Araştırma Makalesi
BibTex RIS Kaynak Göster

IES-VE YAZILIMI İLE ENERJİ ETKİN TASARIM İÇİN PARAMETRİK ANALİZ

Yıl 2026, Cilt: 5 Sayı: 2, 15 - 29, 08.01.2026

Öz

Bu çalışma kapsamında, İstanbul’un iklim koşullarında 100 m² alana sahip bir 1+1 stüdyo daire tasarlanarak, bina malzemeleri ve iklim detayları IES-VE programına girdi olarak işlenmiştir. Farklı malzeme kombinasyonlarının incelendiği alternatif senaryolar oluşturulmuş ve her bir kombinasyonun enerji tüketimi ile karbondioksit salınımı analiz edilmiştir. Çalışma sonuçları, İstanbul için en uygun malzeme kombinasyonlarını belirlemek ve ilgili tasarımcı, mühendis ve karar vericilere rehberlik sağlamak amacıyla sunulmuştur.

Kaynakça

  • Akcay, M., Turan, A., & Yildiz, S. (2020). Building performance simulation tools: Comparative analysis and application. Journal of Building Simulation, 13(4), 655–667. https://doi.org/10.1007/s12273-020-0634-1.
  • Aldrich, D., & Bond, R. (1985). Thermal performance of rigid cellular foam insulation at subfreezing temperatures. In “Thermal performance of the exterior envelopes of buildings III” (pp. 500–509). ASHRAE/DOE/BTECC Conference.
  • Bayram, N. S., & Orhon, A. V. (2020). Enerji simülasyon araçlari ile binalarda faz değiştiren malzeme uygulamalari. International Journal of Innovative Engineering Applications, 4(2), 55-63. https://doi.org/10.46460/ijiea.807083.
  • Belloso, J. (2025). Comparative simulation study of heating and cooling systems in buildings located in Sweden and Spain.: simulation by IDA-ICE. ( Yüksek Lisans Tezi).
  • Berardi, U., & Naldi, M. (2017). The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy and Buildings, 144, 262–275. https://doi.org/10.1016/j.enbuild.2017.03.052.
  • Berberoğlu, U. (2009). Sürdürülebilir mimarlık anlayışı çerçevesinde enerji verimliliği kavramının güncel konumu ve yeni yaklaşımlar (Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü).
  • Besant, R., & Miller, E. (1982). Thermal resistance of loose-fill fiberglass insulation spaces heated from below. In “Thermal performance of the exterior envelope of building II” (pp. 720–733). ASHRAE/DOE Conference.
  • Budaiwi, I., & Abdou, A. (2013). The impact of thermal conductivity change of moist fibrous insulation on energy performance of buildings under hot–humid conditions. Energy and Buildings, 60, 388–399. https://doi.org/10.1016/j.enbuild.2013.
  • Can, R. (2023). Konutlarda kapalı otoparkların enerji verimliliği açısından tasarım standartlarının değerlendirilmesi (Yüksek Lisans Tezi).
  • Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661–673. https://doi.org/10.1016/j.buildenv.2006.10.027
  • Çelebi, B. (2022). Bim tabanli bina enerji simülasyon yazilimlarinin analiz sonuçlari üzerine bir inceleme (Master's thesis, Mimar Sinan Fine Arts University (Turkey).
  • Dena, A.J.G, Pascual, M.Á., Bandera, C.F.(2021) Building energy model for Mexican energy standard verification using physics-based open studio SGSAVE software simulation, Sustainability, 13(3):1521. https://doi.org/10.3390/su13031521.
  • EN. (2007). EN 15251:2007 Indoor environmental input parameters for design and assessment of energy performance of buildings.
  • Ergün, B., Karataş, Ö., & Bıçakçı, A. (2023). Energy simulation software in architectural practice: User perception and comparative usability study. Sustainability, 15(3), 2103. https://doi.org/10.3390/su15032103.
  • Hafner, R. J., Elmes, D., & Read, D. (2019). Promoting behavioural change to reduce thermal energy demand in households: a review. Renewable and Sustainable Energy Reviews, 102, 205-214.
  • Hung Anh, L. D., & Pásztory, Z. (2021). An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering, 44, 102604. https://doi.org/10.1016/j.jobe.2021.102604.
  • Integrated Environmental Solutions (IES). (n.d.). Software overview. https://www.iesve.com/software
  • ISO. (2008). ISO 13790:2008 Energy performance of buildings — Calculation of energy use for space heating and cooling. International Organization for Standardization.
  • Khoukhi, M. (2018). The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: Impact on building energy performance. Energy and Buildings, 169, 228–235. https://doi.org/10.1016/j.enbuild.2018.03.055.
  • Kim, H. K., Jeon, J. H., & Lee, H. K. (2012). Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Construction and Building Materials, 29, 193–200. https://doi.org/10.1016/j.conbuildmat.2011.08.067.
  • Koru, M. (2016). Determination of thermal conductivity of closed-cell insulation materials that depend on temperature and density. Arabian Journal for Science and Engineering, 41(11), 4337–4346. https://doi.org/10.1007/s13369-016-2122-6H.
  • Mardaljevic, J., et al. (2009). "Daylighting and solar analyses in IES-VE: a case study of the nottingham university campus." Journal of Building Performance Simulation, 2(3), 195-211. DOI: 10.1080/19401490903034279.
  • Motawa, I., Elsheikh, A., Diab, E. (2021). Energy performance analysis of building envelopes, Journal of Engineering, Project, and Production Management, 11(3), 196.
  • ORAL, M.(2023). Binaların enerji etkinlik performansinin simülasyon programi ile ölçülmesi. European Journal of Science and Technology. https://doi.org/10.31590/EJOSAT.799365.
  • Ozkaymak, S., & Sahin, M. (2021). The role of building simulation tools in sustainable design: A comparative study on LEED-compatible platforms. Journal of Green Building, 16(4), 179–194. https://doi.org/10.3992/jgb.16.4.179.
  • Shahedan, N. F., Abdullah, M. M. A. B., Mahmed, N., Kusbiantoro, A., Binhussain, M., & Zailan, S. N. (2017). Review on thermal insulation performance in various type of concrete. AIP Conference Proceedings, 1835(1), 020046. https://doi.org/10.1063/1.4981653.
  • Türk Standartları Enstitüsü. (2021). TS 825 Binalarda ısı yalıtım kuralları [TS 825 Thermal insulation requirements for buildings]. Ankara, Türkiye: TSE.
  • Vuarnoz, D., & Jusselme, T. (2018). Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the swiss grid. Energy, 161, 573-582.
  • Yildiz, M. E., Beyhan, F., & Uçar, M. K. (2021). Enerji verimli bina tasarımı için yapay sinir ağları ile ısıtma soğutma yükünün belirlenmesi. Academic Perspective Procedia, 4(1), 91-100.
  • Zach, J., Korjenic, A., Petránek, V., Hroudová, J., & Bednar, T. (2012). Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy and Buildings, 49, 246–253. https://doi.org/10.1016/j.enbuild.2012.02.014.
  • Zhu, W., Cai, S., & Cremaschi, L. (2015). Thermal performance and moisture accumulation of fibrous mechanical pipe insulation systems operating at below-ambient temperature in wet conditions with moisture ingress. Science and Technology for the Built Environment, 21(6), 862–875. https://doi.org/10.1080/23744731.2015.1056658.

