Compressive Strength and Microstructural Evaluation of Geopolymers Produced from Red-Fired Ceramic Waste (RFCW)
Yıl 2025,
Cilt: 28 Sayı: 5, 1451 - 1460, 12.10.2025
Mine Taykurt Daday
,
Mustafa Daday
Öz
This study investigates the compressive strength development of geopolymers produced from red-fired ceramic waste, a material that poses growing challenges in terms of waste management and environmental sustainability. The red-fired ceramic waste (RFCW) was dried, crushed, and sieved to achieve a particle size below 500 µm. Chemical and mineralogical characterizations were conducted using X-ray fluorescence (XRF) and X-ray diffraction (XRD), respectively. Based on varying proportions of NaOH and Na₂SiO₃ as alkaline activators, several geopolymer formulations were prepared and subjected to curing under both ambient conditions and at 80 °C. The results indicated that increasing the degree of geopolymerization led to a decrease in crystalline quartz and albite phases, accompanied by the formation of sodium-containing zeolite structures, particularly in oven-cured samples. These mineralogical findings were further supported by scanning electron microscopy (SEM) observations. The JE9 sample, cured at 80°C, achieved the highest compressive strength (25.29 MPa), attributed to its dense microstructure and effective particle packing. In contrast, ambient-temperature-cured specimens exhibited higher porosity and correspondingly lower strength. Most geopolymer samples surpassed the 10 MPa compressive strength threshold, aligning with the C8/10 concrete class and demonstrating potential for use in low-strength structural applications. Overall, the study underscores the feasibility of valorizing RFCW as a sustainable raw material in geopolymer technology.
Etik Beyan
The authors of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Destekleyen Kurum
Adana Alparslan Türkeş Science and Technology University
Proje Numarası
Adana Alparslan Türkeş Science and Technology University Scientific Research Coordination Unit (Project number: 17103013).
Kaynakça
-
[1] Cong, P., Du, R., Gao, H., and Chen, Z. “Comparison and assessment of carbon dioxide emissions between alkali-activated materials and OPC cement concrete”, Journal of Traffic and Transportation Engineering (English Edition), 11(5): 918-938, (2024).
-
[2] Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., and Yap, P. S. “Conversion of waste into sustainable construction materials: A review of recent developments and prospects”, Materials Today Sustainability, 27, 100930, (2024).
-
[3] Bağcı C., Karacif K., Alkan B. ve Arık H., “Pirinç kabuğu külü esaslı SiC parçacıklarıngeopolimer kompozitlerde takviye elemanı olarak kullanımı”, Journal of Polytechnic, 26(4): 1485-1493,(2023).
-
[4] Aydin E., “Use of various ındustrial and eggshell wastes for the sustainable construction sector”, Journal of Polytechnic, 27(4): 1293-1304, (2024).
-
[5] Aruntaş H. Y., Şahinöz M. ve Dayı M., “Çimento hamur ve harç özelliklerine öğütülmüş yüksek fırın cürufu ile sönmüş kirecin birlikte etkisinin araştırılması”, Politeknik Dergisi, 27(4): 1257-1268, (2024).
-
[6] Sivaprasad, P., Thanuskodi, S., and Nagaiah, M., “Challenges and hurdles in establishing a green library: Strategies for overcoming them”, Electronic Green Journal, 1(49), (2024).
-
[7] Worrell, E., Price, L., Martin, N., Hendriks, C., and Meida, L. O. “Carbon dioxide emissions from the global cement industry”, Annual Review of Energy and the Environment, 26(1): 303-329, (2001).
-
[8] He, Z., Zhu, X., Wang, J., Mu, M., and Wang, Y., “Comparison of CO2 emissions from OPC and recycled cement production”, Construction and Building Materials, 211: 965-973, (2019).
-
[9] Sanytsky, M., Kropyvnytska, T., Fic, S., and Ivashchyshyn, H. “Sustainable low-carbon binders and concretes.” In E3S Web of Conferences , 166: 06007, EDP Sciences, (2020).
