Araştırma Makalesi
BibTex RIS Kaynak Göster

Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları

Yıl 2025, Cilt: 28 Sayı: 5, 1399 - 1414, 12.10.2025
https://doi.org/10.2339/politeknik.1493020

Öz

Günümüzde rüzgar enerjisi, elektrik üretiminin fosil yakıtlara olan bağımlılığını azaltma ve çevresel sürdürülebilirliği artırma potansiyeli nedeniyle enerji pazarında önemli bir rol oynamaktadır. Özellikle, denizüstü rüzgar çiftlikleri, karasal rüzgar çiftliklerine kıyasla daha yüksek ve daha tutarlı rüzgar hızlarına erişim sağlayarak daha verimli enerji üretimi sunar. Ancak, denizüstü rüzgar çiftliklerinin elektrik şebekelerine entegrasyonu, harmonik bozulma ve aşırı veya düşük gerilim seviyeleri gibi çeşitli güç kalitesi problemleri ortaya çıkarmaktadır. Bu çalışmada, (Tip 3) çift beslemeli indüksiyon jeneratörü (DFIG) türbini kullanan denizüstü rüzgar çiftliği için harmonik analiz ve pasif filtre tasarımları ele alınmıştır. İlk olarak, DFIG içeren bir denizüstü rüzgar türbini MATLAB Simulink ortamında modellenmiştir. İkinci olarak, sistemin harmonik kirliliği analiz edilmiştir. Ardından, iki pasif filtre tipi olan C-tipi ve LCL filtreleri optimal olarak tasarlanmıştır. Çalışılan optimizasyon tasarım yaklaşımı, toplam gerilim harmonik bozulması, gerilim seviyeleri ve filtre güç kayıplarını IEEE 519 standartlarında tanımlandığı şekilde minimize etmeyi amaçlamaktadır. Buna ek olarak, literatürdeki en başarılı algoritmalardan biri olan Parçacık Sürü Optimizasyonu (PSO) algoritması, optimal filtre çözümlerini bulmak için kullanılmıştır.

Etik Beyan

Herhangi bir etik açısından sorunumuz bulunmamaktadır.

Destekleyen Kurum

Balikesir Universitesi

Proje Numarası

BAP 2024/051

Teşekkür

Balıkesir Üniversitesi BAP birimine makaleyi yapmamda maddi desteklerinden ötürü teşekkürü bir borç bilirim.

