Al 6061-T6 Alaşımının Delinmesinde Proses Parametrelerinin ve Matkap Geometrisinin Performans Analizi
Yıl 2024,
Cilt: 27 Sayı: 5, 2043 - 2059, 02.10.2024
Cihat Özdemir
,
Barış Özlü
,
Halil Demir
Öz
Bu çalışmada, AA 6061-T6 alaşımının farklı kesme parametreleri ve farklı matkap helis açıları ile delinmesine odaklanılmıştır. Delme performansı ortaya çıkan yüzey pürüzlülüğü (Ra), kesme sıcaklığı (T) ve enerji tüketimi (ET) açısından değerlendirilmiştir. Delme deney tasarımı Taguchi yönteminin L27 ortogonal dizisi kullanılarak hazırlanmıştır. Kesme parametreleri ve matkap helis açıları Ra, T ve ET değerleri kullanılarak optimize edilmiştir. Deney sonuçları ilk olarak üç boyutlu grafikler ile değerlendirilmiştir. Elde edilen veriler sinyal/gürültü oranı (S/N), varyans analizi (ANOVA) ve regresyon analizi kullanılarak istatistiksel olarak analiz edilmiştir. Bunlara ek olarak, Gri İlişkisel Analiz (GRA) kullanılarak Ra, T ve ET değişkenleri birlikte optimize edildi. Bu çalışmanın sonucunda, optimum Ra, T ve ET değerlerine sırası ile A3B3C1, A1B1C1 ve A1B3C3 deney kombinasyonlarında ulaşılmıştır. Ra, T ve ET üzerine en etkin parametre sırası ile 54.93% f, 52.02% Vc ve 68.12% f olduğu görülmüştür. GRA analizi sonucu Ra, T ve ET için optimum deney kombinasyonu A1B1C1 olmuştur. Analizler sonucu geliştirilen matematiksel modeller ile tahmin edilen sonuçlar yüksek doğrulukta sonuçlar verdiği görülmüştür. Ayrıca matkap uçlarında genel olarak BUE ve talaş yapışmaların oluştuğu görülmüştür.
Destekleyen Kurum
Karabük Üniversitesi Bilimsel Araştırma Projeleri Birimi
Teşekkür
Bu çalışma Karabük Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmektedir (KBÜ-BAP-FYL-2020-2400) ve yazarlar bu destekten dolayı teşekkürlerini sunarlar.
Kaynakça
- [1] Ogunsemi B.T., Abioye T.E., Ogedengbe T.I. and Zuhailawati H., “A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments”, J. Mater. Res. Technol. 11:1061-1089, (2021).
- [2] Bardel D., Fontaine M., Chaise T., Perez M., Nelias D., Bourlier F. and Garnier J., “Integrated modelling of a 6061-T6 weld joint: From microstructure to mechanical properties”, Acta Mater. 117:81-90, (2016).
- [3] Dorbane A., Ayoub G., Mansoor B., Hamade R., Kridli G. and Imad A., “Observations of the mechanical response and evolution of damage of AA 6061-T6 under different strain rates and temperatures”, Mater. Sci. Eng., A, 624:239-249, (2015).
- [4] Bodunrin M.O., Alaneme K.K. and Chown L.H., “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”, J. Mater. Res. Technol. 4(4):434-445, (2015).
- [5] Rahman M., Seah W.K.H. and Teo T.T., “The machinability of Inconel 718”, J. Mater. Process. Technol. 63(1-3):199-204, (1997).
- [6] Ezugwu E.O., Wang Z.M. and Machado A.R., “Wear of coated carbide tools when machining nickel (Inconel 718) and titanium base (Ti-6A1-4V) alloys”, Tribol. Trans 43(2):263-268, (2000).
- [7] Aamir M., Tolouei-Rad M., Giasin K. and Nosrati A., “Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: A review”, Int. J. Adv. Manuf. Technol. 105:2289-2308, (2019).
- [8] Ulaş H.B., “AISI D2 VE AISI D3 soğuk iş takım çeliklerinin delinmesinde kesme parametrelerinin kesme kuvvetleri üzerindeki etkisinin incelenmesi”, Journal of Polytechnic, 21(1): 251-256, (2018).
