Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Araçtan Şebekeye Uygulamalarındaki da/da Yükseltici Dönüştürücü Topolojileri ve Deneysel Karşılaştırması

Yıl 2024, Cilt: 27 Sayı: 5, 1991 - 1998, 02.10.2024
https://doi.org/10.2339/politeknik.1405319

Öz

Elektrikli araçtan (EA) şebekeye enerji aktaran uygulamalarda araç üzerinde yer alan doğru akım (da)/da yükseltici dönüştürücü devrelerinin hafif, düşük hacimli ve yüksek verime sahip olması gerekmektedir. Bu avantajı saplamak için izolesiz da/da dönüştürücü devrelerinde kullanılan bobin boyutlarının düşürülmesi gerekmektedir. da/da yükseltici dönüştürücü devrelerinde senkron ve serpiştirilmiş senkron topoloji yapıları kullanılmaktadır. Bu çalışmada, deneysel olarak bu iki da/da yükseltici devresinin, batarya gurubu ve kablosuz EA şarj yapısı bulunan bir sistemdeki performans analizleri gerçekleştirilmiştir. Çalışmada aynı güç değerlerinde serpiştirilmiş senkron da/da yükseltici topolojisinde bobin akımlarının ve çıkış gerilim/akım dalgalanmalarının azaldığı, verimin artış gösterdiği sunulmuştur. Farklı çalışma şartlarında iki devre topolojisinin performans karakteristikleri deneysel olarak kanıtlanmıştır. EA araçlarda yüksek şarj/deşarj uygulamalarında serpiştirilmiş senkron da/da yükseltici dönüştürücü topolojisinin kullanılmasının avantajlı olduğu gösterilmiştir.

Etik Beyan

This article's author(s) declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Destekleyen Kurum

The Scientific and Technological Research Council of Türkiye (TUBITAK)

Proje Numarası

Tubitak 1001 Proje numarası: 120E365

Teşekkür

This work was funded by The Scientific and Technological Research Council of Türkiye (TUBITAK) under research grant 120E365.

Kaynakça

  • [1] Sortomme E. and El-Sharkawi M. A., “Optimal Charging Strategies for Unidirectional Vehicle-to-Grid,” IEEE Transactions on Smart Grid, 2(1):131-138, (2011).
  • [2] Aktas A., Onar O. C., Asa E., Mohammad M., Ozpineci B., and Tolbert L. M., “Sensitivity Analysis of a Polyphase Wireless Power Transfer System under Off-Nominal Conditions,” IEEE Transactions on Transportation Electrification, 1-17, (2023).
  • [3] Dahmane Y., “Optimized Energy Management for Electric Vehicles and Infrastructures,” PhD, Hal Open Science, (2023).
  • [4] Sortomme E. and El-Sharkawi M. A., “Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services,” IEEE Trans Smart Grid, 3(1):351–359, (2012).
  • [5] Fu M., Yin H., Liu M., and Ma C., “Loading and Power Control for a High-Efficiency Class E PA-Driven Megahertz WPT System,” IEEE Transactions on Industrial Electronics, 63(11):6867–6876, (2016).
  • [6] Agcal A., Ozcira S., and Bekiroglu N., “Wireless Power Transfer by Using Magnetically Coupled Resonators, Wireless Power Transfer - Fundamentals and Technologies, InTech, 49–66, (2016).
  • [7] Li S. and Mi C., “Wireless Power Transfer for Electric Vehicle Applications,” Emerging and Selected Topics in Power Electronics, IEEE Journal of, 3(1):4-17, (2014).
  • [8] Hidalgo-León R., Urquizo J., Litardo J., Jácome-Ruiz P., Singh P., and Wu J., “Li-ion battery discharge emulator based on three-phase interleaved DC-DC boost converter,” IEEE 39th Central America and Panama Convention, Concapan, 1–6, (2019).
  • [9] Figueiredo J. P. M., Tofoli F. L., and Silva B. L. A., “A review of single-phase PFC topologies based on the boost converter,” 9th IEEE/IAS International Conference on Industry Applications, Induscon, (2010).
  • [10] Hegazy O., Van Mierlo J., and Lataire P., “Analysis, control and comparison of DC/DC boost converter topologies for fuel cell hybrid electric vehicle applications,” Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011), Birmingham, 1–10, (2011).
  • [11] Yu L. R., Hsieh Y. C., Liu W. C., and Moo C. S., “Balanced discharging for serial battery power modules with boost converters,” International Conference on System Science and Engineering (ICSSE), Budapest, 449–453, (2013).
  • [12] Wang H., Dusmez S., and Khaligh A., “Design and Analysis of a Full-Bridge LLC-Based PEV Charger Optimized for Wide Battery Voltage Range,” IEEE Trans Veh Technol, 63(4):1603–1613, (2014).
  • [13] Gurbina M., Pop-Calimanu I. M., Lascu D., Lica S., and Ciresan A., “Exact Stability Analysis of a Two-Phase Boost Converter,” 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, 1–4, (2018).
  • [14] Rana N., Banerjee S., Giri S. K., Trivedi A., and Williamson S. S., “Modeling, Analysis and Implementation of an Improved Interleaved Buck-Boost Converter,” IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7):2588–2592, (2021).
  • [15] Nahar S. and Uddin M. B., “Analysis the performance of interleaved boost converter,” 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, 547–551, (2018).
  • [16] Andresen M., Buticchi G., and Liserre M., “Thermal Stress Analysis and MPPT Optimization of Photovoltaic Systems,” IEEE Transactions on Industrial Electronics, 63(8):4889–4898, (2016).
  • [17] Parler S. G., “Thermal modeling of aluminum electrolytic capacitors,” in Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting, Phoenix, 4:2418–2429, (1999).
  • [18] Ivanovic Z., Blanusa B., and Knezic M., “Power loss model for efficiency improvement of boost converter,” XXIII International Symposium on Information, Communication and Automation Technologies, Sarajevo, 1–6, (2011).
  • [19] Kim J. H., Jung Y. C., Lee S. W., Lee T. W., and Won C. Y., “Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS,” Journal of Power Electronics, 10(4):335–341, (2010).

