Araştırma Makalesi
BibTex RIS Kaynak Göster

Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study

Yıl 2024, Cilt: 27 Sayı: 6, 2313 - 2324, 12.12.2024
https://doi.org/10.2339/politeknik.1386758

Öz

ABSTRACT
Earthquakes seriously threaten precious artifacts in museums worldwide. Many historical pieces of inestimable importance that are considered the common heritage of humanity have been damaged by earthquakes. Robust measures must be put in place to protect museum artifacts from the perils associated with seismic risks. Seismic isolation devices like spherically shaped bearings are one of the best options to prevent seismic damage of museum artifacts thanks to achieving a long period under low weights. Therefore, the objective of this research is to assess the effectiveness of friction pendulum-type isolators, one of the spherically shaped bearings, in seismic isolation of museum artifacts and to identify the appropriate design parameters. In this study, a non-isolated single-degree-of-freedom model and a 2-degree-of-freedom model isolated with a single friction pendulum bearing inside a building were established for a museum artifact. A parametric study was conducted using the root mean square and the maximum accelerations and displacements of the isolated mass at different values of friction coefficient and effective radius of curvature, as well as the maximum displacement of the friction pendulum system. Afterward, the non-isolated and isolated mass responses were compared in the time domain based on selected parameters obtained from the parametric study. The behavior of the isolator was analyzed, and its effectiveness was evaluated.