- [9] Sun D., Lemoine P., Keys D., Doyle P., Malinov S., Zhao Q., Qin X. and Jin Y., “Hole-making processes and their impacts on the microstructure and fatigue response of aircraft alloys”, Int. J. Adv. Manuf. Technol. 94:1719-1726, (2018).
- [10] Iyer R., Koshy P. and Ng E., “Helical milling: an enabling technology for hard machining precision holes in AISI D2 tool steel”, Int. J. Mach. Tools Manuf. 47(2):205-210, (2007).
- [11] Gu W., Xu H., Liu J. and Yue Z., “Effect of drilling process on fatigue life of open holes”, Tsinghua Sci. Technol. 14(S2):54-57, (2009).
- [12] Bi Z.M. and Wang L., “Optimization of machining processes from the perspective of energy consumption: A case study”, J. Manuf. Syst. 31(4):420-428, (2012).
- [13] Herrmann C., Bergmann L., Thiede S. and Zein A., “Energy labels for production machines: an approach to facilitate energy efficiency in production systems”, In 40th CIRP International Seminar on Manufacturing Systems, CIRP 1-6, (2007).
- [14] Özlü B., “Evaluation of energy consumption, cutting force, surface roughness and vibration in machining Toolox 44 steel using taguchi-based gray relational analysis”, Surf. Rev. Lett. 29(08):1-17, (2022).
- [15] Akgün M., Özlü B. and Kara F., “Effect of PVD-TiN and CVD-Al2O3 coatings on cutting force, surface roughness, cutting power, and temperature in hard turning of AISI H13 steel”, J. Mater. Eng. Perform. 32(3):1390-1401, (2023).
- [16] Franco A., Rashed C.A.A. and Romoli L., “Analysis of energy consumption in micro-drilling processes”, J. Cleaner Prod. 137:1260-1269, (2016).
- [17] Pramanik A., Basak A.K., Prakash C., Shankar S. and Chattopadhyaya S., “Sustainability in drilling of aluminum alloy”, Cleaner Mater. 3:100048, (2022).
- [18] Nouari M., List G., Girot F. and Coupard D., “Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys”, Wear, 255(7-12):1359-1368, (2003).
- [19] Samy G.S. and S.T. Kumaran, “Measurement and analysis of temperature, thrust force and surface roughness in drilling of AA (6351)-B4C composite”, Measurement, 103:1-9, (2017).
- [20] Khunt C.P., Makhesana M.A., Patel K.M. and Mawandiya B.K., “Performance assessment of vegetable oil-based minimum quantity lubrication (MQL) in drilling”, Mater. Today Proc. 44:341-345, (2021).
- [21] Al-Tameemi H.A., Al-Dulaimi T., Awe M.O., Sharma S., Pimenov D.Y., Koklu U. and Giasin K., “Evaluation of cutting-tool coating on the surface roughness and hole dimensional tolerances during drilling of Al6061-T651 alloy”, Materials, 14(7):1783, (2021).
- [22] Giasin K., Hodzic A., Phadnis V. and Ayvar-Soberanis S., “Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study”, Int. J. Adv. Manuf. Technol. 87:2041-2061, (2016).
- [23] Çaydaş U. and Çelik M., “Investigaton of the effects of cutting parameters on the surface roughness, tool temperature and thrust force in drilling of AA 7075-T6 alloy”, Journal of Polytechnic, 20(2):419-425, (2017).
- [24] Şirin E., Kıvak T. and Yıldırım Ç.V., “Effects of mono/hybrid nanofluid strategies and surfactants on machining performance in the drilling of Hastelloy X”, Tribol. Int. 157:106894, (2021).
- [25] Işik U., Demir H. and Özlü B., “Multi-objective optimization of process parameters for surface quality and geometric tolerances of AlSi10Mg samples produced by additive manufacturing method using taguchi-based gray relational analysis”, Arab. J. Sci. Eng., (2024).
- [26] Özlü B., “Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy”, Surf. Rev. Lett. 28(10):2150093, (2021).
- [27] Akgün M., Demir H. and Çiftçi İ., Mg2Si partikül takviyeli magnezyum alaşımlarının tornalanmasında yüzey pürüzlülüğünün optimizasyonu. Politeknik Dergisi, 21(3), 645-650, (2018).
- [28] Ramulu M., P.N. Rao and Kao H., “Drilling of (Al2O3) p/6061 metal matrix composites”, J. Mater. Process. Technol. 124(1-2):244-254, (2002).
