Araştırma Makalesi
BibTex RIS Kaynak Göster

Çok Girişli Siklonlu Yakıcıda Türbülanslı Ön Karışımlı Metan Yanmasının Sayısal Simülasyonu

Yıl 2025, Cilt: 28 Sayı: 1, 261 - 266
https://doi.org/10.2339/politeknik.1447381

Öz

Bu çalışmada simüle edilen çok girişli siklon yakıcı, her biri 9.525 mm iç çapa sahip 14 teğet gaz/hava girişine sahiptir ve yedili 2 simetrik sıra halinde yanma odasının ön ucuna doğru 30° eğimlidir. Bu çalışmada metanla beslenen çok girişli siklonlu bir yakıcının sayısal simülasyonunu yapmak için CFD kodu kullanılmıştır. Türbülanslı akışı simüle etmek için standart k-Ɛ modeli seçilmiştir. Önceden karıştırılmış bir karışımın yanmasını simüle etmek için Eddy Dissipation kullanılmıştır. Simülasyon, 1,0 hava:yakıt oranı (φ) için gerçekleştirilmiştr. Yanma odasının girişindeki hız 20 m/s'dir. Tüm durumlarda giriş gazı sıcaklığının T=300 K olduğu varsayılmıştır. İterasyon sayısı 3000'dir. Diğer fiziksel sabitler ise literatürden alınmıştır. Çalışma basıncı için hesaplamalı varsayılan değer kullanılmıştır. Çalışmanın sonuçları, önerilen siklonik yakıcının daha iyi yakıt karışımı sağladığını, yakıtın yanma odasında kalma süresini arttırdığını, üniform bir sıcaklık alanı elde ettiğini ve emisyonları azalttığını göstermiştir.

Etik Beyan

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Kaynakça

  • [1] Porfiriev B.N., “Alternative energy as a factor of environmental and energy security”, Journal of Regional, 2:137-145, (2011).
  • [2] McAllister Sara, Jyh-Yuan Chen, Carlos Fernandez-Pello A., Fundamentals of Combustion Processes, Springer, (2011).
  • [3] Geng P., Cao E., Tan Q., Wei L., “Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review”, Renewable and Sustainable Energy Reviews, 71:523–534, (2017).
  • [4] Li M., Wu H., Zhang T, Shen B., Zhang Q., Li Z., “A comprehensive review of pilot ignited high pressure direct injection natural gas engines: factors affecting combustion, emissions and performance”, Renewable and Sustainable Energy Reviews, 119, (2020).
  • [5] Yanfei Li, Xin Zhang, Yue Wang, Jiuling Sun, “Effect of inhomogeneous methane-air mixtures on combustion characteristics in a constant volume combustion chamber”, Fuel, 331, (2023).
  • [6] Wang J., Fu R., Wen S., Ning P., Helal M.H., Salem M.A., Xu B.B., El-Bahy Z.M., Huang M., Guo Z., Huang L., Wang Q., “Progress and current challenges for CO2 capture materials from ambient air”, Advanced Composites and Hybrid Materials, 5:2721–2759, (2022).
  • [7] Wang J., Wu Y., Zheng L., Yu M., Pan R., Shan W., “Study on the propagation characteristics of hydrogen/methane/air premixed flames in variable cross-section ducts”, Process Safety and Environmental Protection, 135:135–143, (2020).
  • [8] Guilong Liu, Jian Wang, Ligang Zheng, Rongkun Pan, Chang Lu, Yan Wang, Jingyu Yu, Yuyu Dai, “Combustion characteristics of nonuniform methane-air mixtures in the duct”, Fire Safety Journal, 137, (2023).
  • [9] Tuncer O., “Chemical kinetic analysis of flame rates and emission values of hydrogen-enriched methane fuel”, Journal of Thermal Science and Technology, 29(2):29-42, (2009).
  • [10] Morozov V.V., Shilin P.D, Ravina A.A., Shalynkov S.A., “Numerical simulation of the combustion of methane and air in a cylindrical chamber burning”, News of Tula State University. Technical science, 9:356-361, (2021).
  • [11] Ilbas M., Yılmaz I., “Experimental analysis of the effects of hydrogen addition on methane combustion”, International Journal of Energy Research, 36:643–647, (2012).
  • [12] Krainov A. Yu., Moiseeva K. M., “Combustion of lean methane-air mixtures in a slot burner with adiabatic outer walls”, Physics of combustion and explosion, 1:52-59, (2016).
  • [13]Jianfeng Pan, Hong Yu, Huimin Ren, Yi Zhang, Qingbo Lu, Evans Quaye, “Study on combustion characteristics of premixed methane/oxygen in meso-combustors with different cross-sections”, Chemical Engineering and Processing - Process Intensification, 154, (2020).
  • [14] Ilbas M., Karyeyen S., Ozdemir I., “Investigation of premixed hydrogen flames in confined/unconfined combustors: A numerical study”, International journal of hydrogen energy, 40:11189 -11194, (2015).
  • [15]Li Guo, Ming Zhai, Shijie Xu, Qianhao Shen, Peng Dong, Xue-Song Bai, “Flame characteristics of methane/air with hydrogen addition in the micro confined combustion space”, International Journal of Hydrogen Energy, 47:19319-19337, (2022).
  • [16] Zhigang Liu, Yan Xiong, Ziru Zhu, Zhedian Zhang, Yan Liu, “Effects of hydrogen addition on combustion characteristics of a methane fueled MILD model combustor”, International Journal of Hydrogen Energy, 47:16309-16320, (2022).
  • [17] Ilbas M., Kumuk O., Alabas B., “Experimental investigation of the combustion instability behaviors and NOx emissions in an ammonia/methane fueled low eddy premixed burner”, Journal of the Energy Institute,108, (2023).
  • [18] Büyükakın M.K., Öztuna S., “Numerical investigation on hydrogen-enriched methane combustion in a domestic back-pressure boiler and non-premixed burner system from flame structure and pollutants aspect”, International Journal of Hydrogen Energy, 45:35246-35256, (2020).
  • [19] Meng Zhang, Zhenhua An, Liang Wang, Xutao Wei, Bieerlan Jianayihan, Jinhua Wang, Zuohua Huang, Houzhang Tan. “The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor”, International Journal of Hydrogen Energy, 46:21013-21025, (2021).
  • [20] Ilbas M., Karyeyen S., “An experimental and numerical study on turbulent combustion of hydrogen-rich coal gases in a generated non-premixed burner”, Fuel, 194:274-290, (2017).
  • [21] Beisenbekova G.Zh., Urmashev B.A., Makashev E.P., “Modelling of the combustion process of methane (CH4) in the software package PrIMe”, Vestnik KazNU, 4(92):99-108, (2016).
  • [22] Ilbaş M., “Studies of ultra low NOx burners”, PhD Thesis, School of Engineering, University of Wales, Cardiff, (1997).

Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor

Yıl 2025, Cilt: 28 Sayı: 1, 261 - 266
https://doi.org/10.2339/politeknik.1447381

Öz

The multi-inlet cyclone combustion chamber simulated in this study has 14 tangential gas/air inlets, each with an internal diameter of 9.525 mm, and is inclined 30° towards the front end of the combustion chamber in 2 symmetrical rows of seven. This study used CFD code to numerically simulate a multi-inlet cyclone combustor fueled by methane. The standard k-Ɛ model was chosen to simulate turbulent flow. Eddy Dissipation was used to simulate the combustion of a premixed mixture. The simulation was carried out for an air:fuel ratio (φ) of 1.0. The design velocity at the entrance to the combustion chamber is 20 m/s. In all cases, the inlet gas temperature was assumed to be T=300 K. The number of iterations was 3000.The other physical constans were taken from the literature. The computational default value was used for the operating pressure. The results of the study showed that the proposed cyclonic combustor provides better fuel mixing, increases the residence time of the fuel in the combustor, achieves a uniform temperature field and reduces emissions.

Kaynakça

  • [1] Porfiriev B.N., “Alternative energy as a factor of environmental and energy security”, Journal of Regional, 2:137-145, (2011).
  • [2] McAllister Sara, Jyh-Yuan Chen, Carlos Fernandez-Pello A., Fundamentals of Combustion Processes, Springer, (2011).
  • [3] Geng P., Cao E., Tan Q., Wei L., “Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review”, Renewable and Sustainable Energy Reviews, 71:523–534, (2017).
  • [4] Li M., Wu H., Zhang T, Shen B., Zhang Q., Li Z., “A comprehensive review of pilot ignited high pressure direct injection natural gas engines: factors affecting combustion, emissions and performance”, Renewable and Sustainable Energy Reviews, 119, (2020).
  • [5] Yanfei Li, Xin Zhang, Yue Wang, Jiuling Sun, “Effect of inhomogeneous methane-air mixtures on combustion characteristics in a constant volume combustion chamber”, Fuel, 331, (2023).
  • [6] Wang J., Fu R., Wen S., Ning P., Helal M.H., Salem M.A., Xu B.B., El-Bahy Z.M., Huang M., Guo Z., Huang L., Wang Q., “Progress and current challenges for CO2 capture materials from ambient air”, Advanced Composites and Hybrid Materials, 5:2721–2759, (2022).
  • [7] Wang J., Wu Y., Zheng L., Yu M., Pan R., Shan W., “Study on the propagation characteristics of hydrogen/methane/air premixed flames in variable cross-section ducts”, Process Safety and Environmental Protection, 135:135–143, (2020).
  • [8] Guilong Liu, Jian Wang, Ligang Zheng, Rongkun Pan, Chang Lu, Yan Wang, Jingyu Yu, Yuyu Dai, “Combustion characteristics of nonuniform methane-air mixtures in the duct”, Fire Safety Journal, 137, (2023).
  • [9] Tuncer O., “Chemical kinetic analysis of flame rates and emission values of hydrogen-enriched methane fuel”, Journal of Thermal Science and Technology, 29(2):29-42, (2009).
  • [10] Morozov V.V., Shilin P.D, Ravina A.A., Shalynkov S.A., “Numerical simulation of the combustion of methane and air in a cylindrical chamber burning”, News of Tula State University. Technical science, 9:356-361, (2021).
  • [11] Ilbas M., Yılmaz I., “Experimental analysis of the effects of hydrogen addition on methane combustion”, International Journal of Energy Research, 36:643–647, (2012).
  • [12] Krainov A. Yu., Moiseeva K. M., “Combustion of lean methane-air mixtures in a slot burner with adiabatic outer walls”, Physics of combustion and explosion, 1:52-59, (2016).
  • [13]Jianfeng Pan, Hong Yu, Huimin Ren, Yi Zhang, Qingbo Lu, Evans Quaye, “Study on combustion characteristics of premixed methane/oxygen in meso-combustors with different cross-sections”, Chemical Engineering and Processing - Process Intensification, 154, (2020).
