Araştırma Makalesi
BibTex RIS Kaynak Göster

Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi

Yıl 2024, Cilt: 27 Sayı: 4, 1243 - 1256, 25.09.2024
https://doi.org/10.2339/politeknik.1241578

Öz

Endüstri 4.0 ve dijitalleşmenin bir sonucu olarak robotlu üretim sistemleri yaygınlaşmaktadır. Özellikle otomotiv endüstrisinde kaynak, paletleme, montaj ve taşıma gibi ağır işlerde kullanılan robotların sahip oldukları yüksek potansiyel iş anlamında ciddi avantajlar vadederken beraberinde birçok iş güvenli riskini de açığa çıkartmaktadır. Ayrıca günümüzde işbirlikçi robotların kullanımının artması ile birlikte güvenlik konusu en önemli konulardan biri haline gelmektedir. İş güvenliği çerçevesinde robot hatları için birçok standart oluşturulmuş olup günümüzde yaygın olarak kullanılmaktadır. Geliştirilen bu standartlar ile üreticilerin tutarlı kalite ve performansa sahip ürünleri üretmesine olanak tanırken risklerin kabul edilebilir seviyede kalmasını garanti altına alınmaya çalışılmaktadır. Ne yazık ki bu çalışmalar yapılır iken genellikle insan faktörü göz ardı edilmiş ve risk hesaplamalarında kapsam dışında bırakılmıştır. Bu çalışmada bu eksiği gidermek için otomotiv endüstrisinde kaynak işlemi için kullanılan bir robot hattı üzerinde risk analiz ve risk azaltma çalışmaları hayata geçirilmiştir. Robotik güvenlik standartları da kapsam dâhilinde tutularak ilgili fonksiyonel güvenlik hesaplamaları yapılmıştır. Bu aşamada insan faktörü de analize dâhil edilmiştir. Bu kapsamda ilgili belirsizlikleri modelleyebilmek için bulanık setleri kullanan bir hata ağacı analiz yöntemi geliştirilmiştir. Böylelikle sadece ilgili ekipmanların kategorileri ve güvenilirlik parametreleri değerlendirilmemiş aynı zamanda insan-robot etkileşiminin sistem güvenilirliğine olan etkisi incelenmiştir. Son olarak elde edilen sonuçların sektör bazlı standartlar kapsamında yeterliliği irdelenmiştir.

Kaynakça

  • [1] IEC/ISO, “EN ISO 13849-1, Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design”, International Electrotechnical Commission, (2017).
  • [2] IEC/ISO, “ISO 10218-1 - Robots and robotic devices — Safety requirements for industrial robots, Part 1: Robots”, International Electrotechnical Commission, April, (2011).
  • [3] IEC/ISO, “ISO 10218-2 - Robots and robotic devices — Safety requirements for industrial robots, Part 2: Robot systems and integration”, International Electrotechnical Commission, (2011).
  • [4] IEC/ISO, “ISO/TS 15066 - Robots and robotic devices — Collaborative robots”, International Electrotechnical Commission, (2016).
  • [5] L. Gualtieri, E. Rauch, and R. Vidoni, “Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review”, Robotics and Computer-Integrated Manufacturing, 67, (2021).
  • [6] T. P. Huck, C. Ledermann, and T. Kroger, “Testing Robot System Safety by Creating Hazardous Human Worker Behavior in Simulation”, IEEE Robot Autom Lett, 7(2), (2022).
  • [7] L. Gualtieri, E. Rauch, and R. Vidoni, “Development and validation of guidelines for safety in human-robot collaborative assembly systems”, Comput Ind Eng, 163, (2022)
  • [8] P. Chemweno, L. Pintelon, and W. Decre, “Orienting safety assurance with outcomes of hazard analysis and risk assessment: A review of the ISO 15066 standard for collaborative robot systems”, Safety Science, 129, (2020).
  • [9] A. Zacharaki, I. Kostavelis, A. Gasteratos, and I. Dokas, “Safety bounds in human robot interaction: A survey”, Safety Science, 127, (2020).
  • [10] N. Berx, W. Decré, I. Morag, P. Chemweno, and L. Pintelon, “Identification and classification of risk factors for human-robot collaboration from a system-wide perspective”, Comput Ind Eng, 163, (2022).
  • [11] IEC/ISO, “IEC 31010 - Risk management - Risk assessment techniques”, International Electrotechnical Commission, (2019).
  • [12] IEC/ISO, “ISO 12100 - Safety of machinery : general principles of design : risk assessment and risk reduction”, International Electrotechnical Commission, (2010).
  • [13] M. Rausand, Reliability of Safety-Critical Systems: Theory and Applications, (2014).
  • [14] M. Rausand, Reliability of Safety-Critical Systems: Theory and Applications, 9781118112724. (2014).
  • [15] K. Fleming, “A reliability model for common mode failures in redundant safety systems”, Proceedings of the 6th Annual Pittsburgh Conference on Modelling and Simulation, (1974).
  • [16] IEC/ISO 13849-1, “Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design”, International Electrotechnical Commission, (2015).
  • [17] D. Sherwin, A. Hoyland, and M. Rausand, “System Reliability Theory-Models and Statistical Methods”, The Statistician, 44(4), (1995).
  • [18] Y. Yang, L. Garmendia, and G. Montero, Eds., “Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński”, Cham, Switzerland: Springer International Publishing, (2017).
  • [19] T. Rosqvist, “On the use of expert judgement in the qualification of risk assessment”, VTT Publications, no. 507., (2003).
  • [20] S.-J. Chen, C.-L. Hwang, F. P. Hwang, F. Multiple, and A. Decision, “Fuzzy multiple attribute decision making (methods and applications)”, Lecture Notes in Economics and Mathematical Systems, no. Xl, (1992).
  • [21] S. C. Hora and E. Kardeş, “Calibration, sharpness and the weighting of experts in a linear opinion pool”, Ann Oper Res, 229(1), (2015).
  • [22] T. Onisawa, “An approach to human reliability in man-machine systems using error possibility”, Fuzzy Sets Syst, 27(2), (1988).
  • [23] Y. A. Mahmood, A. Ahmadi, A. K. Verma, A. Srividya, and U. Kumar, “Fuzzy fault tree analysis: A review of concept and application”, International Journal of System Assurance Engineering and Management, 4(1),(2013).

