Araştırma Makalesi
BibTex RIS Kaynak Göster

Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation

Yıl 2024, Cilt: 27 Sayı: 4, 1581 - 1588, 25.09.2024
https://doi.org/10.2339/politeknik.1276728

Öz

In this study, synthesis of CuS thin films on soda lime glass (SLG) substrates has been investigated. The synthesis method is based on high vacuum post-sulphidation of Cu thin films deposited by rf. magnetron sputtering. Sputtering conditions have been optimized so as to reduce grain size for better diffusion of S atoms through grain boundaries. XRD pattern of the precursor Cu sample revealed fcc structure with an average crystallite size of 24 nm. Best sulphidation was obtained at 175 oC for 60 min. The crystallite size of CuS calculated from the dominant peak of (110) planes was approximately 48 nm while average grain size observed via SEM was about 400 nm. Raman spectroscopy confirmed CuS structure by scattering peaks at around 467-472 cm-1. Elemental mapping unveiled homogenous distribution of Cu and S atoms over the surface. According to EDS data, at% compositions of Cu and S were 51.6% and 48.4%, respectively. Moreover, SIMS investigation has demonstrated uniformity of S atoms through the thickness of CuS thin film. Although XRD, Raman, and EDS analysis have resulted in predominant formation of CuS structure, existence of Cu2S phase with a strong luminescence peak located at 1.8 eV was determined by PL spectroscopy.

Destekleyen Kurum

Tübitak

Proje Numarası

117F177

Teşekkür

This work has been partially supported by TUBITAK with the project number 117F177.

