Parafin Faz-Değiştirme Analizlerinde Sonlu Elemanlar Yaklaşımı
Yıl 2024,
Cilt: 27 Sayı: 5, 1837 - 1842, 02.10.2024
Mustafa Ozcatalbas
,
Adnan Sözen
Öz
Faz değiştiren malzemelerin (FDM'ler) kullanıldığı termal sistemlerinin tasarımı sırasında, analiz araçlarının kullanımı önem arz eder. Nümerik analizler, FDM miktarının belirlenmesi, optimal montaj konumları ve sistemlerin ısınma-soğuma sürelerinin belirlenmesi için esastır. Bu amaç doğrultusunda genellikle Hesaplamalı Akışkanlar Dinamiği (HAD) çözücüleri kullanılır. Ancak, HAD simülasyonları, özellikle zamana bağlı çözümlerde oldukça hesaplama maliyeti getirir. FDM simülasyonları için bir alternatif yaklaşım olarak Sonlu Elemanlar Yöntemi (SEY) tercih edilebilir. Bu çalışma, FEM tarafından gerçekleştirilen parafin mumunun termal analizine odaklanmıştır.
Etik Beyan
The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Destekleyen Kurum
Gazi University
Proje Numarası
FPD-2023-8714
Teşekkür
This project was generously supported by Gazi University under the project code FPD-2023-8714. We extend our heartfelt gratitude to the university for providing the necessary resources and funding to make this research possible.
Kaynakça
- [1] A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications”, Renewable and Sustainable Energy Reviews, 13(2), 318–345, (2009).
- [2] K. Du, J. Calautit, Z. Wang, Y. Wu, and H. Liu, “A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges”, Applied Energy, 220, 242–273, (2018).
- [3] M. Aravindhan and R. Ayyasamy, “Experimental investigation on phase change material”, International Journal of Emerging Technologies in Engineering Research, 4(6), (2016).
- [4] H. Mehling and L. F. Cabeza, “Heat and Cold Storage With PCM: An Up To Date Introduction Into Basics And Application”, Springer, (2008).
- [5] Z. Chen, D. Gao, and J. Shi, “Experimental and numerical study on melting of phase change materials in metal foams at pore scale”, Int. Jo. of Heat and Mass Transfer, 72, 646–655, (2014).
- [6] C. Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)”, Solar Energy, 84(8), 1402–1412, (2010).
- [7] X. Xiao, P. Zhang, and M. Li, “Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage”, Int. Jo. of Thermal Sciences, 81(1), 94–105, (2014).
- [8] X. Xiao, P. Zhang, and M. Li, “Preparation and thermal characterization of paraffin/metal foam composite phase change material”, Applied Energy, 112, 1357–1366, (2013).
- [9] G. K. Marri and C. Balaji, “Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink”, Int. Jo. of Heat Mass Transfer, 164, (2021).
- [10] M. Li, “A nano-graphite/paraffin phase change material with high thermal conductivity”, Applied Energy, 106, 25–30, (2013).
- [11] U. N. Temel, S. Kurtulus, M. Parlak, and K. Yapici, “Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials”, Journal of Thermal Analysis and Calorimetry, 132(1), 631–641, (2018).
- [12] F. Zhu, C. Zhang, and X. Gong, “Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity”, Applied Thermal Engineering, 123, 256–265, (2017).
- [13] W. B. Ye, D. S. Zhu, and N. Wang, “Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions”, Applied Thermal Engineering, 42, 49–57, (2012).
- [14] Y. T. Yang and Y. H. Wang, “Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material”, Int. Jo. of Thermal Sciences, 51(1), 155–162, (2012).
- [15] A. Bhattacharya, V. V Calmidi, and R. L. Mahajan, “Thermophysical properties of high porosity metal foams”, Int. Jo. of. Heat Mass Transfer, 45, 1017–1031, (2002).
- [16] M. Bai and J. N. Chung, “Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams”, Int. Jo. of Thermal Sciences, 50(6), 869–880, (2011).
- [17] K. K. Bodla, J. Y. Murthy, and S. V. Garimella, “Resistance network-based thermal conductivity model for metal foams”, Computational Materials Science, 50(2), 622–632, (2010).
- [18] E. N. Schmierer and A. Razani, “Self-consistent open-celled metal foam model for thermal applications”, Jo. of Heat Transfer, 128(11), 1194–1203, (2006).
- [19] R. Singh and H. S. Kasana, “Computational aspects of effective thermal conductivity of highly porous metal foams”, Applied Thermal Engineering, 24(13), 1841–1849, (2004).
- [20] Z.-X. Gong and A. S. Mujumdar, “Finite-Element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger”, Applied Thermal Engineering, 17(6), 583–591, (1997).
