Araştırma Makalesi
BibTex RIS Kaynak Göster

Flexural Characteristics of Engineered Cementitious Composites

Yıl 2024, Cilt: 27 Sayı: 4, 1365 - 1374, 25.09.2024
https://doi.org/10.2339/politeknik.1224004

Öz

Cement-based materials such as concrete are brittle materials, and microstructural cracks occur when tensile strength is exceeded. The formation of cracks in the structures allows the aggressive chemical components to easily penetrate and pass into the cement-based material, thus reducing the durability of the material. Many attempts have been made to overcome the negative aspects of the brittle behavior of cementitious materials under load. Engineered Cementitious Composites (ECC) with highly increased ductility is one such initiative. ECC is a high-performance PVA fiber-reinforced cementitious composite with high ductility and high damage tolerance characteristics under mechanical loading. In the current experimental study, it was aimed to investigate the change in flexural toughness of engineered cementitious composites (ECC) containing high volume of ground granulated blast furnace slag (GGBFS). Thus, the effect of both utilization rate of GGBFS and aggregate on the flexural toughness of the designed mixtures was evaluated for the curing age of 28 day. Accordingly, a total of eight different mixtures with GGBFS to binder ratios of 0.6, 0.7, 0.8 and 0.9 and aggregate to binder ratios of 0.36 and 0.45 were produced. The water to binder ratio was kept constant as 0.3 and the maximum particle size of aggregate was 600 µm. Test results showed that a decrease and an increase in flexural toughness were obtained with the increase in both GYFC substitution ratio and aggregate-binder ratio, respectively.