Kaynakça

  • [1] A. E. Zaghi, E. M. Maragakis, A. Itani, and E. Goodwin, “Experimental and analytical studies of hospital piping assemblies subjected to seismic loading,” Earthq. Spectra, 28(1): 367–384, (2012).
  • [2] M. Fragiadakis et al./ Arco Conference 2020 Procedings / Firenze, Italia, (2020).
  • [3] Çibuk, K., Gölcük, R. "17 Ağustos 1999 Marmara Depreminin Kocaeli Müzesi’ne Etkileri," UNIMUSEUM, 3(1): 1-14, (2020).
  • [4] F. Parisi and N. Augenti, “Earthquake damages to cultural heritage constructions and simplified assessment of artworks,” Eng. Fail. Anal., 34: 735–760, (2013).
  • [5] C. C. Spyrakos, C. A. Maniatakis, and I. M. Taflampas, “Assessment of seismic risk for museum artifacts,” 14th World Conf. Earthq. Eng. - WCEE, (2008).
  • [6] F. Naeim and J. M. Kelly, “Design of Seismic Isolated Structures: From Theory to Practice,” Earthq. Spectra, 16(3): (1999).
  • [7] A. Mert, Ş. Gürsoy, Z.Ş. Garip, "Zemin kat yüksekliği ve kat adedi farklı olan betonarme binalarda sismik izolatör kullanımının bina davranışına etkisinin incelenmesi," Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 15(2): 671-688, (2023).
  • [8] E. Alasaf, H. Öztürk, "Sismik izolatörlü yapıların tasarımına etki eden faktörlerin incelenmesi," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4): 2155-2164, (2022).
  • [9] N. Güneş, Z. Ç. Ulucan, "Farklı tasarlanmış iki sismik yalıtımlı binanın karşılaştırılması," Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(1): 37-46, (2020).
  • [10] M. Dolce and D. Cardone, “Seismic protection of light secondary systems through different base isolation systems,” J. Earthq. Eng., 7(2): 223–250, (2003).
  • [11] A. Reggio and M. De Angelis, “Combined primary-secondary system approach to the design of an equipment isolation system with High-Damping Rubber Bearings,” J. Sound Vib., 333(9): 2386–2403, (2014).
  • [12] V. Lambrou, M. C. Constantinou, “Study of seismic isolation systems for computer floors,” Technical Report NCEER-94-0020, May, (1994).
  • [13] O. R. Jaiswal and S. K. Jain, “Optimum design of resilient sliding isolation system to protect equipments,” 13 th World Conference on Earthquake Engineering, 78(11): 74–76, (2004).
  • [14] L. Y. Lu, T. Y. Lee, S. Y. Juang, and S. W. Yeh, “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study,” Eng. Struct., 56: 970–982, (2013).
  • [15] S. W. Kim, B. G. Jeon, D. W. Yun, W. Y. Jung, and B. S. Ju, “Seismic experimental assessment of remote terminal unit system with friction pendulum under triaxial shake table tests,” Metals (Basel), 11(9): (2021).
  • [16] A. Celik, C. O. Azeloglu, “Seismic Isolation of Equipment and Artifacts with Sliding-Based Systems: A Review,” GLOBCER’22, 370-379, (2022).
  • [17] L. Guerreiro, J. Azevedo, and A. H. Muhr, “Seismic tests and numerical modeling of a rolling-ball isolation system,” J. Earthq. Eng., 11(1): 49–66, (2007).
  • [18] M. Ismail, J. Rodellar, and F. Ikhouane, “An innovative isolation bearing for motion-sensitive equipment,” J. Sound Vib., 326(3-5): 503–521, (2009).
  • [19] P. S. Harvey and H. P. Gavin, “The nonholonomic and chaotic nature of a rolling isolation system,” J. Sound Vib., 332(14): 3535–3551, (2013).
  • [20] P. S. Harvey and H. P. Gavin, “Double rolling isolation systems: A mathematical model and experimental validation,” Int. J. Non. Linear. Mech., 61: 80–92, (2014).
  • [21] G. F. Demetriades, M. C. Constantinou, and A. M. Reinhorn, “Study of wire rope systems for seismic protection of equipment in buildings,” Technical Report NCEER-92-0012, (1992).
  • [22] F. Mezghani, A. Fernandez del Rincón, P. Garcia Fernandez, A. de-Juan, J. Sanchez-Espiga, and F. Viadero Rueda, “Effectiveness study of wire mesh vibration damper for sensitive equipment protection from seismic events,” Mech. Syst. Signal Process., 164, (2022).
  • [23] M. S. M.E. Talbott, “Active isolation for seismic protection of operating rooms,” Technical Report NCEER-90-0010, (1990).
  • [24] I. Venanzi, L. Ierimonti, and A. L. Materazzi, “Active Base Isolation of Museum Artifacts under Seismic Excitation,” J. Earthq. Eng., 24(3): 506–527, (2020).
  • [25] J. Y. and P.-Y. L. Yu-Cheng Fan, Chin-Hsiung Loh, “Experimental performance evaluation of an equipment isolation using MR Dampers,” Earthq. Engng Struct. Dyn., 056: 1–6, (2009).
  • [26] L. Y. Lu and G. L. Lin, “A theoretical study on piezoelectric smart isolation system for seismic protection of equipment in near-fault areas,” J. Intell. Mater. Syst. Struct., 20(2): 217–232, (2009).
  • [27] H. Salehi, “Application of Robust-Optimum Algorithms in Semi-Active Control Strategy for Seismic Protection of Equipment,” in 15th World Conference on Earthquake Engineering (15WCEE), (2012).
  • [28] A. M. Reinhorn and S. Viti, “Monumental buildings used as museums: Protection or danger for the artifacts?,” Procedia Struct. Integr., 29(2019): 40–47, (2020).
  • [29] D. M. Fenz and M. C. Constantinou, “Mechanical Behavior of Multi-Spherical Sliding Bearings,” Tech. Rep. MCEER-08-0007, (2008).
  • [30] Fenz and M. C. Constantinou, “Development, implementation and verification of dynamic analysis models for multi-spherical sliding bearings : Technical Report MCEER-08-0018,” New York, (2008).
  • [31] MathWorks. MATLAB and Simulink (R2021b). Natick, MA: MathWorks.
  • [32] H. Yazıcı, “Çok Serbestlik Dereceli Bir Yapının Titreşimlerinin Bulanık Mantıkla Kontrolü,” M. S. thesis, Yıldız Technical University, Istanbul, (2006).
  • [33] H. Moeindarbari and T. Taghikhany, “Seismic optimum design of triple friction pendulum bearing subjected to near-fault pulse-like ground motions,” Struct. Multidiscip. Optim., 50(4): 701–716, (2014).
  • [34] M. Constantinou, A. Mokha, “Teflon Bearings in Base Isolation II: Modeling,” J. Struct. Eng., 455-474, (1990).