-
[10] Davidovits, J. “Geopolymer chemistry and applications”, Geopolymer Institute, (2008).
-
[11] Comrie, D.C., and Davidovits, J., “Long term durability of hazardous toxic and nuclear waste disposals”, Geopolymer’88, 1st European Conference on Soft Mineralurgy, Compiegne, France, 1:125-134, (1988).
-
[12] De Silva, P., Sagoe-Crenstil, K., and Sirivivatnanon, V., “Kinetics of geopolymerization: role of Al2O3 and SiO2”, Cement and Concrete Research, 37(4): 512-518, (2007).
-
[13] Davidovits J., “Geopolymers: inorganic polymeric new materials”, Journal of Thermal Analysis and Calorimetry, 37(8): 1633-1656., (1991).
-
[14] Rowles, M., and O'connor, B., “Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite”, Journal of Materials Chemistry, 13(5): 1161-1165, (2003).
-
[15] Mustapa, N. B., Ahmad, R., Al Bakri Abdullah, M. M., Ibrahim, W. M. W., Sandu, A. V., Nemes, O., and Risdanareni, P., “Effect of the sintering mechanism on the crystallization kinetics of geopolymer-based ceramics”, Materials, 16(17): 5853, (2023).
-
[16] Luhar, I., Luhar, S., Abdullah, M. M. A. B., Nabiałek, M., Sandu, A. V., Szmidla, J., and Deraman, L. M. “Assessment of the suitability of ceramic waste in geopolymer composites: An appraisal”, Materials, 14(12): 3279, (2021).
-
[17] Bayer Öztürk, Z., Eser, A., Celikten, S., and Atabey, I. I., “High-temperature performance of geopolymer mortars containing ceramic filter press cake and pottery waste powders”, Advanced Powder Technology, 36(1): 104732, (2025).
-
[18] Bayer Özturk, Z., Cırık, R., and Atabey, İ. İ., “Sustainable environment approach by the usage of ceramic pottery waste in geopolymer mortar.” International Journal of Environmental Science and Technology, 20(7): 7577-7588, (2023).
-
[19] Soriano, L., Tashima, M. M., Reig, L., Payá, J., Borrachero, M. V., Monzó, J. M., and Pitarch, Á. M. (2023). “Reusing ceramic waste as a precursor in alkali-activated cements: a review”. Buildings, 13(12): 3022,(2023).
-
[20] Yip, C. K., Lukey, G. C., Provis, J. L., and Van Deventer, J. S., “Effect of calcium silicate sources on geopolymerisation”, Cement and Concrete Research, 38(4): 554-564, (2008).
-
[21] Alonso, S., and Palomo, A., “Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio”, Materials Letters, 47(1-2): 55-62, (2001).
-
[22] Williams, P. J., Biernacki, J. J., Walker, L. R., Meyer, H. M., Rawn, C. J., and Bai, J., Microanalysis of alkali-activated fly ash-CH pastes. Cement and Concrete Research, 32(6): 963-972, (2002).
-
[23] Puligilla, S., and Mondal, P. “Role of slag in microstructural development and hardening of fly ash-slag geopolymer”, Cement and Concrete Research, 43: 70-80, (2013).
-
[24] Dimas, D., Giannopoulou, I., and Panias, D., “Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology”, Journal of Materials Science, 44(14): 3719-3730, (2009).
-
[25] Lv, X. S., Qin, Y., Lin, Z. X., Tian, Z. K., and Cui, X. M. (2020). “Inhibition of efflorescence in Na-based geopolymer inorganic coating”, ACS Omega, 5(24):14822-14830, (2020).
-
[26] Longhi, M. A., Zhang, Z., Walkley, B., Rodríguez, E. D., and Kirchheim, A. P. “Strategies for control and mitigation of efflorescence in metakaolin-based geopolymers”, Cement and Concrete Research, 144: 106431, (2021).