Kaynakça

  • [1] Uygunoğlu T., Topçu İ. B., Şimşek B., Eryeşil Ö. and Al-Turki Y. A., “Çimento esaslı harçların fiziksel ve mekanik özeliklerinde polivinil alkol (PVA) liflerin etkisi”, Politeknik Dergisi, 25(1): 29-36, (2022).
  • [2] Shoji D., He Z., Zhang D. and Li V. C., “The greening of engineered cementitious composites (ECC): a review”, Construction and Building Materials, 327: 126701, (2022).
  • [3] Demirhan S., “Effect of different nanosized limestone formations on fiber‐matrix interface properties of engineered cementitious composites”, Structural Concrete, 23(3): 1890-1906, (2022).
  • [4] Zhou Y., Xi B., Sui L., Zheng S., Xing F. and Li L., “Development of high strain-hardening lightweight engineered cementitious composites: Design and performance”, Cement and Concrete Composites, 104: 103370, (2019).
  • [5] Lu C., Wang J., Leung C. K., Yao Y. and Yu B., “Micromechanics-based model of single crack propagation in Engineered cementitious composites (ECC)”, Construction and Building Materials, 369: 130519, (2023).
  • [6] Zhang Z., Ji Y., and Ji W., “Durability Performance Investigation for Engineering Fiber Cementitious Composites (ECC)”, Polymers, 15(4): 931, (2023).
  • [7] Li V.C., Wu C., Wang S., Ogawa A. and Saito T., “Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)”, Materials Journal, 99(5): 463-472, (2002).
  • [8] Ma H., Qian S., Zhang Z., Lin Z. and Li V.C., “Tailoring engineered cementitious composites with local ingredients”, Construction and Building Materials, 101: 584-595, (2015).
  • [9] Zhang Z. and Zhang Q., “Matrix tailoring of Engineered Cementitious Composites (ECC) with non-oil-coated, low tensile strength PVA fiber”, Construction and Building Materials, 161: 420-431, (2018).
  • [10] Karakurt C., “Fresh and hardened behaviour of self-compacted concrete with different mineral additives”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(2): 304-309, (2020).
  • [11] Turk K. and Nehdi M. L., “Flexural toughness of sustainable ECC with high-volume substitution of cement and silica sand”, Construction and Building Materials, 270: 121438, (2021).
  • [12] ŞENGÜN E., “Farklı kimyasal katkıların mineral katkılı taze ve sertleşmiş harç özelliklerine etkisi”, Politeknik Dergisi, DOI:10.2339/politeknik.992277, (2022).
  • [13] Tuyan M., Soykan K. S., Namal İ. and ÇAKIR Ö. A., “Mineral katkı içeren kalsiyum alüminat çimento esaslı harçların mekanik, dayanıklılık, termal ve içyapı özelliklerinin araştırılması”, Politeknik Dergisi, 23(2): 311-320, (2020).
  • [14] Demirhan S., “Combined effects of nano-sized calcite and fly ash on hydration and microstructural properties of mortars”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(6): 1051-1067, (2020).
  • [15] Çiftçi M. and Demirhan S., “Effect of nano type and slag replacement level on cement mortars”, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2): 482-496, (2021).
  • [16] Demirel Ö. and Demirhan S., “Mikronize kalsit içeren yüksek hacimde uçucu kül katkılı çimento harçlarının mikroyapısal özelliklerinin incelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4): 2255-2270, (2021).
  • [17] Sharma R., Jang J. G. and Bansal P. P., “A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete”, Journal of Building Engineering, 45: 103314, (2022).
  • [18] Ajith G., Shanmugasundaram N. and Praveenkumar S., “Effect of mineral admixtures and manufactured sand on compressive strength of engineered cementitious composite”, Journal of Building Pathology and Rehabilitation, 6(1): 1-9, (2021).
  • [19] Singh M., Saini B. and Chalak H. D., “Performance and composition analysis of engineered cementitious composite (ECC)–A review”, Journal of Building Engineering, 26: 100851, (2019).
  • [20] Zhu Y., Yang Y. and Yao Y., “Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash”, Construction and Building Materials, 36: 1076-1081, (2012).
  • [21] Shanmugasundaram N. and Praveenkumar S., “Mechanical properties of engineered cementitious composites (ECC) incorporating different mineral admixtures and fibre: a review”, Journal of Building Pathology and Rehabilitation, 7(1): 40, (2022).
  • [22] Lepech M.D., Li V.C., Robertson R.E., and Keoleian G.A., “Design of green engineered cementitious composites for improved sustainability”, ACI Materials Journal, 105(6): 567, (2008).
  • [23] Liu H., Zhang Q., Gu C., Su H. and Li V. C., “Influence of micro-cracking on the permeability of engineered cementitious composites”, Cement and Concrete Composites, 72: 104-113, (2016).
  • [24] Sahmaran M., Yücel H. E., Demirhan S., Arık M. T. and Li V. C., “Combined effect of aggregate and mineral admixtures on tensile ductility of engineered cementitious composites”, ACI Materials Journal, 109(6): 627, (2012).
  • [25] Ahmad J., Kontoleon K. J., Majdi A., Naqash M. T., Deifalla A. F., Ben Kahla N. and Qaidi S. M., “A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production”, Sustainability, 14(14): 8783, (2022).
  • [26] Abdila S. R., Abdullah M. M. A. B., Ahmad R., Nergis B., Doru D., Rahim S. Z. A. and Vizureanu P., “Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A Review”, Materials, 15(1): 375, (2022).
  • [27] TS EN 197-1, “Çimento-Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri”, (2012).
  • [28] Ding Y., Yu K. and Li M., “A review on high-strength engineered cementitious composites (HS-ECC): Design, mechanical property and structural application”, Structures, 35: 903-921, (2022).
  • [29] Yu K., Zhu H., Hou M. and Li V. C., “Self-healing of PE-fiber reinforced lightweight high-strength engineered cementitious composite”, Cement and Concrete Composites, 123: 104209, (2021).
  • [30] Yıldırım G., Khiavi F. E., Anıl Ö., Şahin O., Şahmaran M. and Erdem R. T., “Performance of engineered cementitious composites under drop‐weight impact: Effect of different mixture parameters”, Structural Concrete, 21(3): 1051-1070, (2020).
  • [31] Zhu M., Chen B., Wu M. and Han J. “Effects of different mixing ratio parameters on mechanical properties of cost-effective green engineered cementitious composites (ECC)”, Construction and Building Materials, 328: 127093, (2022).
  • [32] ASTM C 1609/C 1690M-19, “Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading)”, American Society of Testing and Materials, (2019).
  • [33] ZHANG Y., ZHANG S. and DENG M., “Four-point bending tests of ECC: Mechanical response and toughness evaluation”, Case Studies in Construction Materials, 17: e01573, (2022).
  • [34] Şimşek O. and Demir Ş., “Mermer Tozu Katkılı Lifli Betonun Fiziksel ve Mekanik Özeliklerine Lif Tipi ve Oranının Etkisi”, Politeknik Dergisi, 25(3): 1143 – 1155, (2022).
  • [35] Yuan Z., Zhang C., Xia C., Wu L., Yu Z. and Li Z., “Flexural properties of PVA fiber reinforced high ductility cementitious composites containing calcium carbonate whisker”, Construction and Building Materials, 300: 124329, (2021).

Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri

Yıl 2024, Cilt: 27 Sayı: 4, 1365 - 1374, 25.09.2024
https://doi.org/10.2339/politeknik.1224004

Öz

Beton gibi çimento esaslı malzemeler gevrek malzemeler olup, çekme dayanımına erişildiğinde mikroyapısal çatlaklar oluşur. Yapılarda çatlak oluşumu, agresif kimyasal bileşenlerin çimento esaslı malzemeye kolayca nüfuz edip geçmesine izin vererek malzemenin servis ömrünü azaltmaktadır. Çimento esaslı malzemelerin yük etkisi altındaki gevrek davranışının olumsuz yönlerinin üstesinden gelmek için birçok girişimde bulunulmuştur. Sünekliği yüksek seviyelerde arttırılmış olan Tasarlanmış Çimento Esaslı Kompozitler (ECC) bu girişimlerden biridir. ECC, mekanik yükleme altında yüksek süneklik gösteren ve yüksek hasar toleransı karakteristiğine sahip yüksek performanslı lif takviyeli çimento esaslı bir kompozit türüdür. Mevcut deneysel çalışmada, yüksek oranda granüle yüksek fırın cürufu (GYFC) içeren ve şekil değiştirme sertleşmesi davranışı sergileyen tasarlanmış çimento esaslı kompozitlerin eğilme tokluğundaki değişimin incelenmesi hedeflenmiştir. Böylece, üretilen karışımların 28 günlük kür yaşı için hem yüksek fırın cürufu hem de agrega kullanım oranının eğilme tokluğu üzerine olan etkisi değerlendirilmiştir. Bu doğrultuda, GYFC-bağlayıcı oranı 0.6, 0.7, 0.8 ve 0.9 ve agrega-bağlayıcı oranı ise 0.36 ve 0.45 olan toplam sekiz farklı karışım üretilmiştir. Tüm karışımlarda su/bağlayıcı oranı 0.3 ve en büyük agrega tane boyutu ise 600 m olarak seçilmiştir. Test sonuçları, GYFC ikame oranı ve agrega-bağlayıcı oranındaki artışla sırasıyla eğilme tokluğunda azalma ve artış elde edildiğini göstermiştir.