Kaynakça

  • [1] G. Van Kuik, B. Ummels, and R. Hendriks, “Perspectives on Wind Energy,” (2008).
  • [2] C. Shan, “Harmonic analysis of collection grid in offshore wind installations,” (2017).
  • [3] PWC, “Unlocking Europe’s offshore wind potential Moving towards a subsidy Free industry,”PWC,Tech.Rep., vol. May., (2017).
  • [4] E. Ebrahimzadeh, F. Blaabjerg, X. Wang, and C. L. Bak, “Harmonic stability and resonance analysis in large PMSG-based wind power plants,” IEEE Trans Sustain Energy, vol. 9, no. 1, pp. 12–23, Jan. (2018).
  • [5] Ł. H. Kocewiak, B. L. Ø. Kramer, O. Holmstrøm, K. H. Jensen, and L. Shuai, “Resonance damping in array cable systems by wind turbine active filtering in large systems”, IEEE Trans Sustain., 1069–1077, Jun. (2017).
  • [6] K. N. B. M. Hasan, K. Rauma, A. Luna, J. I. Candela, and P. Rodríguez, “Harmonic compensation analysis in offshore wind power plants using hybrid filters,” IEEE Trans Ind Appl, vol. 50, no. 3, pp. 2050–2060, (2014).
  • [7] K. Radhakrishnan, “Passive Filter Design and Optimisation for Harmonic Mitigation in Wind Power Plants,” Institutt for elkraftteknikk, vol. Master Thesis, (2016).
  • [8] D. Gautam, V. Vittal, and T. Harbour, “Impact of Increased Penetration of DFIG-Based Wind Turbine Generators on Transient and Small Signal Stability of Power Systems,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1426–1434, (2009).
  • [9] H. Brantsæter, Ł. Kocewiak, A. R. Årdal, and E. Tedeschi, “Passive filter design and offshore wind turbine modelling for system level harmonic studies,” in Energy Procedia, Elsevier Ltd, pp. 401–410., (2015).
  • [10] E. Guest, K. H. Jensen, and T. W. Rasmussen, “Mitigation of harmonic voltage amplification in offshore wind power plants by wind turbines with embedded active filters,” IEEE Trans Sustain Energy, vol. 11, no. 2, pp. 785–794, Apr. (2020).
  • [11] A. A. W. van Vondelen, A. Iliopoulos, S. T. Navalkar, D. C. van der Hoek, and J. W. van Wingerden, “Modal analysis of an operational offshore wind turbine using enhanced Kalman filter-based subspace identification,” Wind Energy, vol. 26, no. 9, pp. 923–945,Sep.(2023).
  • [12] M. M. Elkholy, M. A. El-Hameed, and A. A. El-Fergany, “Harmonic analysis of hybrid renewable microgrids comprising optimal design of passive filters and uncertainties,” Electric Power Systems Research, vol. 163, pp. 491–501, Oct. (2018).
  • [13] C. Zhang, X. Wang, and F. Blaabjerg, "Harmonic Mitigation in Offshore Wind Farms using AI-based Filtering Methods," IEEE Transactions on Power Delivery, vol. 39, no. 2, pp. 1456-1468, (2023).
  • [14] Y. Li, H. Chen, and J. Wu, "Optimization of Passive Filters in Renewable Energy Systems using Hybrid Algorithms," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 1, pp. 225-237, (2024).
  • [15] T. Kim, M. R. Al Rashidi, and A. Zobaa, "Adaptive LCL Filter Design for Smart Grid Applications," IEEE Transactions on Smart Grid, vol. 15, no. 3, pp. 1930-1942, (2024).
  • [16] ABB, “XLPE Submarine Cable Systems Attachment to XLPE Land Cable Systems - User’s Guide,” vol. Rev 5, (2010).
  • [17] ABB, “XLPE Land Cable Systems-User’s Guide,” vol. vol. Rev5, (2010).
  • [18] A. M. Meinich, F. Marafao, and U. E. Paulista, “Harmonic Propagation and Production in Offshore Wind Farms.” NTNU, Master Thesis, July (2018).
  • [19] J. Lee, Y. Yoo, M. Yoon, and G. Jang, “Advanced fault ride-through strategy by an MMC HVDC transmission for off-shore wind farm interconnection,” Applied Sciences (Switzerland), vol. 9, no. 12, Jun. (2019).
  • [20] Matlab, “Doubly-Fed Induction Generator (DFIG),”https://www.mathworks.com/help/sps/ug/wind-farm-dfig-detailed-model.html.
  • [21] A. Karadeniz and M. E. Balci, “Comparative evaluation of common passive filter types regarding maximization of transformer’s loading capability under non-sinusoidal conditions,” Electric Power Systems Research, vol. 158, pp. 324–334, (2018).
  • [22] A. Teigmoen, “Harmonic Resonance Analysis of Offshore Wind Farm Utilizing Type-IV Wind Turbines,” (2021).
  • [23] IEEE standards, “IEEE Standards 1547 Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage,” (2018).
  • [24] X. J. Zong, P. A. Gray, and P. W. Lehn, “New metric recommended for IEEE Standard 1547 to limit harmonics injected into distorted grids,” IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 963–972, (2015).
  • [25] A. R. Oliva and J. C. Balda, “A PV dispersed generator: a power quality analysis within the IEEE 519,” IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 525–530, (2003).
  • [26] M. R. AlRashidi and M. E. El-Hawary, “A survey of particle swarm optimization applications in electric power systems,” IEEE transactions on evolutionary computation, vol. 13, no. 4, pp. 913–918, (2008).
  • [27] H. H. Zeineldin and A. F. Zobaa, “Particle swarm optimization of passive filters for industrial plants in distribution networks,” Electric Power Components and Systems, vol. 39, no. 16, pp. 1795–1808, (2011).
  • [28] A. Karadeniz, K. Eker, B. Üniversitesi, M. Fakültesi, and E.-E. M. Bölümü, “Rüzgar ve Termik Santrallerden Oluşan Enerji Sistemlerinde Ekonomik Güç Dağılımının Big-Bang Big-Crunch, PSO ve IMO Algoritmaları ile İrdelenmesi,” Journal of Polytechnic, vol. 19, no. 3, pp. 261–268, (2016).
  • [29] A. Eid, “Allocation of distributed generations in radial distribution systems using adaptive PSO and modified GSA multi-objective optimizations,” Alexandria Engineering Journal, vol. 59, no. 6, pp.4771–4786,Dec.(2020).
  • [30] G. D. Singh et al., “A novel framework for capacitated SDN controller placement: Balancing latency and reliability with PSO algorithm,” Alexandria Engineering Journal, vol. 87, pp. 77–92, Jan. (2024).