-
[27] Zhang, M., He, M., and Pan, Z. “Inhibition of efflorescence for fly ash-slag-steel slag based geopolymer: Pore network optimization and free alkali stabilization”, Ceramics International, 50(22): 48538-48550, (2024).
-
[28] Ferrarini, S. F., Cardoso, A. M., Alban, L., and Pires, M. J. “Evaluation of the sustainability of integrated hydrothermal synthesis of zeolites obtained from waste”, Journal of the Brazilian Chemical Society, 29(7): 1464-1479, (2018).
-
[29] Daday, M., Taykurt Daday, M., “Waste Management Application: Red-Fired Product Based Geopolymer”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology in Cappadokia/TURKEY (IMSMATEC’19), (21.06.2019 -23.06.2019), (2019).
-
[30] Daday, M., Taykurt Daday, M., “Geopolymers As A Strategic Materials and Sustainable Cities”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology in Çeşme/İZMİR (IMSMATEC’18), (10.04.2018 -12.04.2018 ), (2018).
-
[31] Daday, M., and Kara, A., “Development of using local raw materials deposits in Eskisehir region, Turkey”, Journal of the Australian Ceramic Society, 53(2): 591-597, (2017).
-
[32] Daday, M. “Ekstrüzyon ile hızlı pişirim terracotta dış cephe kaplaması üretiminde süreç parametrelerinin araştırılması”, Doctoral dissertation (in Turkish), Anadolu University (Turkey), (2015).
-
[33] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S., “Geopolymer technology: the current state of the art”, Journal of Materials Science, 42(9): 2917-2933, (2007).
-
[34] Standard, E. E. S. T. I., “Methods of testing cement-Part 1: Determination of Strength”. Turkish Standards Institute, Ankara, Turkey. (2009).
-
[35] Khan, R., Iqbal, S., Soliyeva, M., Ali, A., and Elboughdiri, N., “Advanced clay-based geopolymer: influence of structural and material parameters on its performance and applications”, RSC Advances, 15(16): 12443-12471, (2025).
-
[36] Novembre, D., Gimeno, D., and Del Vecchio, A. “Synthesis and characterization of Na-P1 (GIS) zeolite using a kaolinitic rock”, Scientific Reports, 11(1): 4872, (2021).
-
[37] Al-Wasidi, A. S., Naglah, A. M., Saad, F. A., and Abdelrahman, E. A. “Modification of sodium aluminum silicate hydrate by thioglycolic acid as a new composite capable of removing and preconcentrating Pb (II), Cu (II), and Zn (II) ions from food and water samples”, Arabian Journal of Chemistry, 15(10): 104178, (2022).
-
[38] Doherty. G.H., “Crystalline zeolite ZSM-25”, U.S. Patent No. 4,247,416, https://patents.google.com/patent/US4247416A/en, (1981).
-
[39] Novembre, D., Gimeno, D., Marinangeli, L., Tangari, A. C., Rosatelli, G., Ciulla, M.,and di Profio, P., “Synthesis and Characterization of Na-P1 (GIS) Zeolite Using Rice Husk”, Molecules, 29(23):5596, (2024).
-
[40] Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., and Van Deventer, J. S., “Understanding the relationship between geopolymer composition, microstructure and mechanical properties”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3): 47-58, (2005).
-
[41] Kai, M. F., and Dai, J. G. “Understanding geopolymer binder-aggregate interfacial characteristics at molecular level”, Cement and Concrete Research, 149: 106582, (2021).
-
[42] British Standards Institution. “BS EN 206:2013+A1:2016: Concrete. Specification, performance, production and conformity”, British Standards Institution: London, UK, (2016).