- [29] Günay M. and Meral T., “Modelling and multiresponse optimization for minimizing burr height, thrust force and surface roughness in drilling of ferritic stainless steel”, Sādhanā, 45(1):273, (2020).
- [30] Meral G., Sarıkaya M., Mia M., Dilipak H., Şeker U. and Gupta M.K., “Multi-objective optimization of surface roughness, thrust force, and torque produced by novel drill geometries using Taguchi-based GRA”, Int. J. Adv. Manuf. Technol. 101:1595-1610, (2019).
- [31] Jeevan T.P., Jayaram S.R., Afzal A., Ashrith H.S., Soudagar M.E.M. and Mujtaba M.A., “Machinability of AA6061 aluminum alloy and AISI 304L stainless steel using nonedible vegetable oils applied as minimum quantity lubrication”, J. Braz. Soc. Mech. Sci. Eng. 43:1-18, (2021).
- [32] Gökçe H. and Biberci M.A., “Mathematical modeling and multiresponse optimization to reduce surface roughness and adhesion in Al 5083 H116 alloys used in ammunition propulsion actuators”, Multidiscip. Model. Mater. Struct. 19(2):341-359, (2023).
- [33] Zhang P.F., Churi N.J., Pei Z.J. and Treadwell C., “Mechanical drilling processes for titanium alloys: a literature review”, Mach. Sci. Technol. 12(4):417-444, (2008).
- [34] Aamir M., Giasin K., Tolouei-Rad M. and Vafadar A., “A review: Drilling performance and hole quality of aluminium alloys for aerospace applications”, J. Mater. Res. Technol. 9(6):12484-12500, (2020).
- [35] Nouari M., List G., Girot F. and Coupard D., “Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys”, Wear, 255(7-12):1359-1368, (2003).
- [36] Ezugwu E.O. and Lim S.K., “The performance of cermet cutting tools when machining an Ni-Cr-Mo (En 24) steel”, Lubr. Eng. 51(2), (1995).
- [37] Demir H. and Gündüz S., “The effects of aging on machinability of 6061 aluminium alloy”, Mater. Des. 30(5):1480-1483, (2009).
- [38] Le Coz G., Marinescu M., Devillez A., Dudzinski D. And Velnom L., “Measuring temperature of rotating cutting tools: Application to MQL drilling and dry milling of aerospace alloys”, Applied Thermal Engineering, 36:434-441, (2012).
- [39] Lazoglu I., Poulachon G., Ramirez C., Akmal M., Marcon B., Rossi F., Outeiro J.C. and Krebs M., “Thermal analysis in Ti-6Al-4V drilling”, CIRP Annals, 66(1):105-108, (2017).
- [40] Gupta M.K., Song Q., Liu Z., Sarikaya M., Jamil M., Mia M., Kushvaha V., Singla A.K. and Li Z., “Ecological, economical and technological perspectives based sustainability assessment in hybrid-cooling assisted machining of Ti-6Al-4 V alloy”, Sustainable Mater.Technol. 26:e00218, (2020).
- [41] Vas J.S., Fernandes A., D’Souza A., Rai A. And Quadros, J.D., “Analysis of temperature changes during dry drilling of austenitic stainless steels on twist drills having different point angles”,. Journal of Mechanical Engineering and Automation, 6(5A):121-125, (2016).
- [42] Behrendt T., Zein A. and Min S., “Development of an energy consumption monitoring procedure for machine tools”, CIRP annals, 61(1):43-46, (2012).
- [43] Pervaiz S. and Deiab I., “Surface roughness and energy consumption analysis of conventional and peck drilling approaches”, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 229(12): 2180-2195, (2015).
- [44] Camposeco-Negrete C., “Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA”, J. Cleaner Prod. 53:195-203, (2013).
- [45] Jamil M., Zhao W., He N., Gupta M.K., Sarikaya M., Khan A.M., Sanjay M.R., Siengchin S. and Pimenov D.Y., “Sustainable milling of Ti–6Al–4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment”, J. Cleaner Prod. 281:125374, (2021).
- [46] U. Koklu, H. Çoban, Effect of dipped cryogenic approach on thrust force, temperature, tool wear and chip formation in drilling of AZ31 magnesium alloy. J. Mater. Res. Technol. 9(3):2870-2880 (2020).