  • [14] Ilbas M., Karyeyen S., Ozdemir I., “Investigation of premixed hydrogen flames in confined/unconfined combustors: A numerical study”, International journal of hydrogen energy, 40:11189 -11194, (2015).
  • [15]Li Guo, Ming Zhai, Shijie Xu, Qianhao Shen, Peng Dong, Xue-Song Bai, “Flame characteristics of methane/air with hydrogen addition in the micro confined combustion space”, International Journal of Hydrogen Energy, 47:19319-19337, (2022).
  • [16] Zhigang Liu, Yan Xiong, Ziru Zhu, Zhedian Zhang, Yan Liu, “Effects of hydrogen addition on combustion characteristics of a methane fueled MILD model combustor”, International Journal of Hydrogen Energy, 47:16309-16320, (2022).
  • [17] Ilbas M., Kumuk O., Alabas B., “Experimental investigation of the combustion instability behaviors and NOx emissions in an ammonia/methane fueled low eddy premixed burner”, Journal of the Energy Institute,108, (2023).
  • [18] Büyükakın M.K., Öztuna S., “Numerical investigation on hydrogen-enriched methane combustion in a domestic back-pressure boiler and non-premixed burner system from flame structure and pollutants aspect”, International Journal of Hydrogen Energy, 45:35246-35256, (2020).
  • [19] Meng Zhang, Zhenhua An, Liang Wang, Xutao Wei, Bieerlan Jianayihan, Jinhua Wang, Zuohua Huang, Houzhang Tan. “The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor”, International Journal of Hydrogen Energy, 46:21013-21025, (2021).
  • [20] Ilbas M., Karyeyen S., “An experimental and numerical study on turbulent combustion of hydrogen-rich coal gases in a generated non-premixed burner”, Fuel, 194:274-290, (2017).
  • [21] Beisenbekova G.Zh., Urmashev B.A., Makashev E.P., “Modelling of the combustion process of methane (CH4) in the software package PrIMe”, Vestnik KazNU, 4(92):99-108, (2016).
  • [22] Ilbaş M., “Studies of ultra low NOx burners”, PhD Thesis, School of Engineering, University of Wales, Cardiff, (1997).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil)
Bölüm Araştırma Makalesi
Yazarlar

Assem Yerzhan 0000-0002-3563-1174

Mustafa İlbaş 0000-0001-6668-1484

Erken Görünüm Tarihi 16 Temmuz 2024
Yayımlanma Tarihi
Gönderilme Tarihi 6 Mart 2024
Kabul Tarihi 22 Nisan 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 1

Kaynak Göster

APA Yerzhan, A., & İlbaş, M. (t.y.). Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor. Politeknik Dergisi, 28(1), 261-266. https://doi.org/10.2339/politeknik.1447381
AMA Yerzhan A, İlbaş M. Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor. Politeknik Dergisi. 28(1):261-266. doi:10.2339/politeknik.1447381
Chicago Yerzhan, Assem, ve Mustafa İlbaş. “Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor”. Politeknik Dergisi 28, sy. 1 t.y.: 261-66. https://doi.org/10.2339/politeknik.1447381.
EndNote Yerzhan A, İlbaş M Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor. Politeknik Dergisi 28 1 261–266.
IEEE A. Yerzhan ve M. İlbaş, “Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor”, Politeknik Dergisi, c. 28, sy. 1, ss. 261–266, doi: 10.2339/politeknik.1447381.
ISNAD Yerzhan, Assem - İlbaş, Mustafa. “Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor”. Politeknik Dergisi 28/1 (t.y.), 261-266. https://doi.org/10.2339/politeknik.1447381.
JAMA Yerzhan A, İlbaş M. Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor. Politeknik Dergisi.;28:261–266.
MLA Yerzhan, Assem ve Mustafa İlbaş. “Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor”. Politeknik Dergisi, c. 28, sy. 1, ss. 261-6, doi:10.2339/politeknik.1447381.
Vancouver Yerzhan A, İlbaş M. Numerical Simulation of Premixed Turbulent Methane Combustion in a Multi-Inlet Cyclone Combustor. Politeknik Dergisi. 28(1):261-6.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.