Kaynakça

  • [1] G.M Mattox et al. ‘High absorptivity solar absorbing coatings’ J. Vac. Sci. Technol. 11, 793 (1974).
  • [2] O.P Agnihotri and B.K Gupta, Solar Selective Surfaces 105 (1981).
  • [3] I. Grozdanov, ‘Deposition of Electrically Conductive, Microwave Shielding, and IR-Detecting Inorganic Coatings on Polymer Films,’ Chem. Lett. (1994).
  • [4] . M.T.S Nair et al., ‘Conversion of chemically deposited CuS thin films to and by annealing.’ Semicond. Sci. Technol. 4,191 (1989).
  • [5] S. Lindroos et al., ‘Growth of CuS thin films by the successive ionic layer adsorption and reaction method.’Appl. Surf. Sci., 158 (2000).
  • [6] V.P Malekar et al., ‘Studies on surface deformation of copper sulphide thin films by holographic interferometry technique.’ Optik, 122 (2011).
  • [7] S. H. Chaki et al. ‘Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques.’ Thin Solid Films, 550, 291-297, (2014).
  • [8] S.D Sartale et al., ‘Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method.’ Mater. Chem. Phys., 65 (2000).
  • [9] A. Bollero et al., ‘CuS-based thin films for architectural glazing applications produced by co-evaporation: Morphology, optical and electrical properties.’ Sur. Coa. Tech., 204, (2009).
  • [10] M. Mousavi et al., ‘Facile and Novel Chemical Synthesis, Characterization, and Formation Mechanism of Copper Sulfide (Cu2S, Cu2S/CuS, CuS) Nanostructures for Increasing the Efficiency of Solar Cells.’ J. Phys. Chem., Pages 1-51, (2016).
  • [11] N. P. Husea et al., ‘An experimental and theoretical study on soft chemically grown CuS thin film for photosensor application.’ Mater. Sci. Sem. Processing , 67, Pages 62-68, (2017).
  • [12] N. M.Xin et al., ‘Synthesis of CuS thin films by microwave assisted chemical bath deposition.’ Appl. Surf. Sci., 256,1436-1442, (2009).
  • [13] H.M. Pathan et al., ‘Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films.’ App.Sur. Sci., 202, 47-56, (2002).
  • [14] F.Zhuge et al., ‘Synthesis of stable amorphous Cu2S thin film by successive ion layer adsorption and reaction method.’ Mater. Letters, 63, 652-654, (2009).
  • [15] Y.B. He et al., ‘Hall effect and surface characterization of Cu2S and CuS films deposited by RF reactive sputtering.’ Physica B, (308–310) ,1069–1073, (2001).
  • [16] A. Ceylan, ‘Synthesis of SnS thin films via high vacuum sulphidation of sputtered Sn thin films.’ Mater. Letters, 201 pages 194–197, (2017).
  • [17] C. Ibuki et al., ‘Structural, morphological and adhesion properties of CoFeB thin films deposited by DC magnetron sputtering,’ Adv. Mater. Research, 802,47-52, (2013).
  • [18] ASTM International, ‘Standard Test Methods for Measuring Adhesion by Tape Test.’
  • [19] P. Szakalos et all. ‘The effect of surface condition and cold work on the sulphidation resistance of 153MA at 700 oC’. Materials and Corrosion, (2000).
  • [20] D. Magnfält et al., ‘Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films.’ Appl. Phys., 119 (2016).
  • [21] R.C. Sharma et al., ‘A thermodynamic analysis of the copper-sulfur system.’ Metall. Trans., B 11B (1980).
  • [22] Gmelins Handbuch der Anorganischen Chemie, 8th Edition. Vol. Cu Main B1, Verlag Chemie, Weinheim, pages 470, (1958).
  • [23] G. Frenzel, Neues Jb. Miner, 93, 87, (1959).
  • [24] W. Jost, P. Kubaschewski, Z. Phys. Chem., 60, 69, (1968).
  • [25] O.J Cain et al., ‘The structure of epitaxial overgrowths of Cu2S formed on (111) Cu.’ Thin Solid Films, 58, pages 209, (1979) .
  • [26] M. Ishii et al., ‘Anion Distributions and Phase Transitions in CuS1-xSex(x = 0-1) Studied by Raman Spectroscopy.’ J. Solid State Chems., 105(2):504-511, (1993).
  • [27] A. E. Pop et al., ‘OPTICAL PROPERTIES OF CUXS NANO-POWDER.’ Chalcogenide Let., 8(6):363 – 370, (2011).
  • [28] Q Zamin et al., ‘CuS nanoparticles synthesized by a facile chemical route under different pH conditions.’ Mendeleev Commun., 26, 235–237, (2016).
  • [29] M. Ramya et al., ‘Study of thickness dependent characterictics of cu2s thin film for various applications.’ Iranian J. Mater. Sci. & Eng., 8(2), (2011).
  • [30] T. Safrani et al., ‘A comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates.’ RSC Adv., V,3, (2013).
  • [31] B. M. Sukarova et al., ‘Raman spectra of thin solid films of some metal sulfides.’ J. Mol. Struct., 410, 267, (1997).
  • [32] J.M. Luther et al., ‘Localized surface plasmon resonances arising from free carriers in doped quantum dots.’ A. P. Nat. Mater, 10, (2011).
  • [33] Ward van der Stam et al., ‘Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals.’ J. Am. Chem. Soc., 139, 3208−13217, (2017).
  • [34] M. Tanveer et al., ‘Effect of the morphology of CuS upon the photocatalytic degradation of organic dyes.’ RSC Advances., 4, 63447, (2014).

Yüksek Vakumda Sülfürleme ile CuS İnce Filmlerin İki Aşamalı Sentezi

Yıl 2024, Cilt: 27 Sayı: 4, 1581 - 1588, 25.09.2024
https://doi.org/10.2339/politeknik.1276728

Öz

Bu çalışmada, soda kireç camı (SLG) altlıklar üzerinde CuS ince filmlerinin sentezi incelenmiştir. Sentez yöntemi, rf püskürtme tarafından biriktirilen Cu ince filmlerin yüksek vakumlu sülfürlenmesine dayanır. Büyütme koşulları, S atomlarının tanecik sınırlarından daha iyi difüzyonu için tane boyutunu küçültecek şekilde optimize edilmiştir. Öncü Cu örneğinin XRD paterni, ortalama kristalit boyutu 24 nm olan fcc yapısını ortaya çıkardı. En iyi sülfürleme koşulları 175 oC'de 60 dakikada elde edilmiştir. (110) düzlemlerinin baskın zirvesinden hesaplanan CuS kristalit boyutu yaklaşık 48 nm iken, SEM ile gözlemlenen ortalama tane boyutu yaklaşık 400 nm idi. Raman spektroskopisi, 467-472 cm-1 civarındaki tepe noktaları CuS yapısını doğruladı. Elemental haritalama, Cu ve S atomlarının yüzey üzerinde homojen dağılımını ortaya çıkardı. EDS verilerine göre %'de Cu ve S bileşimleri sırasıyla %51.6 ve %48.4 idi. Ayrıca, SIMS araştırması, CuS ince filminin kalınlığı boyunca S atomlarının homojenliğini göstermiştir. XRD, Raman ve EDS analizi CuS yapısının baskın oluşumuyla sonuçlanmış olsa da, 1.8 eV'de bulunan güçlü bir lüminesans zirvesine sahip Cu2S fazının varlığı PL spektroskopisi ile belirlendi.