- [47] Habib N., Sharif A., Hussain A., Aamir M., Giasin K., Pimenov D.Y. and Ali U., “Analysis of hole quality and chips formation in the dry drilling process of Al7075-T6”, Metals, 11(6):891, (2021).
- [48] Yazman Ş., Gemı L., Uludağ M., Akdemır A., Uyaner M. and Dişpinar D., “Correlation between machinability and chip morphology of Austempered ductile iron”, J. Test. Eval. 46(3):1012-1021, (2017).
- [49] Wen J.L., Yang Y.K. and Jeng M.C., “Optimization of die casting conditions for wear properties of alloy AZ91D components using the Taguchi method and design of experiments analysis”, Int. J. Adv. Manuf. Technol. 41:430-439, (2009).
- [50] Akkuş H. and Yaka H., “Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy”, Measurement, 167:108465, (2021).
- [51] Yaka H. and Engin K.E., “AISI D2 soğuk iş çeliğinin delinmesinde deneysel ve sonlu elemanlar analizi yoluyla delik kalitelerinin iyileştirilmesi ve işleme parametrelerinin optimizasyonu”, Fen Bilimleri Estitüsü Dergisi, 13(4), 2973-2985, (2023).
- [52] Yaka H. and Atılkan R., “Nikel esaslı süper alaşimlarin delinmesinde işleme parametrelerinin gri ilişkisel analiz ve taguchi ile optimizasyonu”, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(2):363-378, (2023).
- [53] Akgün M. and Demir H., “Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy”, Journal of Polytechnic, 24(2):391-400, (2021).
- [54] Samtaş G. and Apay S., “Taguchi and gray relational analysis optimization of cutting parameters during face milling of cryogenic treated Aluminum 6061 alloys using cryogenic and non-cryogenic inserts”, J. Mater. Eng. Perform. 32:4151-4160, (2023).
- [55] Samtaş G. and Korucu S., “The effect and optimization of cutting parameters of Vanadis 4E powder metallurgical tool steel on tool wear: surface roughness in face milling”, Sādhanā, 47:135, (2022).
- [56] Özlü B. and Akgün M., “Evaluation of the machinability performance of PH 13-8 Mo maraging steel used in the aerospace industry”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(2):687-699, (2024).
- [57] Akgün M., “Measurement and optimization of cutting forces, surface roughness and temperature in turning of AZ91 Mg alloy”, Sādhanā, 48(2):60, (2023).
Performance Analysis of Process Parameters and Drill Geometry in Drilling AA 6061-T6 Alloy
Yıl 2024,
Cilt: 27 Sayı: 5, 2043 - 2059, 02.10.2024
Cihat Özdemir
,
Barış Özlü
,
Halil Demir
Öz
This study focuses on drilling AA 6061-T6 alloy with different cutting parameters and different drill helix angles. Drilling performance was evaluated in terms of resulting surface roughness (Ra), cutting temperature (T) and energy consumption (SEC). The drilling experiment design was prepared using the L27 orthogonal array of the Taguchi method. Cutting parameters and drill helix angles were optimized using Ra, T and SEC values. Experimental results were first evaluated with three-dimensional graphics. The obtained data were statistically analyzed using signal/noise ratio (S/N), analysis of variance (ANOVA) and regression analysis. In addition, Ra, T and SEC variables were optimized together using Grey Relational Analysis (GRA). As a result of this study, optimum Ra, T and SEC values were reached in A3B3C1, A1B1C1 and A1B3C3 experimental combinations, respectively. The most effective parameters on Ra, T and SEC were found to be 54.93% f, 52.02% Vc and 68.12% f, respectively. The optimum experimental combination for Ra, T and SEC was A1B1C1 as a result of GRA analysis. The results predicted by the mathematical models developed as a result of the analysis were found to yield high-accuracy results. In addition, it was observed that BUE and chip adhesion generally occurred in the drill bits.
Destekleyen Kurum
Scientifc Research Project Unit of Karabük University
Teşekkür
This study is supported by Scientifc Research Project Unit of Karabük University (KBÜ-BAP-FYL-2020-2400), and the authors express their appreciation for this support.
Kaynakça
- [1] Ogunsemi B.T., Abioye T.E., Ogedengbe T.I. and Zuhailawati H., “A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments”, J. Mater. Res. Technol. 11:1061-1089, (2021).
