The Effect Of Polymer Concentration On Coaxial Electrospinning Of Pvp/Pcl Core-Sheath Nanofibers
Yıl 2024,
Cilt: 27 Sayı: 5, 1781 - 1787, 02.10.2024
Fatma Banu Nergis
,
Nebahat Aral Yılmaz
,
Nursema Pala Avcı
Öz
Core-sheath nanofibers are being developed with coaxial electrospinning for use in drug release studies. In this study, nanofiber structures were developed as hydrophobic PCL in the sheath and hydrophilic PVP in the core. The effect of polymer concentrations on fiber structure and water contact angle was observed by forming two different test groups. In the first group, fiber diameters were observed to decrease depending on viscosity as the polymer concentration decreased from 10% PCL / 10% PVP to 6% PCL / 6% PVP. It was also observed that the contact angle decreased from 104.3° to 57.61° as the concentration decreased. In the second group, the shell polymer ratio was kept constant as 10% wt PCL, while the core polymer ratio was decreased to 10 %, 8% and 6%. It was observed that the core polymer in the structure became hydrophilic as its viscosity decreased. Compared to the first group, the decrease in the contact angles of the surfaces was less since the shell polymer ratio was kept constant. Contact angles decreased from 104.3° to 96.29°.
Destekleyen Kurum
Istanbul Technical University
Proje Numarası
MYL-2021-4327
Teşekkür
The authors gratefully acknowledge the funding by ITU-Graduate Thesis Program under the grant number MYL-2021-4327.
Kaynakça
- [1]Begum, H. A., & Khan, K. R., ‘’Study on the various types of needle based and needleless electrospinning system for nanofiber production’’. International Journal of Textile Science, 6(8), (2017).
- [2] Valizadeh, A., & Mussa Farkhani, S., ‘’Electrospinning and electrospun nanofibres’’. IET nanobiotechnology, 8(2), 83-92, (2014).
- [3] Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P., ‘’A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering’’. Biomaterials, 24(12), 2077-2082, (2003).
- [4] Barhate, R. S., & Ramakrishna, S., ‘’Nanofibrous filtering media: Filtration problems and solutions from tiny materials’’. Journal of membrane science, 296(1-2), 1-8, (2007).
- [5] Liu, X., Zhang, Y., Guo, X., & Pang, H., ‘’Electrospun metal–organic framework nanofiber membranes for energy storage and environmental protection’’. Advanced Fiber Materials, 4(6), 1463-1485, (2022).
- [6] Du, Y., Zhang, X., Liu, P., Yu, D. G., & Ge, R., ‘’Electrospun nanofiber-based glucose sensors for glucose detection’’. Frontiers in Chemistry, 10, 944428, (2022).
- [7] Chahal, P., Chokkiah, B., Sivasankarapillai, V. S., Raveendran, A., Siddiqui, M. R., Wabaidur, S. M., ... & Dhanusuraman, R., ‘’Synthesis and characterization of novel poly (Vinylidene Fluoride)-melamine electrospun nanofibers: an extensive analysis on mechanical and thermal behavior’’. Journal of Materials Engineering and Performance, 32(1), 243-250, (2023).
- [8] Aydın, E. S., & Korkut, İ., ‘’Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers’’. Politeknik Dergisi, 1-1, (2023).
- [9] Wang, M. L., Yu, D. G., & Bligh, S. W. A. Progress in preparing electrospun Janus fibers and their applications. Applied Materials Today, 31, 101766, (2023).
- [10] Goh, Y. F., Shakir, I., & Hussain, R., ‘’Electrospun fibers for tissue engineering, drug delivery, and wound dressing’’. Journal of Materials Science, 48, 3027-3054, (2013).
- [11] Karami, Z., Rezaeian, I., Zahedi, P., & Abdollahi, M., ‘’Preparation and performance evaluations of electrospun poly (ε‐caprolactone), poly (lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing’’. Journal of applied polymer science, 129(2), 756-766, (2013).
- [12] Gobi, R., Ravichandiran, P., Babu, R. S., & Yoo, D. J., ‘’Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: A review’’. Polymers, 13(12), 1962, (2021).
- [13] Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., & Castano, O., ‘’Electrospun gelatin/poly (ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering’’. Materials Science and Engineering, C, 44, 183-190, (2014).
- [14] Varsei, M., Tanha, N. R., Gorji, M., & Mazinani, S., ‘’Fabrication and optimization of PCL/PVP nanofibers with Lawsonia inermis for antibacterial wound dressings’’. Polymers and Polymer Composites, 29(9_suppl), S1403-S1413, (2021).