Kaynakça

  • [1] Uygunoğlu T., Topçu İ. B., Şimşek B., Eryeşil Ö. and Al-Turki Y. A., “Çimento esaslı harçların fiziksel ve mekanik özeliklerinde polivinil alkol (PVA) liflerin etkisi”, Politeknik Dergisi, 25(1): 29-36, (2022).
  • [2] Shoji D., He Z., Zhang D. and Li V. C., “The greening of engineered cementitious composites (ECC): a review”, Construction and Building Materials, 327: 126701, (2022).
  • [3] Demirhan S., “Effect of different nanosized limestone formations on fiber‐matrix interface properties of engineered cementitious composites”, Structural Concrete, 23(3): 1890-1906, (2022).
  • [4] Zhou Y., Xi B., Sui L., Zheng S., Xing F. and Li L., “Development of high strain-hardening lightweight engineered cementitious composites: Design and performance”, Cement and Concrete Composites, 104: 103370, (2019).
  • [5] Lu C., Wang J., Leung C. K., Yao Y. and Yu B., “Micromechanics-based model of single crack propagation in Engineered cementitious composites (ECC)”, Construction and Building Materials, 369: 130519, (2023).
  • [6] Zhang Z., Ji Y., and Ji W., “Durability Performance Investigation for Engineering Fiber Cementitious Composites (ECC)”, Polymers, 15(4): 931, (2023).
  • [7] Li V.C., Wu C., Wang S., Ogawa A. and Saito T., “Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)”, Materials Journal, 99(5): 463-472, (2002).
  • [8] Ma H., Qian S., Zhang Z., Lin Z. and Li V.C., “Tailoring engineered cementitious composites with local ingredients”, Construction and Building Materials, 101: 584-595, (2015).
  • [9] Zhang Z. and Zhang Q., “Matrix tailoring of Engineered Cementitious Composites (ECC) with non-oil-coated, low tensile strength PVA fiber”, Construction and Building Materials, 161: 420-431, (2018).
  • [10] Karakurt C., “Fresh and hardened behaviour of self-compacted concrete with different mineral additives”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(2): 304-309, (2020).
  • [11] Turk K. and Nehdi M. L., “Flexural toughness of sustainable ECC with high-volume substitution of cement and silica sand”, Construction and Building Materials, 270: 121438, (2021).
  • [12] ŞENGÜN E., “Farklı kimyasal katkıların mineral katkılı taze ve sertleşmiş harç özelliklerine etkisi”, Politeknik Dergisi, DOI:10.2339/politeknik.992277, (2022).
  • [13] Tuyan M., Soykan K. S., Namal İ. and ÇAKIR Ö. A., “Mineral katkı içeren kalsiyum alüminat çimento esaslı harçların mekanik, dayanıklılık, termal ve içyapı özelliklerinin araştırılması”, Politeknik Dergisi, 23(2): 311-320, (2020).
  • [14] Demirhan S., “Combined effects of nano-sized calcite and fly ash on hydration and microstructural properties of mortars”, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(6): 1051-1067, (2020).
  • [15] Çiftçi M. and Demirhan S., “Effect of nano type and slag replacement level on cement mortars”, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2): 482-496, (2021).
  • [16] Demirel Ö. and Demirhan S., “Mikronize kalsit içeren yüksek hacimde uçucu kül katkılı çimento harçlarının mikroyapısal özelliklerinin incelenmesi”, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4): 2255-2270, (2021).
  • [17] Sharma R., Jang J. G. and Bansal P. P., “A comprehensive review on effects of mineral admixtures and fibers on engineering properties of ultra-high-performance concrete”, Journal of Building Engineering, 45: 103314, (2022).
  • [18] Ajith G., Shanmugasundaram N. and Praveenkumar S., “Effect of mineral admixtures and manufactured sand on compressive strength of engineered cementitious composite”, Journal of Building Pathology and Rehabilitation, 6(1): 1-9, (2021).
  • [19] Singh M., Saini B. and Chalak H. D., “Performance and composition analysis of engineered cementitious composite (ECC)–A review”, Journal of Building Engineering, 26: 100851, (2019).
  • [20] Zhu Y., Yang Y. and Yao Y., “Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash”, Construction and Building Materials, 36: 1076-1081, (2012).
  • [21] Shanmugasundaram N. and Praveenkumar S., “Mechanical properties of engineered cementitious composites (ECC) incorporating different mineral admixtures and fibre: a review”, Journal of Building Pathology and Rehabilitation, 7(1): 40, (2022).
  • [22] Lepech M.D., Li V.C., Robertson R.E., and Keoleian G.A., “Design of green engineered cementitious composites for improved sustainability”, ACI Materials Journal, 105(6): 567, (2008).
  • [23] Liu H., Zhang Q., Gu C., Su H. and Li V. C., “Influence of micro-cracking on the permeability of engineered cementitious composites”, Cement and Concrete Composites, 72: 104-113, (2016).
  • [24] Sahmaran M., Yücel H. E., Demirhan S., Arık M. T. and Li V. C., “Combined effect of aggregate and mineral admixtures on tensile ductility of engineered cementitious composites”, ACI Materials Journal, 109(6): 627, (2012).
  • [25] Ahmad J., Kontoleon K. J., Majdi A., Naqash M. T., Deifalla A. F., Ben Kahla N. and Qaidi S. M., “A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production”, Sustainability, 14(14): 8783, (2022).
  • [26] Abdila S. R., Abdullah M. M. A. B., Ahmad R., Nergis B., Doru D., Rahim S. Z. A. and Vizureanu P., “Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A Review”, Materials, 15(1): 375, (2022).
  • [27] TS EN 197-1, “Çimento-Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri”, (2012).
  • [28] Ding Y., Yu K. and Li M., “A review on high-strength engineered cementitious composites (HS-ECC): Design, mechanical property and structural application”, Structures, 35: 903-921, (2022).
  • [29] Yu K., Zhu H., Hou M. and Li V. C., “Self-healing of PE-fiber reinforced lightweight high-strength engineered cementitious composite”, Cement and Concrete Composites, 123: 104209, (2021).
  • [30] Yıldırım G., Khiavi F. E., Anıl Ö., Şahin O., Şahmaran M. and Erdem R. T., “Performance of engineered cementitious composites under drop‐weight impact: Effect of different mixture parameters”, Structural Concrete, 21(3): 1051-1070, (2020).
  • [31] Zhu M., Chen B., Wu M. and Han J. “Effects of different mixing ratio parameters on mechanical properties of cost-effective green engineered cementitious composites (ECC)”, Construction and Building Materials, 328: 127093, (2022).
  • [32] ASTM C 1609/C 1690M-19, “Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading)”, American Society of Testing and Materials, (2019).
  • [33] ZHANG Y., ZHANG S. and DENG M., “Four-point bending tests of ECC: Mechanical response and toughness evaluation”, Case Studies in Construction Materials, 17: e01573, (2022).
  • [34] Şimşek O. and Demir Ş., “Mermer Tozu Katkılı Lifli Betonun Fiziksel ve Mekanik Özeliklerine Lif Tipi ve Oranının Etkisi”, Politeknik Dergisi, 25(3): 1143 – 1155, (2022).
  • [35] Yuan Z., Zhang C., Xia C., Wu L., Yu Z. and Li Z., “Flexural properties of PVA fiber reinforced high ductility cementitious composites containing calcium carbonate whisker”, Construction and Building Materials, 300: 124329, (2021).
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Serhat Demirhan 0000-0001-5448-9495