- [2] Bardel D., Fontaine M., Chaise T., Perez M., Nelias D., Bourlier F. and Garnier J., “Integrated modelling of a 6061-T6 weld joint: From microstructure to mechanical properties”, Acta Mater. 117:81-90, (2016).
- [3] Dorbane A., Ayoub G., Mansoor B., Hamade R., Kridli G. and Imad A., “Observations of the mechanical response and evolution of damage of AA 6061-T6 under different strain rates and temperatures”, Mater. Sci. Eng., A, 624:239-249, (2015).
- [4] Bodunrin M.O., Alaneme K.K. and Chown L.H., “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”, J. Mater. Res. Technol. 4(4):434-445, (2015).
- [5] Rahman M., Seah W.K.H. and Teo T.T., “The machinability of Inconel 718”, J. Mater. Process. Technol. 63(1-3):199-204, (1997).
- [6] Ezugwu E.O., Wang Z.M. and Machado A.R., “Wear of coated carbide tools when machining nickel (Inconel 718) and titanium base (Ti-6A1-4V) alloys”, Tribol. Trans 43(2):263-268, (2000).
- [7] Aamir M., Tolouei-Rad M., Giasin K. and Nosrati A., “Recent advances in drilling of carbon fiber–reinforced polymers for aerospace applications: A review”, Int. J. Adv. Manuf. Technol. 105:2289-2308, (2019).
- [8] Ulaş H.B., “AISI D2 VE AISI D3 soğuk iş takım çeliklerinin delinmesinde kesme parametrelerinin kesme kuvvetleri üzerindeki etkisinin incelenmesi”, Journal of Polytechnic, 21(1): 251-256, (2018).
- [9] Sun D., Lemoine P., Keys D., Doyle P., Malinov S., Zhao Q., Qin X. and Jin Y., “Hole-making processes and their impacts on the microstructure and fatigue response of aircraft alloys”, Int. J. Adv. Manuf. Technol. 94:1719-1726, (2018).
- [10] Iyer R., Koshy P. and Ng E., “Helical milling: an enabling technology for hard machining precision holes in AISI D2 tool steel”, Int. J. Mach. Tools Manuf. 47(2):205-210, (2007).
- [11] Gu W., Xu H., Liu J. and Yue Z., “Effect of drilling process on fatigue life of open holes”, Tsinghua Sci. Technol. 14(S2):54-57, (2009).
- [12] Bi Z.M. and Wang L., “Optimization of machining processes from the perspective of energy consumption: A case study”, J. Manuf. Syst. 31(4):420-428, (2012).
- [13] Herrmann C., Bergmann L., Thiede S. and Zein A., “Energy labels for production machines: an approach to facilitate energy efficiency in production systems”, In 40th CIRP International Seminar on Manufacturing Systems, CIRP 1-6, (2007).
- [14] Özlü B., “Evaluation of energy consumption, cutting force, surface roughness and vibration in machining Toolox 44 steel using taguchi-based gray relational analysis”, Surf. Rev. Lett. 29(08):1-17, (2022).
- [15] Akgün M., Özlü B. and Kara F., “Effect of PVD-TiN and CVD-Al2O3 coatings on cutting force, surface roughness, cutting power, and temperature in hard turning of AISI H13 steel”, J. Mater. Eng. Perform. 32(3):1390-1401, (2023).
- [16] Franco A., Rashed C.A.A. and Romoli L., “Analysis of energy consumption in micro-drilling processes”, J. Cleaner Prod. 137:1260-1269, (2016).
- [17] Pramanik A., Basak A.K., Prakash C., Shankar S. and Chattopadhyaya S., “Sustainability in drilling of aluminum alloy”, Cleaner Mater. 3:100048, (2022).
- [18] Nouari M., List G., Girot F. and Coupard D., “Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys”, Wear, 255(7-12):1359-1368, (2003).
- [19] Samy G.S. and S.T. Kumaran, “Measurement and analysis of temperature, thrust force and surface roughness in drilling of AA (6351)-B4C composite”, Measurement, 103:1-9, (2017).
- [20] Khunt C.P., Makhesana M.A., Patel K.M. and Mawandiya B.K., “Performance assessment of vegetable oil-based minimum quantity lubrication (MQL) in drilling”, Mater. Today Proc. 44:341-345, (2021).