Proje Numarası

117F177

Kaynakça

  • [1] G.M Mattox et al. ‘High absorptivity solar absorbing coatings’ J. Vac. Sci. Technol. 11, 793 (1974).
  • [2] O.P Agnihotri and B.K Gupta, Solar Selective Surfaces 105 (1981).
  • [3] I. Grozdanov, ‘Deposition of Electrically Conductive, Microwave Shielding, and IR-Detecting Inorganic Coatings on Polymer Films,’ Chem. Lett. (1994).
  • [4] . M.T.S Nair et al., ‘Conversion of chemically deposited CuS thin films to and by annealing.’ Semicond. Sci. Technol. 4,191 (1989).
  • [5] S. Lindroos et al., ‘Growth of CuS thin films by the successive ionic layer adsorption and reaction method.’Appl. Surf. Sci., 158 (2000).
  • [6] V.P Malekar et al., ‘Studies on surface deformation of copper sulphide thin films by holographic interferometry technique.’ Optik, 122 (2011).
  • [7] S. H. Chaki et al. ‘Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques.’ Thin Solid Films, 550, 291-297, (2014).
  • [8] S.D Sartale et al., ‘Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method.’ Mater. Chem. Phys., 65 (2000).
  • [9] A. Bollero et al., ‘CuS-based thin films for architectural glazing applications produced by co-evaporation: Morphology, optical and electrical properties.’ Sur. Coa. Tech., 204, (2009).
  • [10] M. Mousavi et al., ‘Facile and Novel Chemical Synthesis, Characterization, and Formation Mechanism of Copper Sulfide (Cu2S, Cu2S/CuS, CuS) Nanostructures for Increasing the Efficiency of Solar Cells.’ J. Phys. Chem., Pages 1-51, (2016).
  • [11] N. P. Husea et al., ‘An experimental and theoretical study on soft chemically grown CuS thin film for photosensor application.’ Mater. Sci. Sem. Processing , 67, Pages 62-68, (2017).
  • [12] N. M.Xin et al., ‘Synthesis of CuS thin films by microwave assisted chemical bath deposition.’ Appl. Surf. Sci., 256,1436-1442, (2009).
  • [13] H.M. Pathan et al., ‘Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films.’ App.Sur. Sci., 202, 47-56, (2002).
  • [14] F.Zhuge et al., ‘Synthesis of stable amorphous Cu2S thin film by successive ion layer adsorption and reaction method.’ Mater. Letters, 63, 652-654, (2009).
  • [15] Y.B. He et al., ‘Hall effect and surface characterization of Cu2S and CuS films deposited by RF reactive sputtering.’ Physica B, (308–310) ,1069–1073, (2001).
  • [16] A. Ceylan, ‘Synthesis of SnS thin films via high vacuum sulphidation of sputtered Sn thin films.’ Mater. Letters, 201 pages 194–197, (2017).
  • [17] C. Ibuki et al., ‘Structural, morphological and adhesion properties of CoFeB thin films deposited by DC magnetron sputtering,’ Adv. Mater. Research, 802,47-52, (2013).
  • [18] ASTM International, ‘Standard Test Methods for Measuring Adhesion by Tape Test.’
  • [19] P. Szakalos et all. ‘The effect of surface condition and cold work on the sulphidation resistance of 153MA at 700 oC’. Materials and Corrosion, (2000).
  • [20] D. Magnfält et al., ‘Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films.’ Appl. Phys., 119 (2016).
  • [21] R.C. Sharma et al., ‘A thermodynamic analysis of the copper-sulfur system.’ Metall. Trans., B 11B (1980).
  • [22] Gmelins Handbuch der Anorganischen Chemie, 8th Edition. Vol. Cu Main B1, Verlag Chemie, Weinheim, pages 470, (1958).
  • [23] G. Frenzel, Neues Jb. Miner, 93, 87, (1959).
  • [24] W. Jost, P. Kubaschewski, Z. Phys. Chem., 60, 69, (1968).
  • [25] O.J Cain et al., ‘The structure of epitaxial overgrowths of Cu2S formed on (111) Cu.’ Thin Solid Films, 58, pages 209, (1979) .
  • [26] M. Ishii et al., ‘Anion Distributions and Phase Transitions in CuS1-xSex(x = 0-1) Studied by Raman Spectroscopy.’ J. Solid State Chems., 105(2):504-511, (1993).
  • [27] A. E. Pop et al., ‘OPTICAL PROPERTIES OF CUXS NANO-POWDER.’ Chalcogenide Let., 8(6):363 – 370, (2011).
  • [28] Q Zamin et al., ‘CuS nanoparticles synthesized by a facile chemical route under different pH conditions.’ Mendeleev Commun., 26, 235–237, (2016).
  • [29] M. Ramya et al., ‘Study of thickness dependent characterictics of cu2s thin film for various applications.’ Iranian J. Mater. Sci. & Eng., 8(2), (2011).
  • [30] T. Safrani et al., ‘A comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates.’ RSC Adv., V,3, (2013).
  • [31] B. M. Sukarova et al., ‘Raman spectra of thin solid films of some metal sulfides.’ J. Mol. Struct., 410, 267, (1997).
  • [32] J.M. Luther et al., ‘Localized surface plasmon resonances arising from free carriers in doped quantum dots.’ A. P. Nat. Mater, 10, (2011).
  • [33] Ward van der Stam et al., ‘Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals.’ J. Am. Chem. Soc., 139, 3208−13217, (2017).
  • [34] M. Tanveer et al., ‘Effect of the morphology of CuS upon the photocatalytic degradation of organic dyes.’ RSC Advances., 4, 63447, (2014).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ali Yıldırım 0000-0002-0673-4502