Compressive Strength and Microstructural Evaluation of Geopolymers Produced from Red-Fired Ceramic Waste (RFCW)
Yıl 2025,
Cilt: 28 Sayı: 5, 1451 - 1460, 12.10.2025
Mine Taykurt Daday
,
Mustafa Daday
Öz
Bu çalışma, atık yönetimi ve çevresel sürdürülebilirlik açısından giderek daha büyük sorunlara yol açan kırmızı pişmiş seramik atıklarından üretilen jeopolimerlerin basma dayanımı gelişimini incelemektedir. Seramik atıkları kurutulmuş, öğütülmüş ve 500 µm altı tane boyutuna elenmiştir. Kimyasal ve mineraloji karakterizasyonları sırasıyla X-ışını Floresans (XRF) ve X-ışını Difraksiyonu (XRD) yöntemleriyle gerçekleştirilmiştir. NaOH ve Na₂SiO₃ alkali aktivatörlerinin farklı oranlarda kullanıldığı çeşitli jeopolimer karışımları hazırlanmış ve hem oda sıcaklığında hem de 80 °C’de kürleme uygulanmıştır. Sonuçlar, jeopolimerleşme derecesindeki artışın kristalin kuvars ve albit fazlarının azalmasına ve özellikle fırında kürlenen numunelerde sodyum içeren zeolit yapıların oluşmasına neden olduğunu ortaya koymuştur. Bu mineralojiye ilişkin bulgular, Taramalı Elektron Mikroskobu (SEM) gözlemleriyle de desteklenmiştir. 80 °C’de kürlenen JE9 numunesi, yoğun mikroyapısı ve etkili tanecik paketlenmesi sayesinde 25.29 MPa ile en yüksek basma dayanımına ulaşmıştır. Buna karşılık, oda sıcaklığında kürlenen numuneler daha yüksek porozite ve buna bağlı olarak daha düşük dayanım sergilemiştir. Jeopolimer numunelerinin büyük çoğunluğu, 10 MPa basma dayanımı eşiğini aşarak EN 206 standardındaki C8/10 beton sınıfıyla uyum göstermiş ve düşük dayanımlı yapısal uygulamalarda kullanılabileceğini ortaya koymuştur. Genel olarak, bu çalışma kırmızı pişmiş seramik atıklarının jeopolimer teknolojisinde sürdürülebilir bir hammadde olarak değerlendirilmesinin mümkün olduğunu ortaya koymaktadır.
Proje Numarası
Adana Alparslan Türkeş Science and Technology University Scientific Research Coordination Unit (Project number: 17103013).
Kaynakça
-
[1] Cong, P., Du, R., Gao, H., and Chen, Z. “Comparison and assessment of carbon dioxide emissions between alkali-activated materials and OPC cement concrete”, Journal of Traffic and Transportation Engineering (English Edition), 11(5): 918-938, (2024).
-
[2] Chen, L., Yang, M., Chen, Z., Xie, Z., Huang, L., Osman, A. I., and Yap, P. S. “Conversion of waste into sustainable construction materials: A review of recent developments and prospects”, Materials Today Sustainability, 27, 100930, (2024).
-
[3] Bağcı C., Karacif K., Alkan B. ve Arık H., “Pirinç kabuğu külü esaslı SiC parçacıklarıngeopolimer kompozitlerde takviye elemanı olarak kullanımı”, Journal of Polytechnic, 26(4): 1485-1493,(2023).
-
[4] Aydin E., “Use of various ındustrial and eggshell wastes for the sustainable construction sector”, Journal of Polytechnic, 27(4): 1293-1304, (2024).
-
[5] Aruntaş H. Y., Şahinöz M. ve Dayı M., “Çimento hamur ve harç özelliklerine öğütülmüş yüksek fırın cürufu ile sönmüş kirecin birlikte etkisinin araştırılması”, Politeknik Dergisi, 27(4): 1257-1268, (2024).
-
[6] Sivaprasad, P., Thanuskodi, S., and Nagaiah, M., “Challenges and hurdles in establishing a green library: Strategies for overcoming them”, Electronic Green Journal, 1(49), (2024).
-
[7] Worrell, E., Price, L., Martin, N., Hendriks, C., and Meida, L. O. “Carbon dioxide emissions from the global cement industry”, Annual Review of Energy and the Environment, 26(1): 303-329, (2001).