Erken Görünüm Tarihi 31 Ağustos 2023
Yayımlanma Tarihi 25 Eylül 2024
Gönderilme Tarihi 24 Aralık 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 4

Kaynak Göster

APA Demirhan, S. (2024). Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri. Politeknik Dergisi, 27(4), 1365-1374. https://doi.org/10.2339/politeknik.1224004
AMA Demirhan S. Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri. Politeknik Dergisi. Eylül 2024;27(4):1365-1374. doi:10.2339/politeknik.1224004
Chicago Demirhan, Serhat. “Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri”. Politeknik Dergisi 27, sy. 4 (Eylül 2024): 1365-74. https://doi.org/10.2339/politeknik.1224004.
EndNote Demirhan S (01 Eylül 2024) Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri. Politeknik Dergisi 27 4 1365–1374.
IEEE S. Demirhan, “Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri”, Politeknik Dergisi, c. 27, sy. 4, ss. 1365–1374, 2024, doi: 10.2339/politeknik.1224004.
ISNAD Demirhan, Serhat. “Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri”. Politeknik Dergisi 27/4 (Eylül 2024), 1365-1374. https://doi.org/10.2339/politeknik.1224004.
JAMA Demirhan S. Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri. Politeknik Dergisi. 2024;27:1365–1374.
MLA Demirhan, Serhat. “Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri”. Politeknik Dergisi, c. 27, sy. 4, 2024, ss. 1365-74, doi:10.2339/politeknik.1224004.
Vancouver Demirhan S. Tasarlanmış Çimento Esaslı Kompozitlerin Eğilme Özellikleri. Politeknik Dergisi. 2024;27(4):1365-74.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.