- [15] Contardi, M., Kossyvaki, D., Picone, P., Summa, M., Guo, X., Heredia-Guerrero, J. A., ... & Bayer, I. S., ‘’Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings’’. Chemical Engineering Journal, 409, 128144, (2021).
- [16] Kaviannasab, E., Semnani, D., Khorasani, S. N., Varshosaz, J., Khalili, S., & Ghahreman, F., ‘’Core-shell nanofibers of poly (ε–caprolactone) and Polyvinylpyrrolidone for drug delivery system’’. Materials Research Express, 6(11), 115015, (2019).
- [17] Suganya, S., Senthil Ram, T., Lakshmi, B. S., & Giridev, V. R., ‘’Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings’’. Journal of Applied Polymer Science, 121(5), 2893-2899, (2011).
- [18] Sruthi, R., Balagangadharan, K., & Selvamurugan, N., ‘’Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration’’. Colloids and Surfaces B: Biointerfaces, 193, 111110, (2020).
- [19] Wang, J., & Windbergs, M., ‘’Functional electrospun fibers for the treatment of human skin wounds’’. European Journal of Pharmaceutics and Biopharmaceutics, 119, 283-299, (2017).
- [20] Li, J., Liu, Y., & Abdelhakim, H. E., ‘’Drug delivery applications of coaxial electrospun nanofibres in cancer therapy’’. Molecules, 27(6), 1803, (2022).
- [21] Cheng, G., Ma, X., Li, J., Cheng, Y., Cao, Y., Wang, Z., ... & Li, Z., ‘’Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering’’. International Journal of Pharmaceutics, 547(1-2), 656-666, (2018).
- [22] Moghe, A. K., & Gupta, B. S., ‘’Co‐axial electrospinning for nanofiber structures: preparation and applications’’. Polymer Reviews, 48(2), 353-377, (2008).
- [23] Yoon, J., Yang, H. S., Lee, B. S., & Yu, W. R., ‘’Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications’’. Advanced Materials, 30(42), 1704765, (2018).
- [24] Amiraliyan, N., Nouri, M., & Kish, M. H., ‘’Electrospinning of silk nanofibers. I. An investigation of nanofiber morphology and process optimization using response surface methodology’’. Fibers and Polymers, 10, 167-176, (2009).
- [25] Nasouri, K., Shoushtari, A. M., & Kaflou, A., ‘’Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number’’. Micro & Nano Letters, 7(5), 423-426, (2012).
- [26] Liao, N., Unnithan, A. R., Joshi, M. K., Tiwari, A. P., Hong, S. T., Park, C. H., & Kim, C. S., ‘’Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications’’. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 194-201, (2015).
- [27] Kaerkitcha, N., Chuangchote, S., Hachiya, K., & Sagawa, T., ‘’Influence of the viscosity ratio of polyacrylonitrile/poly (methyl methacrylate) solutions on core–shell fibers prepared by coaxial electrospinning’’. Polymer journal, 49(6), 497-502, (2017).
- [28] Jia, D., Gao, Y., & Williams, G. R., ‘’Core/shell poly (ethylene oxide)/Eudragit fibers for site-specific release’’. International journal of pharmaceutics, 523(1), 376-385, (2017).
- [29] Kim, G. M., Le, K. H. T., Giannitelli, S. M., Lee, Y. J., Rainer, A., & Trombetta, M., ‘’Electrospinning of PCL/PVP blends for tissue engineering scaffolds’’. Journal of Materials Science: Materials in Medicine, 24, 1425-1442, (2013).
- [30] Koushki, P., Bahrami, S. H., & Ranjbar-Mohammadi, M., ‘’Coaxial nanofibers from poly (caprolactone)/poly (vinyl alcohol)/Thyme and their antibacterial properties’’. Journal of industrial textiles, 47(5), 834-852, (2018).
- [31] Huang, Z. M., Zhang, Y., & Ramakrishna, S., ‘’Double‐layered composite nanofibers and their mechanical performance’’. Journal of Polymer Science Part B: Polymer Physics, 43(20), 2852-2861, (2005).