Optimal Passive Filter Designs for Offshore Wind Farm

Yıl 2025, Cilt: 28 Sayı: 5, 1399 - 1414, 12.10.2025
https://doi.org/10.2339/politeknik.1493020

Öz

Today, wind energy plays a significant role in the energy market due to its potential to reduce the dependence of electric power generation on fossil fuels and enhance environmental sustainability. Particularly, offshore wind farms offer more efficient energy generation by providing access to higher and more consistent wind speeds compared to onshore wind farms. However, the integration of offshore wind farms into electrical grids presents various power quality problems, such as harmonic distortion and under or over-voltage levels. In this study, harmonic analysis and passive filter designs are addressed for an offshore wind farm utilizing a type 3 doubly-fed induction generator (DFIG) turbine. Firstly, an offshore wind turbine with DFIG is modelled in the MATLAB Simulink environment. Secondly, the harmonic pollution of the system is analyzed. Then, two passive filter types, C-type and LCL filters, are optimally designed. The studied optimization design approach aims to minimize the total voltage harmonic distortion and voltage levels in p.u. as defined in IEEE 519 standards. In addition to that, one of the most widely used metaheuristic optimization algorithm in the literature, the Particle Swarm Optimization (PSO) algorithm, is employed to find optimal filter solutions.

Proje Numarası

BAP 2024/051

Kaynakça

  • [1] G. Van Kuik, B. Ummels, and R. Hendriks, “Perspectives on Wind Energy,” (2008).
  • [2] C. Shan, “Harmonic analysis of collection grid in offshore wind installations,” (2017).
  • [3] PWC, “Unlocking Europe’s offshore wind potential Moving towards a subsidy Free industry,”PWC,Tech.Rep., vol. May., (2017).
  • [4] E. Ebrahimzadeh, F. Blaabjerg, X. Wang, and C. L. Bak, “Harmonic stability and resonance analysis in large PMSG-based wind power plants,” IEEE Trans Sustain Energy, vol. 9, no. 1, pp. 12–23, Jan. (2018).
  • [5] Ł. H. Kocewiak, B. L. Ø. Kramer, O. Holmstrøm, K. H. Jensen, and L. Shuai, “Resonance damping in array cable systems by wind turbine active filtering in large systems”, IEEE Trans Sustain., 1069–1077, Jun. (2017).
  • [6] K. N. B. M. Hasan, K. Rauma, A. Luna, J. I. Candela, and P. Rodríguez, “Harmonic compensation analysis in offshore wind power plants using hybrid filters,” IEEE Trans Ind Appl, vol. 50, no. 3, pp. 2050–2060, (2014).
  • [7] K. Radhakrishnan, “Passive Filter Design and Optimisation for Harmonic Mitigation in Wind Power Plants,” Institutt for elkraftteknikk, vol. Master Thesis, (2016).
  • [8] D. Gautam, V. Vittal, and T. Harbour, “Impact of Increased Penetration of DFIG-Based Wind Turbine Generators on Transient and Small Signal Stability of Power Systems,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1426–1434, (2009).
  • [9] H. Brantsæter, Ł. Kocewiak, A. R. Årdal, and E. Tedeschi, “Passive filter design and offshore wind turbine modelling for system level harmonic studies,” in Energy Procedia, Elsevier Ltd, pp. 401–410., (2015).
  • [10] E. Guest, K. H. Jensen, and T. W. Rasmussen, “Mitigation of harmonic voltage amplification in offshore wind power plants by wind turbines with embedded active filters,” IEEE Trans Sustain Energy, vol. 11, no. 2, pp. 785–794, Apr. (2020).
  • [11] A. A. W. van Vondelen, A. Iliopoulos, S. T. Navalkar, D. C. van der Hoek, and J. W. van Wingerden, “Modal analysis of an operational offshore wind turbine using enhanced Kalman filter-based subspace identification,” Wind Energy, vol. 26, no. 9, pp. 923–945,Sep.(2023).
  • [12] M. M. Elkholy, M. A. El-Hameed, and A. A. El-Fergany, “Harmonic analysis of hybrid renewable microgrids comprising optimal design of passive filters and uncertainties,” Electric Power Systems Research, vol. 163, pp. 491–501, Oct. (2018).
  • [13] C. Zhang, X. Wang, and F. Blaabjerg, "Harmonic Mitigation in Offshore Wind Farms using AI-based Filtering Methods," IEEE Transactions on Power Delivery, vol. 39, no. 2, pp. 1456-1468, (2023).
  • [14] Y. Li, H. Chen, and J. Wu, "Optimization of Passive Filters in Renewable Energy Systems using Hybrid Algorithms," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 1, pp. 225-237, (2024).
  • [15] T. Kim, M. R. Al Rashidi, and A. Zobaa, "Adaptive LCL Filter Design for Smart Grid Applications," IEEE Transactions on Smart Grid, vol. 15, no. 3, pp. 1930-1942, (2024).
  • [16] ABB, “XLPE Submarine Cable Systems Attachment to XLPE Land Cable Systems - User’s Guide,” vol. Rev 5, (2010).
  • [17] ABB, “XLPE Land Cable Systems-User’s Guide,” vol. vol. Rev5, (2010).
  • [18] A. M. Meinich, F. Marafao, and U. E. Paulista, “Harmonic Propagation and Production in Offshore Wind Farms.” NTNU, Master Thesis, July (2018).
  • [19] J. Lee, Y. Yoo, M. Yoon, and G. Jang, “Advanced fault ride-through strategy by an MMC HVDC transmission for off-shore wind farm interconnection,” Applied Sciences (Switzerland), vol. 9, no. 12, Jun. (2019).
  • [20] Matlab, “Doubly-Fed Induction Generator (DFIG),”https://www.mathworks.com/help/sps/ug/wind-farm-dfig-detailed-model.html.
  • [21] A. Karadeniz and M. E. Balci, “Comparative evaluation of common passive filter types regarding maximization of transformer’s loading capability under non-sinusoidal conditions,” Electric Power Systems Research, vol. 158, pp. 324–334, (2018).
  • [22] A. Teigmoen, “Harmonic Resonance Analysis of Offshore Wind Farm Utilizing Type-IV Wind Turbines,” (2021).
  • [23] IEEE standards, “IEEE Standards 1547 Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage,” (2018).
  • [24] X. J. Zong, P. A. Gray, and P. W. Lehn, “New metric recommended for IEEE Standard 1547 to limit harmonics injected into distorted grids,” IEEE Transactions on Power Delivery, vol. 31, no. 3, pp. 963–972, (2015).
  • [25] A. R. Oliva and J. C. Balda, “A PV dispersed generator: a power quality analysis within the IEEE 519,” IEEE Transactions on Power Delivery, vol. 18, no. 2, pp. 525–530, (2003).
  • [26] M. R. AlRashidi and M. E. El-Hawary, “A survey of particle swarm optimization applications in electric power systems,” IEEE transactions on evolutionary computation, vol. 13, no. 4, pp. 913–918, (2008).
  • [27] H. H. Zeineldin and A. F. Zobaa, “Particle swarm optimization of passive filters for industrial plants in distribution networks,” Electric Power Components and Systems, vol. 39, no. 16, pp. 1795–1808, (2011).
  • [28] A. Karadeniz, K. Eker, B. Üniversitesi, M. Fakültesi, and E.-E. M. Bölümü, “Rüzgar ve Termik Santrallerden Oluşan Enerji Sistemlerinde Ekonomik Güç Dağılımının Big-Bang Big-Crunch, PSO ve IMO Algoritmaları ile İrdelenmesi,” Journal of Polytechnic, vol. 19, no. 3, pp. 261–268, (2016).
  • [29] A. Eid, “Allocation of distributed generations in radial distribution systems using adaptive PSO and modified GSA multi-objective optimizations,” Alexandria Engineering Journal, vol. 59, no. 6, pp.4771–4786,Dec.(2020).
  • [30] G. D. Singh et al., “A novel framework for capacitated SDN controller placement: Balancing latency and reliability with PSO algorithm,” Alexandria Engineering Journal, vol. 87, pp. 77–92, Jan. (2024).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç)
Bölüm Araştırma Makalesi
Yazarlar

