146-155, (2020).
- [28] Gökdemİr, M., Ürgün, S., "Benzer Kamburluğa Sahip Kanat Profillerinin Aerodinamik Analizi". Journal of
Aviation, 4: 25-35, (2020).
- [29] Nacaairfoiltools. "http://airfoiltools.com/airfoil/naca4digit ". (2023).
- [30] Wang, S., Ingham, D.B., Ma, L., Pourkashanian, M., Tao, Z., "Turbulence modeling of deep dynamic stall at
relatively low Reynolds number". Journal of Fluids and Structures, 33: 191-209, (2012).
- [31] Ansys. "ANSYS FLUENT User’s Guide". Inc., Canonsburd, PA, (2015).
- [32] Ross, P.J. Taguchi Techniques for Quality Engineering, McGraw-Hill International Editions, 2nd Edition, New
York, USA, 1996.