Polimer Konsantrasyonunun Koaksiyel Elektroeğrilmiş Pvp/Pcl Çekirdek-Kılıf Nanolifleri Üzerine Etkisi
Yıl 2024,
Cilt: 27 Sayı: 5, 1781 - 1787, 02.10.2024
Fatma Banu Nergis
,
Nebahat Aral Yılmaz
,
Nursema Pala Avcı
Öz
Çekirdek-kabuk nanolifleri, ilaç salım çalışmalarında kullanılmak üzere koaksiyel elektroeğirme yöntemi ile geliştirilmektedir. Bu çalışmada, kabukta hidrofobik PCL ve çekirdekte hidrofilik PVP polimeri kullanılarak nanolifli yüzeyler geliştirilmiştir. Polimer konsantrasyonlarının lif yapısı ve su temas açısı üzerindeki etkisi iki farklı test grubu oluşturularak gözlemlendi. Birinci grupta polimer konsantrasyonu %10 PCL / %10 PVP'den %6 PCL / %6 PVP'ye düştüğü için lif çaplarının viskoziteye bağlı olarak azaldığı gözlendi. Ayrıca konsantrasyon azaldıkça temas açısının 104,3°'den 57,61°'ye düştüğü gözlendi. İkinci grupta kabuk polimer oranı ağırlıkça %10 PCL olarak sabit tutulurken çekirdek polimer oranı ağırlıkça %10, %8 ve %6 şeklinde azaltılarak nanolifli yüzey üretimleri yapıldı. Yapıdaki çekirdek polimerin viskozitesi azaldıkça yüzeylerin hidrofilik hale geldiği ve temas açılarının 104,3°'den 96,29°'ye düştüğü gözlendi. Birinci grup ile kıyaslandığında kabuk polimer oranı sabit tutulduğu için yüzeylerin temas açılarındaki azalma daha az olmuştur.
Proje Numarası
MYL-2021-4327
Kaynakça
- [1]Begum, H. A., & Khan, K. R., ‘’Study on the various types of needle based and needleless electrospinning system for nanofiber production’’. International Journal of Textile Science, 6(8), (2017).
- [2] Valizadeh, A., & Mussa Farkhani, S., ‘’Electrospinning and electrospun nanofibres’’. IET nanobiotechnology, 8(2), 83-92, (2014).
- [3] Yoshimoto, H., Shin, Y. M., Terai, H., & Vacanti, J. P., ‘’A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering’’. Biomaterials, 24(12), 2077-2082, (2003).
- [4] Barhate, R. S., & Ramakrishna, S., ‘’Nanofibrous filtering media: Filtration problems and solutions from tiny materials’’. Journal of membrane science, 296(1-2), 1-8, (2007).
- [5] Liu, X., Zhang, Y., Guo, X., & Pang, H., ‘’Electrospun metal–organic framework nanofiber membranes for energy storage and environmental protection’’. Advanced Fiber Materials, 4(6), 1463-1485, (2022).
- [6] Du, Y., Zhang, X., Liu, P., Yu, D. G., & Ge, R., ‘’Electrospun nanofiber-based glucose sensors for glucose detection’’. Frontiers in Chemistry, 10, 944428, (2022).
- [7] Chahal, P., Chokkiah, B., Sivasankarapillai, V. S., Raveendran, A., Siddiqui, M. R., Wabaidur, S. M., ... & Dhanusuraman, R., ‘’Synthesis and characterization of novel poly (Vinylidene Fluoride)-melamine electrospun nanofibers: an extensive analysis on mechanical and thermal behavior’’. Journal of Materials Engineering and Performance, 32(1), 243-250, (2023).
- [8] Aydın, E. S., & Korkut, İ., ‘’Statistical Modelling of Process Variables in the Electrospinning Production of PAN-Based Nanofibers’’. Politeknik Dergisi, 1-1, (2023).
- [9] Wang, M. L., Yu, D. G., & Bligh, S. W. A. Progress in preparing electrospun Janus fibers and their applications. Applied Materials Today, 31, 101766, (2023).
- [10] Goh, Y. F., Shakir, I., & Hussain, R., ‘’Electrospun fibers for tissue engineering, drug delivery, and wound dressing’’. Journal of Materials Science, 48, 3027-3054, (2013).
- [11] Karami, Z., Rezaeian, I., Zahedi, P., & Abdollahi, M., ‘’Preparation and performance evaluations of electrospun poly (ε‐caprolactone), poly (lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing’’. Journal of applied polymer science, 129(2), 756-766, (2013).
- [12] Gobi, R., Ravichandiran, P., Babu, R. S., & Yoo, D. J., ‘’Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: A review’’. Polymers, 13(12), 1962, (2021).
