Yenilenebilir Kaynaklardan Elde Edilen Doğal Liflerin Biyodegradasyon Özellikleri
Yıl 2024,
Cilt: 27 Sayı: 5, 1853 - 1858
Ružica Brunšek
,
Ivana Schwarz
,
Dragana Kopitar
,
Paula Marasović
Öz
Yeni yenilenebilir malzeme arayışları sonucunda tekstil dışı uygulamalarda doğal liflere olan ilgi artmıştır. Çevresel güvenlik talepleri için özellikle cazip olan, lignoselüloz lifleri ve PLA gibi biyopolimerler gibi biyolojik olarak parçalanabilen ve yenilenebilir liflerdir. Biyobozunmalarının analizi genellikle çevre dostu tekstil malzemeleri için standart bir ölçü olarak alınır.
Bu nedenle, bu makalenin amacı Jüt ve PLA liflerinin biyolojik bozunma özelliklerini toprağa gömme testi ile araştırmaktır. Lifler, 11 gün boyunca tarım arazisi toprağına maruz bırakıldı. Biyobozunurluğun etkinliği, SEM mikroskobu ile kütle kaybı, mekanik özellikler (incelik ve sağlamlık) ve morfolojik analizin karşılaştırılmasıyla belirlendi. Biyobozunmanın daha iyi anlaşılması amacıyla topraktaki toplam mantar ve bakteri sayısı da belirlenir.
Kaynakça
- [1] Gabrys T., Fryczkowska F., Grzybowska-Pietras J., Binias D., “Modification and Properties of Cellulose Nonwoven Fabric—Multifunctional Mulching Material for Agricultural Applications”, Materials, 14(15): 1-16, (2021).
- [2] Čolnik M., Hrnčić Knez M., Škerget M., Knez Ž., “Biodegradable polymers, current trends of research and their applications, a review”, Chemical Industry & Chemical Engineering Quarterly, 26(4): 401−418, (2020).
- [3] Smith R., “Biodegradable Polymers for Industrial Applications” England: Woodhead Publishing, (2005).
- [4] Bastioli C., “Handbook of Biodegradable Polymers”, England: Rapra Technology Limited, (2005).
- [5] Blackburn R.S., “Biodegradable and sustainable fibres”, 1st ed. Woodhead Publishing, Cambridge, England, (2005).
- [6] Chand N., Fahim M., “Natural fibres and their composites”, England: Woodhead Publishing, (2021).
- [7] Franck, R. R., “Bast and other plant fibres”. Cambridge, Woodhead Publishing Limited, (2005).
- [8] Orlando J. Rojas, “Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials”, Advances in Polymer Science, Springer, (2016).
- [9] Sayem A.S.M., Haider J., “An Overview on the Development of Natural Renewable Materials for Textile Applications”, Amsterdam, Netherlands: Elsevier, (2019).
- [10] Eichhorn S.J., Hearle J.W.S., Jaffe M. and Kikutani T., “Handbook of textile fibre structure Volume 2: Natural, regenerated, inorganic and specialist fibres”, Woodhead publishing in textiles, CRC Press, (2009).
- [11] Park C.H., Kang Y.K., “Biodegradability of Cellulose Fabrics” Journal of Applied Polymer Science, 94: 248 –253, (2004).
- [12] Kopitar D., Marasovic P., Jugov N., Schwarz I., “Biodegradable Nonwoven Agrotextile and Films—A Review”, Polymers, 14: 2272, (2022).
- [13] Arshad K., Skrifvars M., Vivod V., Volmajer Valh J., Vončina B., “Biodegradation of Natural Textile Materials in Soil” Tekstilec, 57:118–132, (2004).
- [14] Sular V., Devrim G., “Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses”, Fibres and Textiles in Eastern Europe 27(1): 100-111, (2019).
- [15] Avinc O., Khoddami A., “Overview of Poly(lactic acid) (PLA) Fibre”, Fibre Chemistre, 41: 391–401, (2009).
- [16] Li G., Zhao M., Xu F., Yang B., Li X., Meng X., Teng L., Sun, F., Li Y., “Synthesis and Biological Application of Polylactic Acid”, Molecules 25: 5023, (2020).
- [17] Rudnik E., Briassoulis D., “Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing” Industrial Crops and Products, 33(3): 648–658, (2011).
- [18] Sanivada, U.K., Mármol G., Brito F. P. and FangueiroR., “PLA Composites Reinforced with Flax and Jute Fibers—A Review of Recent Trends”, Processing Parameters and Mechanical Properties. Polymers, 12: 2373, (2020).