-
[8] He, Z., Zhu, X., Wang, J., Mu, M., and Wang, Y., “Comparison of CO2 emissions from OPC and recycled cement production”, Construction and Building Materials, 211: 965-973, (2019).
-
[9] Sanytsky, M., Kropyvnytska, T., Fic, S., and Ivashchyshyn, H. “Sustainable low-carbon binders and concretes.” In E3S Web of Conferences , 166: 06007, EDP Sciences, (2020).
-
[10] Davidovits, J. “Geopolymer chemistry and applications”, Geopolymer Institute, (2008).
-
[11] Comrie, D.C., and Davidovits, J., “Long term durability of hazardous toxic and nuclear waste disposals”, Geopolymer’88, 1st European Conference on Soft Mineralurgy, Compiegne, France, 1:125-134, (1988).
-
[12] De Silva, P., Sagoe-Crenstil, K., and Sirivivatnanon, V., “Kinetics of geopolymerization: role of Al2O3 and SiO2”, Cement and Concrete Research, 37(4): 512-518, (2007).
-
[13] Davidovits J., “Geopolymers: inorganic polymeric new materials”, Journal of Thermal Analysis and Calorimetry, 37(8): 1633-1656., (1991).
-
[14] Rowles, M., and O'connor, B., “Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite”, Journal of Materials Chemistry, 13(5): 1161-1165, (2003).
-
[15] Mustapa, N. B., Ahmad, R., Al Bakri Abdullah, M. M., Ibrahim, W. M. W., Sandu, A. V., Nemes, O., and Risdanareni, P., “Effect of the sintering mechanism on the crystallization kinetics of geopolymer-based ceramics”, Materials, 16(17): 5853, (2023).
-
[16] Luhar, I., Luhar, S., Abdullah, M. M. A. B., Nabiałek, M., Sandu, A. V., Szmidla, J., and Deraman, L. M. “Assessment of the suitability of ceramic waste in geopolymer composites: An appraisal”, Materials, 14(12): 3279, (2021).
-
[17] Bayer Öztürk, Z., Eser, A., Celikten, S., and Atabey, I. I., “High-temperature performance of geopolymer mortars containing ceramic filter press cake and pottery waste powders”, Advanced Powder Technology, 36(1): 104732, (2025).
-
[18] Bayer Özturk, Z., Cırık, R., and Atabey, İ. İ., “Sustainable environment approach by the usage of ceramic pottery waste in geopolymer mortar.” International Journal of Environmental Science and Technology, 20(7): 7577-7588, (2023).
-
[19] Soriano, L., Tashima, M. M., Reig, L., Payá, J., Borrachero, M. V., Monzó, J. M., and Pitarch, Á. M. (2023). “Reusing ceramic waste as a precursor in alkali-activated cements: a review”. Buildings, 13(12): 3022,(2023).
-
[20] Yip, C. K., Lukey, G. C., Provis, J. L., and Van Deventer, J. S., “Effect of calcium silicate sources on geopolymerisation”, Cement and Concrete Research, 38(4): 554-564, (2008).
-
[21] Alonso, S., and Palomo, A., “Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio”, Materials Letters, 47(1-2): 55-62, (2001).
-
[22] Williams, P. J., Biernacki, J. J., Walker, L. R., Meyer, H. M., Rawn, C. J., and Bai, J., Microanalysis of alkali-activated fly ash-CH pastes. Cement and Concrete Research, 32(6): 963-972, (2002).
-
[23] Puligilla, S., and Mondal, P. “Role of slag in microstructural development and hardening of fly ash-slag geopolymer”, Cement and Concrete Research, 43: 70-80, (2013).
-
[24] Dimas, D., Giannopoulou, I., and Panias, D., “Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology”, Journal of Materials Science, 44(14): 3719-3730, (2009).
-
[25] Lv, X. S., Qin, Y., Lin, Z. X., Tian, Z. K., and Cui, X. M. (2020). “Inhibition of efflorescence in Na-based geopolymer inorganic coating”, ACS Omega, 5(24):14822-14830, (2020).