Abdullah Ceylan 0000-0001-5656-0929

Proje Numarası 117F177
Erken Görünüm Tarihi 11 Eylül 2023
Yayımlanma Tarihi 25 Eylül 2024
Gönderilme Tarihi 4 Nisan 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 4

Kaynak Göster

APA Yıldırım, A., & Ceylan, A. (2024). Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation. Politeknik Dergisi, 27(4), 1581-1588. https://doi.org/10.2339/politeknik.1276728
AMA Yıldırım A, Ceylan A. Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation. Politeknik Dergisi. Eylül 2024;27(4):1581-1588. doi:10.2339/politeknik.1276728
Chicago Yıldırım, Ali, ve Abdullah Ceylan. “Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation”. Politeknik Dergisi 27, sy. 4 (Eylül 2024): 1581-88. https://doi.org/10.2339/politeknik.1276728.
EndNote Yıldırım A, Ceylan A (01 Eylül 2024) Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation. Politeknik Dergisi 27 4 1581–1588.
IEEE A. Yıldırım ve A. Ceylan, “Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation”, Politeknik Dergisi, c. 27, sy. 4, ss. 1581–1588, 2024, doi: 10.2339/politeknik.1276728.
ISNAD Yıldırım, Ali - Ceylan, Abdullah. “Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation”. Politeknik Dergisi 27/4 (Eylül 2024), 1581-1588. https://doi.org/10.2339/politeknik.1276728.
JAMA Yıldırım A, Ceylan A. Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation. Politeknik Dergisi. 2024;27:1581–1588.
MLA Yıldırım, Ali ve Abdullah Ceylan. “Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation”. Politeknik Dergisi, c. 27, sy. 4, 2024, ss. 1581-8, doi:10.2339/politeknik.1276728.
Vancouver Yıldırım A, Ceylan A. Two Step Synthesis of CuS Thin Films via High Vacuum Sulphidation. Politeknik Dergisi. 2024;27(4):1581-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.