Alp Karadeniz 0000-0002-0899-6581

Proje Numarası BAP 2024/051
Erken Görünüm Tarihi 3 Mart 2025
Yayımlanma Tarihi 12 Ekim 2025
Gönderilme Tarihi 31 Mayıs 2024
Kabul Tarihi 11 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 5

Kaynak Göster

APA Karadeniz, A. (2025). Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları. Politeknik Dergisi, 28(5), 1399-1414. https://doi.org/10.2339/politeknik.1493020
AMA Karadeniz A. Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları. Politeknik Dergisi. Ekim 2025;28(5):1399-1414. doi:10.2339/politeknik.1493020
Chicago Karadeniz, Alp. “Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları”. Politeknik Dergisi 28, sy. 5 (Ekim 2025): 1399-1414. https://doi.org/10.2339/politeknik.1493020.
EndNote Karadeniz A (01 Ekim 2025) Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları. Politeknik Dergisi 28 5 1399–1414.
IEEE A. Karadeniz, “Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları”, Politeknik Dergisi, c. 28, sy. 5, ss. 1399–1414, 2025, doi: 10.2339/politeknik.1493020.
ISNAD Karadeniz, Alp. “Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları”. Politeknik Dergisi 28/5 (Ekim2025), 1399-1414. https://doi.org/10.2339/politeknik.1493020.
JAMA Karadeniz A. Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları. Politeknik Dergisi. 2025;28:1399–1414.
MLA Karadeniz, Alp. “Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları”. Politeknik Dergisi, c. 28, sy. 5, 2025, ss. 1399-14, doi:10.2339/politeknik.1493020.
Vancouver Karadeniz A. Deniz Üstü Rüzgar Çiftlikleri ile Entegre Sistemler İçin Optimal Pasif Filtre Tasarımları. Politeknik Dergisi. 2025;28(5):1399-414.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.