Müze Eserlerinin Sismik İzolasyonu için Sürtünmeli Sarkaç Sisteminin Kullanımı: Matematiksel Modelleme ve Parametrik Çalışma

Yıl 2024, Cilt: 27 Sayı: 6, 2313 - 2324, 12.12.2024
https://doi.org/10.2339/politeknik.1386758

Öz

ÖZ
Depremler, bütün dünyada müzelerdeki değerli eserleri ciddi şekilde tehdit etmektedir. İnsanlığın ortak mirası olarak kabul edilen paha biçilemez öneme sahip pek çok tarihi eser depremlerden zarar görmüştür. Müze eserlerini sismik risklerle ilgili tehlikelerden korumak için ciddi önlemler alınmalıdır. Küresel şekilli mesnetler gibi sismik izolasyon cihazları, düşük ağırlıklar altında periyodu uzatabilmeleri sayesinde müze eserlerinin sismik etkiler sebebiyle hasar görmesini önlemek için en iyi seçeneklerden biridir. Bu nedenle, bu çalışma küresel şekilli mesnetlerden biri olan sürtünmeli sarkaç tipi izolatörlerin müze eserlerinin sismik izolasyonundaki etkinliğini araştırmayı ve uygun tasarım parametrelerini belirlemeyi amaçlamaktadır. Bu çalışmada, bir müze eseri için izole edilmemiş tek serbestlik dereceli ve bina içinde tekli sürtünmeli sarkaç tipi izolatör ile izole edilmiş iki serbestlik dereceli bir model kurulmuştur. Farklı efektif eğrilik yarıçapı ve sürtünme katsayısı değerleri için izole kütlenin maksimum ve ortalama karekök ivme ve yer değiştirme değerleri ile izolatörün maksimum yer değiştirme değeri için parametrik bir çalışma yapılmıştır. Daha sonra, izole edilmemiş kütlenin ve parametrik çalışma sonucu seçilen parametrelere sahip bir izolatörle izole edilen kütlenin tepkileri zaman tanım alanında karşılaştırılmış, izolatörün davranışı analiz edilmiş ve etkinliği değerlendirilmiştir.