Fuzzy Fault Tree Analysis of Robotic Welding Lines

Yıl 2024, Cilt: 27 Sayı: 4, 1243 - 1256, 25.09.2024
https://doi.org/10.2339/politeknik.1241578

Öz

As a result of Industry 4.0 and digitalization, robotic production systems are becoming increasingly prevalent. Particularly in the automotive industry, robots that are utilized for heavy tasks such as welding, palletizing, assembly, and transportation offer significant advantages in terms of high-potential work, but also expose numerous occupational safety risks. Additionally, with the increasing utilization of collaborative robots, safety has become one of the most crucial concerns. Several standards have been established for robotic lines within the framework of occupational safety and are currently widely used. These standards allow manufacturers to produce consistent quality and performance products while trying to ensure that the residual risks remain at an acceptable level. Unfortunately, during the implementation of these studies, the human factor is often overlooked and excluded from the scope of risk calculations. In this study, to address this gap, risk analysis and risk reduction studies were implemented on a robot line used for welding processes in the automotive industry. Functional safety calculations were evaluated based on system design parameters while taking into account robotic safety standards. At this stage, the human factor was also included in the analysis. In this context, a fuzzy set-based fault tree analysis method has been developed to model the relevant uncertainties. This approach allows not only the evaluation of the categories and reliability parameters of the relevant equipment, but also the investigation of the impact of human-robot interaction on system reliability. Finally, the adequacy of the results obtained has been examined within the framework of sector-specific standards