- [19] Marasovic, P., Kopitar, D. (2019). Overview and perspective of nonwoven agrotextile, Textile & Leather Review, 2(1): 32–45, (2019).
Biodegradation Properties of Natural Fibres from Renewable Resources
Yıl 2024,
Cilt: 27 Sayı: 5, 1853 - 1858
Ružica Brunšek
,
Ivana Schwarz
,
Dragana Kopitar
,
Paula Marasović
Öz
The interest in natural fibres in non – textile applications has increased as a result of the search for new renewable materials. Especially attractive for environmental safety demands are biodegradable and renewable fibres such as lignocellulose fibres and biopolymers such as PLA.
The analysis of their biodegradation is often taken as a standard measure for environmentally friendly textile materials. Therefore, the aim of this paper is to investigate the biodegradation properties of Jute and PLA fibres by soil burial test. The fibres were exposed to the farmland soil for 11 days. The efficiency of the biodegradability was determined by comparison of mass loss, mechanical properties (finesses and tenacity) and morphological analysis by SEM microscope. With the purpose of a better understanding of biodegradation, the number of total fungi and bacteria in the soil is also determined.
Kaynakça
- [1] Gabrys T., Fryczkowska F., Grzybowska-Pietras J., Binias D., “Modification and Properties of Cellulose Nonwoven Fabric—Multifunctional Mulching Material for Agricultural Applications”, Materials, 14(15): 1-16, (2021).
- [2] Čolnik M., Hrnčić Knez M., Škerget M., Knez Ž., “Biodegradable polymers, current trends of research and their applications, a review”, Chemical Industry & Chemical Engineering Quarterly, 26(4): 401−418, (2020).
- [3] Smith R., “Biodegradable Polymers for Industrial Applications” England: Woodhead Publishing, (2005).
- [4] Bastioli C., “Handbook of Biodegradable Polymers”, England: Rapra Technology Limited, (2005).
- [5] Blackburn R.S., “Biodegradable and sustainable fibres”, 1st ed. Woodhead Publishing, Cambridge, England, (2005).
- [6] Chand N., Fahim M., “Natural fibres and their composites”, England: Woodhead Publishing, (2021).
- [7] Franck, R. R., “Bast and other plant fibres”. Cambridge, Woodhead Publishing Limited, (2005).
- [8] Orlando J. Rojas, “Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials”, Advances in Polymer Science, Springer, (2016).
- [9] Sayem A.S.M., Haider J., “An Overview on the Development of Natural Renewable Materials for Textile Applications”, Amsterdam, Netherlands: Elsevier, (2019).
- [10] Eichhorn S.J., Hearle J.W.S., Jaffe M. and Kikutani T., “Handbook of textile fibre structure Volume 2: Natural, regenerated, inorganic and specialist fibres”, Woodhead publishing in textiles, CRC Press, (2009).
- [11] Park C.H., Kang Y.K., “Biodegradability of Cellulose Fabrics” Journal of Applied Polymer Science, 94: 248 –253, (2004).
- [12] Kopitar D., Marasovic P., Jugov N., Schwarz I., “Biodegradable Nonwoven Agrotextile and Films—A Review”, Polymers, 14: 2272, (2022).
- [13] Arshad K., Skrifvars M., Vivod V., Volmajer Valh J., Vončina B., “Biodegradation of Natural Textile Materials in Soil” Tekstilec, 57:118–132, (2004).
- [14] Sular V., Devrim G., “Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses”, Fibres and Textiles in Eastern Europe 27(1): 100-111, (2019).
- [15] Avinc O., Khoddami A., “Overview of Poly(lactic acid) (PLA) Fibre”, Fibre Chemistre, 41: 391–401, (2009).
- [16] Li G., Zhao M., Xu F., Yang B., Li X., Meng X., Teng L., Sun, F., Li Y., “Synthesis and Biological Application of Polylactic Acid”, Molecules 25: 5023, (2020).
- [17] Rudnik E., Briassoulis D., “Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing” Industrial Crops and Products, 33(3): 648–658, (2011).
- [18] Sanivada, U.K., Mármol G., Brito F. P. and FangueiroR., “PLA Composites Reinforced with Flax and Jute Fibers—A Review of Recent Trends”, Processing Parameters and Mechanical Properties. Polymers, 12: 2373, (2020).
- [19] Marasovic, P., Kopitar, D. (2019). Overview and perspective of nonwoven agrotextile, Textile & Leather Review, 2(1): 32–45, (2019).