PARAMETRIC ANALYSIS FOR ENERGY EFFICIENT DESIGN WITH IES-VE SOFTWARE

Yıl 2026, Cilt: 5 Sayı: 2, 15 - 29, 08.01.2026

Öz

Within the scope of this study, a 1+1 studio apartment with an area of 100 m² was designed in the climatical conditions of Istanbul and the building materials and climate details were processed as input to the IES-VE programme. Alternative scenarios where different material combinations are examined are created and the CO2 emissions and energy usage of each combination are analysed. The research results are presented to determine the most suitable material combinations for Istanbul and to supply guidance to relevant decision makers, engineers and designers.

Kaynakça

  • Akcay, M., Turan, A., & Yildiz, S. (2020). Building performance simulation tools: Comparative analysis and application. Journal of Building Simulation, 13(4), 655–667. https://doi.org/10.1007/s12273-020-0634-1.
  • Aldrich, D., & Bond, R. (1985). Thermal performance of rigid cellular foam insulation at subfreezing temperatures. In “Thermal performance of the exterior envelopes of buildings III” (pp. 500–509). ASHRAE/DOE/BTECC Conference.
  • Bayram, N. S., & Orhon, A. V. (2020). Enerji simülasyon araçlari ile binalarda faz değiştiren malzeme uygulamalari. International Journal of Innovative Engineering Applications, 4(2), 55-63. https://doi.org/10.46460/ijiea.807083.
  • Belloso, J. (2025). Comparative simulation study of heating and cooling systems in buildings located in Sweden and Spain.: simulation by IDA-ICE. ( Yüksek Lisans Tezi).
  • Berardi, U., & Naldi, M. (2017). The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy and Buildings, 144, 262–275. https://doi.org/10.1016/j.enbuild.2017.03.052.
  • Berberoğlu, U. (2009). Sürdürülebilir mimarlık anlayışı çerçevesinde enerji verimliliği kavramının güncel konumu ve yeni yaklaşımlar (Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü).
  • Besant, R., & Miller, E. (1982). Thermal resistance of loose-fill fiberglass insulation spaces heated from below. In “Thermal performance of the exterior envelope of building II” (pp. 720–733). ASHRAE/DOE Conference.
  • Budaiwi, I., & Abdou, A. (2013). The impact of thermal conductivity change of moist fibrous insulation on energy performance of buildings under hot–humid conditions. Energy and Buildings, 60, 388–399. https://doi.org/10.1016/j.enbuild.2013.
  • Can, R. (2023). Konutlarda kapalı otoparkların enerji verimliliği açısından tasarım standartlarının değerlendirilmesi (Yüksek Lisans Tezi).
  • Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661–673. https://doi.org/10.1016/j.buildenv.2006.10.027
  • Çelebi, B. (2022). Bim tabanli bina enerji simülasyon yazilimlarinin analiz sonuçlari üzerine bir inceleme (Master's thesis, Mimar Sinan Fine Arts University (Turkey).
  • Dena, A.J.G, Pascual, M.Á., Bandera, C.F.(2021) Building energy model for Mexican energy standard verification using physics-based open studio SGSAVE software simulation, Sustainability, 13(3):1521. https://doi.org/10.3390/su13031521.
  • EN. (2007). EN 15251:2007 Indoor environmental input parameters for design and assessment of energy performance of buildings.
  • Ergün, B., Karataş, Ö., & Bıçakçı, A. (2023). Energy simulation software in architectural practice: User perception and comparative usability study. Sustainability, 15(3), 2103. https://doi.org/10.3390/su15032103.
  • Hafner, R. J., Elmes, D., & Read, D. (2019). Promoting behavioural change to reduce thermal energy demand in households: a review. Renewable and Sustainable Energy Reviews, 102, 205-214.