-
[26] Longhi, M. A., Zhang, Z., Walkley, B., Rodríguez, E. D., and Kirchheim, A. P. “Strategies for control and mitigation of efflorescence in metakaolin-based geopolymers”, Cement and Concrete Research, 144: 106431, (2021).
-
[27] Zhang, M., He, M., and Pan, Z. “Inhibition of efflorescence for fly ash-slag-steel slag based geopolymer: Pore network optimization and free alkali stabilization”, Ceramics International, 50(22): 48538-48550, (2024).
-
[28] Ferrarini, S. F., Cardoso, A. M., Alban, L., and Pires, M. J. “Evaluation of the sustainability of integrated hydrothermal synthesis of zeolites obtained from waste”, Journal of the Brazilian Chemical Society, 29(7): 1464-1479, (2018).
-
[29] Daday, M., Taykurt Daday, M., “Waste Management Application: Red-Fired Product Based Geopolymer”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology in Cappadokia/TURKEY (IMSMATEC’19), (21.06.2019 -23.06.2019), (2019).
-
[30] Daday, M., Taykurt Daday, M., “Geopolymers As A Strategic Materials and Sustainable Cities”, The Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology in Çeşme/İZMİR (IMSMATEC’18), (10.04.2018 -12.04.2018 ), (2018).
-
[31] Daday, M., and Kara, A., “Development of using local raw materials deposits in Eskisehir region, Turkey”, Journal of the Australian Ceramic Society, 53(2): 591-597, (2017).
-
[32] Daday, M. “Ekstrüzyon ile hızlı pişirim terracotta dış cephe kaplaması üretiminde süreç parametrelerinin araştırılması”, Doctoral dissertation (in Turkish), Anadolu University (Turkey), (2015).
-
[33] Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., and van Deventer, J. S., “Geopolymer technology: the current state of the art”, Journal of Materials Science, 42(9): 2917-2933, (2007).
-
[34] Standard, E. E. S. T. I., “Methods of testing cement-Part 1: Determination of Strength”. Turkish Standards Institute, Ankara, Turkey. (2009).
-
[35] Khan, R., Iqbal, S., Soliyeva, M., Ali, A., and Elboughdiri, N., “Advanced clay-based geopolymer: influence of structural and material parameters on its performance and applications”, RSC Advances, 15(16): 12443-12471, (2025).
-
[36] Novembre, D., Gimeno, D., and Del Vecchio, A. “Synthesis and characterization of Na-P1 (GIS) zeolite using a kaolinitic rock”, Scientific Reports, 11(1): 4872, (2021).
-
[37] Al-Wasidi, A. S., Naglah, A. M., Saad, F. A., and Abdelrahman, E. A. “Modification of sodium aluminum silicate hydrate by thioglycolic acid as a new composite capable of removing and preconcentrating Pb (II), Cu (II), and Zn (II) ions from food and water samples”, Arabian Journal of Chemistry, 15(10): 104178, (2022).
-
[38] Doherty. G.H., “Crystalline zeolite ZSM-25”, U.S. Patent No. 4,247,416, https://patents.google.com/patent/US4247416A/en, (1981).
-
[39] Novembre, D., Gimeno, D., Marinangeli, L., Tangari, A. C., Rosatelli, G., Ciulla, M.,and di Profio, P., “Synthesis and Characterization of Na-P1 (GIS) Zeolite Using Rice Husk”, Molecules, 29(23):5596, (2024).
-
[40] Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., and Van Deventer, J. S., “Understanding the relationship between geopolymer composition, microstructure and mechanical properties”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3): 47-58, (2005).
-
[41] Kai, M. F., and Dai, J. G. “Understanding geopolymer binder-aggregate interfacial characteristics at molecular level”, Cement and Concrete Research, 149: 106582, (2021).
-
[42] British Standards Institution. “BS EN 206:2013+A1:2016: Concrete. Specification, performance, production and conformity”, British Standards Institution: London, UK, (2016).