- [21] Al-Tameemi H.A., Al-Dulaimi T., Awe M.O., Sharma S., Pimenov D.Y., Koklu U. and Giasin K., “Evaluation of cutting-tool coating on the surface roughness and hole dimensional tolerances during drilling of Al6061-T651 alloy”, Materials, 14(7):1783, (2021).
- [22] Giasin K., Hodzic A., Phadnis V. and Ayvar-Soberanis S., “Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study”, Int. J. Adv. Manuf. Technol. 87:2041-2061, (2016).
- [23] Çaydaş U. and Çelik M., “Investigaton of the effects of cutting parameters on the surface roughness, tool temperature and thrust force in drilling of AA 7075-T6 alloy”, Journal of Polytechnic, 20(2):419-425, (2017).
- [24] Şirin E., Kıvak T. and Yıldırım Ç.V., “Effects of mono/hybrid nanofluid strategies and surfactants on machining performance in the drilling of Hastelloy X”, Tribol. Int. 157:106894, (2021).
- [25] Işik U., Demir H. and Özlü B., “Multi-objective optimization of process parameters for surface quality and geometric tolerances of AlSi10Mg samples produced by additive manufacturing method using taguchi-based gray relational analysis”, Arab. J. Sci. Eng., (2024).
- [26] Özlü B., “Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy”, Surf. Rev. Lett. 28(10):2150093, (2021).
- [27] Akgün M., Demir H. and Çiftçi İ., Mg2Si partikül takviyeli magnezyum alaşımlarının tornalanmasında yüzey pürüzlülüğünün optimizasyonu. Politeknik Dergisi, 21(3), 645-650, (2018).
- [28] Ramulu M., P.N. Rao and Kao H., “Drilling of (Al2O3) p/6061 metal matrix composites”, J. Mater. Process. Technol. 124(1-2):244-254, (2002).
- [29] Günay M. and Meral T., “Modelling and multiresponse optimization for minimizing burr height, thrust force and surface roughness in drilling of ferritic stainless steel”, Sādhanā, 45(1):273, (2020).
- [30] Meral G., Sarıkaya M., Mia M., Dilipak H., Şeker U. and Gupta M.K., “Multi-objective optimization of surface roughness, thrust force, and torque produced by novel drill geometries using Taguchi-based GRA”, Int. J. Adv. Manuf. Technol. 101:1595-1610, (2019).
- [31] Jeevan T.P., Jayaram S.R., Afzal A., Ashrith H.S., Soudagar M.E.M. and Mujtaba M.A., “Machinability of AA6061 aluminum alloy and AISI 304L stainless steel using nonedible vegetable oils applied as minimum quantity lubrication”, J. Braz. Soc. Mech. Sci. Eng. 43:1-18, (2021).
- [32] Gökçe H. and Biberci M.A., “Mathematical modeling and multiresponse optimization to reduce surface roughness and adhesion in Al 5083 H116 alloys used in ammunition propulsion actuators”, Multidiscip. Model. Mater. Struct. 19(2):341-359, (2023).
- [33] Zhang P.F., Churi N.J., Pei Z.J. and Treadwell C., “Mechanical drilling processes for titanium alloys: a literature review”, Mach. Sci. Technol. 12(4):417-444, (2008).
- [34] Aamir M., Giasin K., Tolouei-Rad M. and Vafadar A., “A review: Drilling performance and hole quality of aluminium alloys for aerospace applications”, J. Mater. Res. Technol. 9(6):12484-12500, (2020).
- [35] Nouari M., List G., Girot F. and Coupard D., “Experimental analysis and optimisation of tool wear in dry machining of aluminium alloys”, Wear, 255(7-12):1359-1368, (2003).
- [36] Ezugwu E.O. and Lim S.K., “The performance of cermet cutting tools when machining an Ni-Cr-Mo (En 24) steel”, Lubr. Eng. 51(2), (1995).
- [37] Demir H. and Gündüz S., “The effects of aging on machinability of 6061 aluminium alloy”, Mater. Des. 30(5):1480-1483, (2009).
- [38] Le Coz G., Marinescu M., Devillez A., Dudzinski D. And Velnom L., “Measuring temperature of rotating cutting tools: Application to MQL drilling and dry milling of aerospace alloys”, Applied Thermal Engineering, 36:434-441, (2012).