  • Hung Anh, L. D., & Pásztory, Z. (2021). An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering, 44, 102604. https://doi.org/10.1016/j.jobe.2021.102604.
  • Integrated Environmental Solutions (IES). (n.d.). Software overview. https://www.iesve.com/software
  • ISO. (2008). ISO 13790:2008 Energy performance of buildings — Calculation of energy use for space heating and cooling. International Organization for Standardization.
  • Khoukhi, M. (2018). The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: Impact on building energy performance. Energy and Buildings, 169, 228–235. https://doi.org/10.1016/j.enbuild.2018.03.055.
  • Kim, H. K., Jeon, J. H., & Lee, H. K. (2012). Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Construction and Building Materials, 29, 193–200. https://doi.org/10.1016/j.conbuildmat.2011.08.067.
  • Koru, M. (2016). Determination of thermal conductivity of closed-cell insulation materials that depend on temperature and density. Arabian Journal for Science and Engineering, 41(11), 4337–4346. https://doi.org/10.1007/s13369-016-2122-6H.
  • Mardaljevic, J., et al. (2009). "Daylighting and solar analyses in IES-VE: a case study of the nottingham university campus." Journal of Building Performance Simulation, 2(3), 195-211. DOI: 10.1080/19401490903034279.
  • Motawa, I., Elsheikh, A., Diab, E. (2021). Energy performance analysis of building envelopes, Journal of Engineering, Project, and Production Management, 11(3), 196.
  • ORAL, M.(2023). Binaların enerji etkinlik performansinin simülasyon programi ile ölçülmesi. European Journal of Science and Technology. https://doi.org/10.31590/EJOSAT.799365.
  • Ozkaymak, S., & Sahin, M. (2021). The role of building simulation tools in sustainable design: A comparative study on LEED-compatible platforms. Journal of Green Building, 16(4), 179–194. https://doi.org/10.3992/jgb.16.4.179.
  • Shahedan, N. F., Abdullah, M. M. A. B., Mahmed, N., Kusbiantoro, A., Binhussain, M., & Zailan, S. N. (2017). Review on thermal insulation performance in various type of concrete. AIP Conference Proceedings, 1835(1), 020046. https://doi.org/10.1063/1.4981653.
  • Türk Standartları Enstitüsü. (2021). TS 825 Binalarda ısı yalıtım kuralları [TS 825 Thermal insulation requirements for buildings]. Ankara, Türkiye: TSE.
  • Vuarnoz, D., & Jusselme, T. (2018). Temporal variations in the primary energy use and greenhouse gas emissions of electricity provided by the swiss grid. Energy, 161, 573-582.
  • Yildiz, M. E., Beyhan, F., & Uçar, M. K. (2021). Enerji verimli bina tasarımı için yapay sinir ağları ile ısıtma soğutma yükünün belirlenmesi. Academic Perspective Procedia, 4(1), 91-100.
  • Zach, J., Korjenic, A., Petránek, V., Hroudová, J., & Bednar, T. (2012). Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy and Buildings, 49, 246–253. https://doi.org/10.1016/j.enbuild.2012.02.014.
  • Zhu, W., Cai, S., & Cremaschi, L. (2015). Thermal performance and moisture accumulation of fibrous mechanical pipe insulation systems operating at below-ambient temperature in wet conditions with moisture ingress. Science and Technology for the Built Environment, 21(6), 862–875. https://doi.org/10.1080/23744731.2015.1056658.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

İlknur Arı 0009-0002-2638-2265

Figen Balo 0000-0001-5886-730X

Gönderilme Tarihi 14 Nisan 2025
Kabul Tarihi 19 Ağustos 2025
Yayımlanma Tarihi 8 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 5 Sayı: 2

Kaynak Göster

APA Arı, İ., & Balo, F. (2026). IES-VE YAZILIMI İLE ENERJİ ETKİN TASARIM İÇİN PARAMETRİK ANALİZ. Rahva Journal of Technical and Social Studies, 5(2), 15-29.