dc/dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications

Yıl 2024, Cilt: 27 Sayı: 5, 1991 - 1998, 02.10.2024
https://doi.org/10.2339/politeknik.1405319

Öz

In applications that transfer energy from the electric vehicle (EV) to the grid, the direct current (dc)/dc boost converter circuits on the vehicle must be light, low volume, and high efficiency. To achieve this advantage, the inductor sizes used in non-isolated dc/dc converter circuits must be reduced. Synchronous and interleaved synchronous topology structures are used in dc/dc boost converter circuits. This study conducted experimental performance analyses of these two dc/dc boost circuits in a system with a battery group and a wireless EV charging structure. The study presents that in the interleaved synchronous dc/dc boost topology at the same power values, inductor currents and output voltage/current ripple decrease, and efficiency increases. The performance characteristics of the two circuit topologies under different operating conditions have been experimentally proven. It has been shown that using interleaved synchronous dc/dc boost converter topology is advantageous in EVs' high charge/discharge applications.

Proje Numarası

Tubitak 1001 Proje numarası: 120E365

Kaynakça

  • [1] Sortomme E. and El-Sharkawi M. A., “Optimal Charging Strategies for Unidirectional Vehicle-to-Grid,” IEEE Transactions on Smart Grid, 2(1):131-138, (2011).
  • [2] Aktas A., Onar O. C., Asa E., Mohammad M., Ozpineci B., and Tolbert L. M., “Sensitivity Analysis of a Polyphase Wireless Power Transfer System under Off-Nominal Conditions,” IEEE Transactions on Transportation Electrification, 1-17, (2023).
  • [3] Dahmane Y., “Optimized Energy Management for Electric Vehicles and Infrastructures,” PhD, Hal Open Science, (2023).
  • [4] Sortomme E. and El-Sharkawi M. A., “Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services,” IEEE Trans Smart Grid, 3(1):351–359, (2012).
  • [5] Fu M., Yin H., Liu M., and Ma C., “Loading and Power Control for a High-Efficiency Class E PA-Driven Megahertz WPT System,” IEEE Transactions on Industrial Electronics, 63(11):6867–6876, (2016).
  • [6] Agcal A., Ozcira S., and Bekiroglu N., “Wireless Power Transfer by Using Magnetically Coupled Resonators, Wireless Power Transfer - Fundamentals and Technologies, InTech, 49–66, (2016).
  • [7] Li S. and Mi C., “Wireless Power Transfer for Electric Vehicle Applications,” Emerging and Selected Topics in Power Electronics, IEEE Journal of, 3(1):4-17, (2014).
  • [8] Hidalgo-León R., Urquizo J., Litardo J., Jácome-Ruiz P., Singh P., and Wu J., “Li-ion battery discharge emulator based on three-phase interleaved DC-DC boost converter,” IEEE 39th Central America and Panama Convention, Concapan, 1–6, (2019).
  • [9] Figueiredo J. P. M., Tofoli F. L., and Silva B. L. A., “A review of single-phase PFC topologies based on the boost converter,” 9th IEEE/IAS International Conference on Industry Applications, Induscon, (2010).
  • [10] Hegazy O., Van Mierlo J., and Lataire P., “Analysis, control and comparison of DC/DC boost converter topologies for fuel cell hybrid electric vehicle applications,” Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011), Birmingham, 1–10, (2011).
  • [11] Yu L. R., Hsieh Y. C., Liu W. C., and Moo C. S., “Balanced discharging for serial battery power modules with boost converters,” International Conference on System Science and Engineering (ICSSE), Budapest, 449–453, (2013).