- [39] Lazoglu I., Poulachon G., Ramirez C., Akmal M., Marcon B., Rossi F., Outeiro J.C. and Krebs M., “Thermal analysis in Ti-6Al-4V drilling”, CIRP Annals, 66(1):105-108, (2017).
- [40] Gupta M.K., Song Q., Liu Z., Sarikaya M., Jamil M., Mia M., Kushvaha V., Singla A.K. and Li Z., “Ecological, economical and technological perspectives based sustainability assessment in hybrid-cooling assisted machining of Ti-6Al-4 V alloy”, Sustainable Mater.Technol. 26:e00218, (2020).
- [41] Vas J.S., Fernandes A., D’Souza A., Rai A. And Quadros, J.D., “Analysis of temperature changes during dry drilling of austenitic stainless steels on twist drills having different point angles”,. Journal of Mechanical Engineering and Automation, 6(5A):121-125, (2016).
- [42] Behrendt T., Zein A. and Min S., “Development of an energy consumption monitoring procedure for machine tools”, CIRP annals, 61(1):43-46, (2012).
- [43] Pervaiz S. and Deiab I., “Surface roughness and energy consumption analysis of conventional and peck drilling approaches”, Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 229(12): 2180-2195, (2015).
- [44] Camposeco-Negrete C., “Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA”, J. Cleaner Prod. 53:195-203, (2013).
- [45] Jamil M., Zhao W., He N., Gupta M.K., Sarikaya M., Khan A.M., Sanjay M.R., Siengchin S. and Pimenov D.Y., “Sustainable milling of Ti–6Al–4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment”, J. Cleaner Prod. 281:125374, (2021).
- [46] U. Koklu, H. Çoban, Effect of dipped cryogenic approach on thrust force, temperature, tool wear and chip formation in drilling of AZ31 magnesium alloy. J. Mater. Res. Technol. 9(3):2870-2880 (2020).
- [47] Habib N., Sharif A., Hussain A., Aamir M., Giasin K., Pimenov D.Y. and Ali U., “Analysis of hole quality and chips formation in the dry drilling process of Al7075-T6”, Metals, 11(6):891, (2021).
- [48] Yazman Ş., Gemı L., Uludağ M., Akdemır A., Uyaner M. and Dişpinar D., “Correlation between machinability and chip morphology of Austempered ductile iron”, J. Test. Eval. 46(3):1012-1021, (2017).
- [49] Wen J.L., Yang Y.K. and Jeng M.C., “Optimization of die casting conditions for wear properties of alloy AZ91D components using the Taguchi method and design of experiments analysis”, Int. J. Adv. Manuf. Technol. 41:430-439, (2009).
- [50] Akkuş H. and Yaka H., “Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy”, Measurement, 167:108465, (2021).
- [51] Yaka H. and Engin K.E., “AISI D2 soğuk iş çeliğinin delinmesinde deneysel ve sonlu elemanlar analizi yoluyla delik kalitelerinin iyileştirilmesi ve işleme parametrelerinin optimizasyonu”, Fen Bilimleri Estitüsü Dergisi, 13(4), 2973-2985, (2023).
- [52] Yaka H. and Atılkan R., “Nikel esaslı süper alaşimlarin delinmesinde işleme parametrelerinin gri ilişkisel analiz ve taguchi ile optimizasyonu”, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 26(2):363-378, (2023).
- [53] Akgün M. and Demir H., “Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy”, Journal of Polytechnic, 24(2):391-400, (2021).
- [54] Samtaş G. and Apay S., “Taguchi and gray relational analysis optimization of cutting parameters during face milling of cryogenic treated Aluminum 6061 alloys using cryogenic and non-cryogenic inserts”, J. Mater. Eng. Perform. 32:4151-4160, (2023).
- [55] Samtaş G. and Korucu S., “The effect and optimization of cutting parameters of Vanadis 4E powder metallurgical tool steel on tool wear: surface roughness in face milling”, Sādhanā, 47:135, (2022).
- [56] Özlü B. and Akgün M., “Evaluation of the machinability performance of PH 13-8 Mo maraging steel used in the aerospace industry”, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238(2):687-699, (2024).
- [57] Akgün M., “Measurement and optimization of cutting forces, surface roughness and temperature in turning of AZ91 Mg alloy”, Sādhanā, 48(2):60, (2023).