- [13] Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J. A., & Castano, O., ‘’Electrospun gelatin/poly (ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering’’. Materials Science and Engineering, C, 44, 183-190, (2014).
- [14] Varsei, M., Tanha, N. R., Gorji, M., & Mazinani, S., ‘’Fabrication and optimization of PCL/PVP nanofibers with Lawsonia inermis for antibacterial wound dressings’’. Polymers and Polymer Composites, 29(9_suppl), S1403-S1413, (2021).
- [15] Contardi, M., Kossyvaki, D., Picone, P., Summa, M., Guo, X., Heredia-Guerrero, J. A., ... & Bayer, I. S., ‘’Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings’’. Chemical Engineering Journal, 409, 128144, (2021).
- [16] Kaviannasab, E., Semnani, D., Khorasani, S. N., Varshosaz, J., Khalili, S., & Ghahreman, F., ‘’Core-shell nanofibers of poly (ε–caprolactone) and Polyvinylpyrrolidone for drug delivery system’’. Materials Research Express, 6(11), 115015, (2019).
- [17] Suganya, S., Senthil Ram, T., Lakshmi, B. S., & Giridev, V. R., ‘’Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings’’. Journal of Applied Polymer Science, 121(5), 2893-2899, (2011).
- [18] Sruthi, R., Balagangadharan, K., & Selvamurugan, N., ‘’Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration’’. Colloids and Surfaces B: Biointerfaces, 193, 111110, (2020).
- [19] Wang, J., & Windbergs, M., ‘’Functional electrospun fibers for the treatment of human skin wounds’’. European Journal of Pharmaceutics and Biopharmaceutics, 119, 283-299, (2017).
- [20] Li, J., Liu, Y., & Abdelhakim, H. E., ‘’Drug delivery applications of coaxial electrospun nanofibres in cancer therapy’’. Molecules, 27(6), 1803, (2022).
- [21] Cheng, G., Ma, X., Li, J., Cheng, Y., Cao, Y., Wang, Z., ... & Li, Z., ‘’Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering’’. International Journal of Pharmaceutics, 547(1-2), 656-666, (2018).
- [22] Moghe, A. K., & Gupta, B. S., ‘’Co‐axial electrospinning for nanofiber structures: preparation and applications’’. Polymer Reviews, 48(2), 353-377, (2008).
- [23] Yoon, J., Yang, H. S., Lee, B. S., & Yu, W. R., ‘’Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications’’. Advanced Materials, 30(42), 1704765, (2018).
- [24] Amiraliyan, N., Nouri, M., & Kish, M. H., ‘’Electrospinning of silk nanofibers. I. An investigation of nanofiber morphology and process optimization using response surface methodology’’. Fibers and Polymers, 10, 167-176, (2009).
- [25] Nasouri, K., Shoushtari, A. M., & Kaflou, A., ‘’Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number’’. Micro & Nano Letters, 7(5), 423-426, (2012).
- [26] Liao, N., Unnithan, A. R., Joshi, M. K., Tiwari, A. P., Hong, S. T., Park, C. H., & Kim, C. S., ‘’Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications’’. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469, 194-201, (2015).
- [27] Kaerkitcha, N., Chuangchote, S., Hachiya, K., & Sagawa, T., ‘’Influence of the viscosity ratio of polyacrylonitrile/poly (methyl methacrylate) solutions on core–shell fibers prepared by coaxial electrospinning’’. Polymer journal, 49(6), 497-502, (2017).
- [28] Jia, D., Gao, Y., & Williams, G. R., ‘’Core/shell poly (ethylene oxide)/Eudragit fibers for site-specific release’’. International journal of pharmaceutics, 523(1), 376-385, (2017).
- [29] Kim, G. M., Le, K. H. T., Giannitelli, S. M., Lee, Y. J., Rainer, A., & Trombetta, M., ‘’Electrospinning of PCL/PVP blends for tissue engineering scaffolds’’. Journal of Materials Science: Materials in Medicine, 24, 1425-1442, (2013).
- [30] Koushki, P., Bahrami, S. H., & Ranjbar-Mohammadi, M., ‘’Coaxial nanofibers from poly (caprolactone)/poly (vinyl alcohol)/Thyme and their antibacterial properties’’. Journal of industrial textiles, 47(5), 834-852, (2018).
- [31] Huang, Z. M., Zhang, Y., & Ramakrishna, S., ‘’Double‐layered composite nanofibers and their mechanical performance’’. Journal of Polymer Science Part B: Polymer Physics, 43(20), 2852-2861, (2005).