  • [12] Wang H., Dusmez S., and Khaligh A., “Design and Analysis of a Full-Bridge LLC-Based PEV Charger Optimized for Wide Battery Voltage Range,” IEEE Trans Veh Technol, 63(4):1603–1613, (2014).
  • [13] Gurbina M., Pop-Calimanu I. M., Lascu D., Lica S., and Ciresan A., “Exact Stability Analysis of a Two-Phase Boost Converter,” 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, 1–4, (2018).
  • [14] Rana N., Banerjee S., Giri S. K., Trivedi A., and Williamson S. S., “Modeling, Analysis and Implementation of an Improved Interleaved Buck-Boost Converter,” IEEE Transactions on Circuits and Systems II: Express Briefs, 68(7):2588–2592, (2021).
  • [15] Nahar S. and Uddin M. B., “Analysis the performance of interleaved boost converter,” 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, 547–551, (2018).
  • [16] Andresen M., Buticchi G., and Liserre M., “Thermal Stress Analysis and MPPT Optimization of Photovoltaic Systems,” IEEE Transactions on Industrial Electronics, 63(8):4889–4898, (2016).
  • [17] Parler S. G., “Thermal modeling of aluminum electrolytic capacitors,” in Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting, Phoenix, 4:2418–2429, (1999).
  • [18] Ivanovic Z., Blanusa B., and Knezic M., “Power loss model for efficiency improvement of boost converter,” XXIII International Symposium on Information, Communication and Automation Technologies, Sarajevo, 1–6, (2011).
  • [19] Kim J. H., Jung Y. C., Lee S. W., Lee T. W., and Won C. Y., “Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS,” Journal of Power Electronics, 10(4):335–341, (2010).
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Devreler ve Sistemler
Bölüm Araştırma Makalesi
Yazarlar

Hakan Akça 0000-0001-9138-0755

Ahmet Aktaş 0000-0003-1027-1579

Proje Numarası Tubitak 1001 Proje numarası: 120E365
Erken Görünüm Tarihi 5 Şubat 2024
Yayımlanma Tarihi 2 Ekim 2024
Gönderilme Tarihi 15 Aralık 2023
Kabul Tarihi 4 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 5

Kaynak Göster

APA Akça, H., & Aktaş, A. (2024). dc/dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications. Politeknik Dergisi, 27(5), 1991-1998. https://doi.org/10.2339/politeknik.1405319
AMA Akça H, Aktaş A. dc/dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications. Politeknik Dergisi. Ekim 2024;27(5):1991-1998. doi:10.2339/politeknik.1405319
Chicago Akça, Hakan, ve Ahmet Aktaş. “dc/Dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications”. Politeknik Dergisi 27, sy. 5 (Ekim 2024): 1991-98. https://doi.org/10.2339/politeknik.1405319.
EndNote Akça H, Aktaş A (01 Ekim 2024) dc/dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications. Politeknik Dergisi 27 5 1991–1998.
IEEE H. Akça ve A. Aktaş, “dc/dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications”, Politeknik Dergisi, c. 27, sy. 5, ss. 1991–1998, 2024, doi: 10.2339/politeknik.1405319.
ISNAD Akça, Hakan - Aktaş, Ahmet. “dc/Dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications”. Politeknik Dergisi 27/5 (Ekim 2024), 1991-1998. https://doi.org/10.2339/politeknik.1405319.
JAMA Akça H, Aktaş A. dc/dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications. Politeknik Dergisi. 2024;27:1991–1998.
MLA Akça, Hakan ve Ahmet Aktaş. “dc/Dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications”. Politeknik Dergisi, c. 27, sy. 5, 2024, ss. 1991-8, doi:10.2339/politeknik.1405319.
Vancouver Akça H, Aktaş A. dc/dc Boost Converter Topologies and Experimental Comparison in Electric Vehicle to Grid Applications. Politeknik Dergisi. 2024;27(5):1991-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.