- [21] H. Zhou, Å. Fransson, and T. Olofsson, “An explicit finite element method for thermal simulations of buildings with phase change materials”, Energies, 14(19), (2021).
- [22] David V. Hutton, “Fundamentals of Finite Element Analysis”, McGraw Hill, (2004).
A Finite Element Approach for Phase-Change Analysis of Paraffin
Yıl 2024,
Cilt: 27 Sayı: 5, 1837 - 1842, 02.10.2024
Mustafa Ozcatalbas
,
Adnan Sözen
Öz
During the design of thermal management systems involving PCMs, analysis tools are essential for determining the amount of PCM required, optimal instalment locations, and the heating-cooling transient behavior of the systems. Computational Fluid Dynamics (CFD) solvers are often employed for these tasks, as they can account for both conduction and advection effects during PCM phase transitions. However, CFD simulations can be computationally expensive, particularly when solving transient behaviour. An alternative approach for PCM simulations is the Finite Element Method (FEM), which offers computationally inexpensive heat transfer analyses while providing good accuracy for thermal energy storage design, including phase transitions. This study has focused on thermal analysis of paraffin wax performed by FEM.
Proje Numarası
FPD-2023-8714
Kaynakça
- [1] A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications”, Renewable and Sustainable Energy Reviews, 13(2), 318–345, (2009).
- [2] K. Du, J. Calautit, Z. Wang, Y. Wu, and H. Liu, “A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges”, Applied Energy, 220, 242–273, (2018).
- [3] M. Aravindhan and R. Ayyasamy, “Experimental investigation on phase change material”, International Journal of Emerging Technologies in Engineering Research, 4(6), (2016).
- [4] H. Mehling and L. F. Cabeza, “Heat and Cold Storage With PCM: An Up To Date Introduction Into Basics And Application”, Springer, (2008).
- [5] Z. Chen, D. Gao, and J. Shi, “Experimental and numerical study on melting of phase change materials in metal foams at pore scale”, Int. Jo. of Heat and Mass Transfer, 72, 646–655, (2014).
- [6] C. Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)”, Solar Energy, 84(8), 1402–1412, (2010).
- [7] X. Xiao, P. Zhang, and M. Li, “Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage”, Int. Jo. of Thermal Sciences, 81(1), 94–105, (2014).
- [8] X. Xiao, P. Zhang, and M. Li, “Preparation and thermal characterization of paraffin/metal foam composite phase change material”, Applied Energy, 112, 1357–1366, (2013).
- [9] G. K. Marri and C. Balaji, “Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink”, Int. Jo. of Heat Mass Transfer, 164, (2021).
- [10] M. Li, “A nano-graphite/paraffin phase change material with high thermal conductivity”, Applied Energy, 106, 25–30, (2013).
- [11] U. N. Temel, S. Kurtulus, M. Parlak, and K. Yapici, “Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials”, Journal of Thermal Analysis and Calorimetry, 132(1), 631–641, (2018).
- [12] F. Zhu, C. Zhang, and X. Gong, “Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity”, Applied Thermal Engineering, 123, 256–265, (2017).
- [13] W. B. Ye, D. S. Zhu, and N. Wang, “Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions”, Applied Thermal Engineering, 42, 49–57, (2012).
- [14] Y. T. Yang and Y. H. Wang, “Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material”, Int. Jo. of Thermal Sciences, 51(1), 155–162, (2012).
- [15] A. Bhattacharya, V. V Calmidi, and R. L. Mahajan, “Thermophysical properties of high porosity metal foams”, Int. Jo. of. Heat Mass Transfer, 45, 1017–1031, (2002).
- [16] M. Bai and J. N. Chung, “Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams”, Int. Jo. of Thermal Sciences, 50(6), 869–880, (2011).
- [17] K. K. Bodla, J. Y. Murthy, and S. V. Garimella, “Resistance network-based thermal conductivity model for metal foams”, Computational Materials Science, 50(2), 622–632, (2010).
- [18] E. N. Schmierer and A. Razani, “Self-consistent open-celled metal foam model for thermal applications”, Jo. of Heat Transfer, 128(11), 1194–1203, (2006).
- [19] R. Singh and H. S. Kasana, “Computational aspects of effective thermal conductivity of highly porous metal foams”, Applied Thermal Engineering, 24(13), 1841–1849, (2004).
- [20] Z.-X. Gong and A. S. Mujumdar, “Finite-Element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger”, Applied Thermal Engineering, 17(6), 583–591, (1997).
- [21] H. Zhou, Å. Fransson, and T. Olofsson, “An explicit finite element method for thermal simulations of buildings with phase change materials”, Energies, 14(19), (2021).
- [22] David V. Hutton, “Fundamentals of Finite Element Analysis”, McGraw Hill, (2004).