Kaynakça

  • [1] A. E. Zaghi, E. M. Maragakis, A. Itani, and E. Goodwin, “Experimental and analytical studies of hospital piping assemblies subjected to seismic loading,” Earthq. Spectra, 28(1): 367–384, (2012).
  • [2] M. Fragiadakis et al./ Arco Conference 2020 Procedings / Firenze, Italia, (2020).
  • [3] Çibuk, K., Gölcük, R. "17 Ağustos 1999 Marmara Depreminin Kocaeli Müzesi’ne Etkileri," UNIMUSEUM, 3(1): 1-14, (2020).
  • [4] F. Parisi and N. Augenti, “Earthquake damages to cultural heritage constructions and simplified assessment of artworks,” Eng. Fail. Anal., 34: 735–760, (2013).
  • [5] C. C. Spyrakos, C. A. Maniatakis, and I. M. Taflampas, “Assessment of seismic risk for museum artifacts,” 14th World Conf. Earthq. Eng. - WCEE, (2008).
  • [6] F. Naeim and J. M. Kelly, “Design of Seismic Isolated Structures: From Theory to Practice,” Earthq. Spectra, 16(3): (1999).
  • [7] A. Mert, Ş. Gürsoy, Z.Ş. Garip, "Zemin kat yüksekliği ve kat adedi farklı olan betonarme binalarda sismik izolatör kullanımının bina davranışına etkisinin incelenmesi," Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 15(2): 671-688, (2023).
  • [8] E. Alasaf, H. Öztürk, "Sismik izolatörlü yapıların tasarımına etki eden faktörlerin incelenmesi," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 10(4): 2155-2164, (2022).
  • [9] N. Güneş, Z. Ç. Ulucan, "Farklı tasarlanmış iki sismik yalıtımlı binanın karşılaştırılması," Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(1): 37-46, (2020).
  • [10] M. Dolce and D. Cardone, “Seismic protection of light secondary systems through different base isolation systems,” J. Earthq. Eng., 7(2): 223–250, (2003).
  • [11] A. Reggio and M. De Angelis, “Combined primary-secondary system approach to the design of an equipment isolation system with High-Damping Rubber Bearings,” J. Sound Vib., 333(9): 2386–2403, (2014).
  • [12] V. Lambrou, M. C. Constantinou, “Study of seismic isolation systems for computer floors,” Technical Report NCEER-94-0020, May, (1994).
  • [13] O. R. Jaiswal and S. K. Jain, “Optimum design of resilient sliding isolation system to protect equipments,” 13 th World Conference on Earthquake Engineering, 78(11): 74–76, (2004).
  • [14] L. Y. Lu, T. Y. Lee, S. Y. Juang, and S. W. Yeh, “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study,” Eng. Struct., 56: 970–982, (2013).
  • [15] S. W. Kim, B. G. Jeon, D. W. Yun, W. Y. Jung, and B. S. Ju, “Seismic experimental assessment of remote terminal unit system with friction pendulum under triaxial shake table tests,” Metals (Basel), 11(9): (2021).
  • [16] A. Celik, C. O. Azeloglu, “Seismic Isolation of Equipment and Artifacts with Sliding-Based Systems: A Review,” GLOBCER’22, 370-379, (2022).
  • [17] L. Guerreiro, J. Azevedo, and A. H. Muhr, “Seismic tests and numerical modeling of a rolling-ball isolation system,” J. Earthq. Eng., 11(1): 49–66, (2007).
  • [18] M. Ismail, J. Rodellar, and F. Ikhouane, “An innovative isolation bearing for motion-sensitive equipment,” J. Sound Vib., 326(3-5): 503–521, (2009).
  • [19] P. S. Harvey and H. P. Gavin, “The nonholonomic and chaotic nature of a rolling isolation system,” J. Sound Vib., 332(14): 3535–3551, (2013).
  • [20] P. S. Harvey and H. P. Gavin, “Double rolling isolation systems: A mathematical model and experimental validation,” Int. J. Non. Linear. Mech., 61: 80–92, (2014).
  • [21] G. F. Demetriades, M. C. Constantinou, and A. M. Reinhorn, “Study of wire rope systems for seismic protection of equipment in buildings,” Technical Report NCEER-92-0012, (1992).
  • [22] F. Mezghani, A. Fernandez del Rincón, P. Garcia Fernandez, A. de-Juan, J. Sanchez-Espiga, and F. Viadero Rueda, “Effectiveness study of wire mesh vibration damper for sensitive equipment protection from seismic events,” Mech. Syst. Signal Process., 164, (2022).
  • [23] M. S. M.E. Talbott, “Active isolation for seismic protection of operating rooms,” Technical Report NCEER-90-0010, (1990).
  • [24] I. Venanzi, L. Ierimonti, and A. L. Materazzi, “Active Base Isolation of Museum Artifacts under Seismic Excitation,” J. Earthq. Eng., 24(3): 506–527, (2020).
  • [25] J. Y. and P.-Y. L. Yu-Cheng Fan, Chin-Hsiung Loh, “Experimental performance evaluation of an equipment isolation using MR Dampers,” Earthq. Engng Struct. Dyn., 056: 1–6, (2009).
  • [26] L. Y. Lu and G. L. Lin, “A theoretical study on piezoelectric smart isolation system for seismic protection of equipment in near-fault areas,” J. Intell. Mater. Syst. Struct., 20(2): 217–232, (2009).
  • [27] H. Salehi, “Application of Robust-Optimum Algorithms in Semi-Active Control Strategy for Seismic Protection of Equipment,” in 15th World Conference on Earthquake Engineering (15WCEE), (2012).
  • [28] A. M. Reinhorn and S. Viti, “Monumental buildings used as museums: Protection or danger for the artifacts?,” Procedia Struct. Integr., 29(2019): 40–47, (2020).
  • [29] D. M. Fenz and M. C. Constantinou, “Mechanical Behavior of Multi-Spherical Sliding Bearings,” Tech. Rep. MCEER-08-0007, (2008).
  • [30] Fenz and M. C. Constantinou, “Development, implementation and verification of dynamic analysis models for multi-spherical sliding bearings : Technical Report MCEER-08-0018,” New York, (2008).
  • [31] MathWorks. MATLAB and Simulink (R2021b). Natick, MA: MathWorks.
  • [32] H. Yazıcı, “Çok Serbestlik Dereceli Bir Yapının Titreşimlerinin Bulanık Mantıkla Kontrolü,” M. S. thesis, Yıldız Technical University, Istanbul, (2006).
  • [33] H. Moeindarbari and T. Taghikhany, “Seismic optimum design of triple friction pendulum bearing subjected to near-fault pulse-like ground motions,” Struct. Multidiscip. Optim., 50(4): 701–716, (2014).
  • [34] M. Constantinou, A. Mokha, “Teflon Bearings in Base Isolation II: Modeling,” J. Struct. Eng., 455-474, (1990).
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Dinamikler, Titreşim ve Titreşim Kontrolü
Bölüm Araştırma Makalesi
Yazarlar