Kaynakça

  • [1] IEC/ISO, “EN ISO 13849-1, Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design”, International Electrotechnical Commission, (2017).
  • [2] IEC/ISO, “ISO 10218-1 - Robots and robotic devices — Safety requirements for industrial robots, Part 1: Robots”, International Electrotechnical Commission, April, (2011).
  • [3] IEC/ISO, “ISO 10218-2 - Robots and robotic devices — Safety requirements for industrial robots, Part 2: Robot systems and integration”, International Electrotechnical Commission, (2011).
  • [4] IEC/ISO, “ISO/TS 15066 - Robots and robotic devices — Collaborative robots”, International Electrotechnical Commission, (2016).
  • [5] L. Gualtieri, E. Rauch, and R. Vidoni, “Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review”, Robotics and Computer-Integrated Manufacturing, 67, (2021).
  • [6] T. P. Huck, C. Ledermann, and T. Kroger, “Testing Robot System Safety by Creating Hazardous Human Worker Behavior in Simulation”, IEEE Robot Autom Lett, 7(2), (2022).
  • [7] L. Gualtieri, E. Rauch, and R. Vidoni, “Development and validation of guidelines for safety in human-robot collaborative assembly systems”, Comput Ind Eng, 163, (2022)
  • [8] P. Chemweno, L. Pintelon, and W. Decre, “Orienting safety assurance with outcomes of hazard analysis and risk assessment: A review of the ISO 15066 standard for collaborative robot systems”, Safety Science, 129, (2020).
  • [9] A. Zacharaki, I. Kostavelis, A. Gasteratos, and I. Dokas, “Safety bounds in human robot interaction: A survey”, Safety Science, 127, (2020).
  • [10] N. Berx, W. Decré, I. Morag, P. Chemweno, and L. Pintelon, “Identification and classification of risk factors for human-robot collaboration from a system-wide perspective”, Comput Ind Eng, 163, (2022).
  • [11] IEC/ISO, “IEC 31010 - Risk management - Risk assessment techniques”, International Electrotechnical Commission, (2019).
  • [12] IEC/ISO, “ISO 12100 - Safety of machinery : general principles of design : risk assessment and risk reduction”, International Electrotechnical Commission, (2010).
  • [13] M. Rausand, Reliability of Safety-Critical Systems: Theory and Applications, (2014).
  • [14] M. Rausand, Reliability of Safety-Critical Systems: Theory and Applications, 9781118112724. (2014).
  • [15] K. Fleming, “A reliability model for common mode failures in redundant safety systems”, Proceedings of the 6th Annual Pittsburgh Conference on Modelling and Simulation, (1974).
  • [16] IEC/ISO 13849-1, “Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design”, International Electrotechnical Commission, (2015).
  • [17] D. Sherwin, A. Hoyland, and M. Rausand, “System Reliability Theory-Models and Statistical Methods”, The Statistician, 44(4), (1995).
  • [18] Y. Yang, L. Garmendia, and G. Montero, Eds., “Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński”, Cham, Switzerland: Springer International Publishing, (2017).
  • [19] T. Rosqvist, “On the use of expert judgement in the qualification of risk assessment”, VTT Publications, no. 507., (2003).
  • [20] S.-J. Chen, C.-L. Hwang, F. P. Hwang, F. Multiple, and A. Decision, “Fuzzy multiple attribute decision making (methods and applications)”, Lecture Notes in Economics and Mathematical Systems, no. Xl, (1992).
  • [21] S. C. Hora and E. Kardeş, “Calibration, sharpness and the weighting of experts in a linear opinion pool”, Ann Oper Res, 229(1), (2015).
  • [22] T. Onisawa, “An approach to human reliability in man-machine systems using error possibility”, Fuzzy Sets Syst, 27(2), (1988).
  • [23] Y. A. Mahmood, A. Ahmadi, A. K. Verma, A. Srividya, and U. Kumar, “Fuzzy fault tree analysis: A review of concept and application”, International Journal of System Assurance Engineering and Management, 4(1),(2013).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Özgür Turay Kaymakçı 0000-0001-7553-6887

Erken Görünüm Tarihi 1 Haziran 2023
Yayımlanma Tarihi 25 Eylül 2024
Gönderilme Tarihi 24 Ocak 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 4

Kaynak Göster

APA Kaymakçı, Ö. T. (2024). Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi. Politeknik Dergisi, 27(4), 1243-1256. https://doi.org/10.2339/politeknik.1241578
AMA Kaymakçı ÖT. Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi. Politeknik Dergisi. Eylül 2024;27(4):1243-1256. doi:10.2339/politeknik.1241578
Chicago Kaymakçı, Özgür Turay. “Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi”. Politeknik Dergisi 27, sy. 4 (Eylül 2024): 1243-56. https://doi.org/10.2339/politeknik.1241578.
EndNote Kaymakçı ÖT (01 Eylül 2024) Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi. Politeknik Dergisi 27 4 1243–1256.
IEEE Ö. T. Kaymakçı, “Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi”, Politeknik Dergisi, c. 27, sy. 4, ss. 1243–1256, 2024, doi: 10.2339/politeknik.1241578.
ISNAD Kaymakçı, Özgür Turay. “Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi”. Politeknik Dergisi 27/4 (Eylül 2024), 1243-1256. https://doi.org/10.2339/politeknik.1241578.
JAMA Kaymakçı ÖT. Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi. Politeknik Dergisi. 2024;27:1243–1256.
MLA Kaymakçı, Özgür Turay. “Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi”. Politeknik Dergisi, c. 27, sy. 4, 2024, ss. 1243-56, doi:10.2339/politeknik.1241578.
Vancouver Kaymakçı ÖT. Robotik Kaynak Hatlarının Bulanık Hata Ağacı Analizi. Politeknik Dergisi. 2024;27(4):1243-56.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.