Abdullah Çelik 0000-0003-4403-2218

C. Oktay Azeloğlu 0000-0001-5283-9447

Erken Görünüm Tarihi 29 Mart 2024
Yayımlanma Tarihi 12 Aralık 2024
Gönderilme Tarihi 6 Kasım 2023
Kabul Tarihi 20 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 6

Kaynak Göster

APA Çelik, A., & Azeloğlu, C. O. (2024). Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study. Politeknik Dergisi, 27(6), 2313-2324. https://doi.org/10.2339/politeknik.1386758
AMA Çelik A, Azeloğlu CO. Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study. Politeknik Dergisi. Aralık 2024;27(6):2313-2324. doi:10.2339/politeknik.1386758
Chicago Çelik, Abdullah, ve C. Oktay Azeloğlu. “Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study”. Politeknik Dergisi 27, sy. 6 (Aralık 2024): 2313-24. https://doi.org/10.2339/politeknik.1386758.
EndNote Çelik A, Azeloğlu CO (01 Aralık 2024) Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study. Politeknik Dergisi 27 6 2313–2324.
IEEE A. Çelik ve C. O. Azeloğlu, “Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study”, Politeknik Dergisi, c. 27, sy. 6, ss. 2313–2324, 2024, doi: 10.2339/politeknik.1386758.
ISNAD Çelik, Abdullah - Azeloğlu, C. Oktay. “Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study”. Politeknik Dergisi 27/6 (Aralık 2024), 2313-2324. https://doi.org/10.2339/politeknik.1386758.
JAMA Çelik A, Azeloğlu CO. Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study. Politeknik Dergisi. 2024;27:2313–2324.
MLA Çelik, Abdullah ve C. Oktay Azeloğlu. “Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study”. Politeknik Dergisi, c. 27, sy. 6, 2024, ss. 2313-24, doi:10.2339/politeknik.1386758.
Vancouver Çelik A, Azeloğlu CO. Use of Friction Pendulum System for Seismic Isolation of Museum Artifacts: Mathematical Modeling and Parametric Study. Politeknik Dergisi. 2024;27(6):2313-24.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.