Araştırma Makalesi
BibTex RIS Kaynak Göster

İkincil Afetlerden Deprem Sonrası Yangına Yönelik Simülasyon Metodolojileri: Kavramsal Bir Bakış Açısı

Yıl 2024, Cilt: 04 Sayı: 01, 79 - 93, 31.07.2024

Öz

Deprem sonrası yangınlar; önemli bir ikincil afet olarak yaşam kaybı, yapı hasarı ve finansal zarar açısından deprem kaynaklı sismik hasarın boyutlarını büyük ölçüde artırma potansiyeline sahiptir. Yoğun nüfusa sahip kentsel bölgelerde deprem nedeniyle yangınla mücadele ekipmanlarının zarar görmesi, yolların gerekli itfaiye ve acil müdahale faaliyetlerini engelleyecek biçimde tıkanması, yangına sebebiyet verebilecek elektrik ve gaz hatlarında meydana gelebilecek hasarlar ve iletişim hatlarındaki olası kesintiler sebebiyle deprem sonrası yangın riski üzerinde durulması gereken önemli bir risktir. Simülasyon metodolojileri, deprem sonrası yangın riskinin değerlendirilmesinde ve mevcut risklere karşı topluluk direncini artırabilecek önlemlerin belirlenmesinde literatürde en yaygın kullanılan yöntemlerden biridir. Bu çalışmada, 2000 yılı sonrasında yayımlanan, deprem sonrası yangın riskinin ele alınmasında ve bu afetlere karşı yürütülebilecek faaliyetlerin değerlendirilmesinde simülasyon metodolojilerini kullanan makaleler incelenmiştir. İlgili anahtar kelimeler kullanılarak ulaşılan çalışmaların bibliyografik özellikleri sunularak, deprem sonrası yangını simülasyon odağında ele alan çalışmalara kavramsal bir bakış açısı sunulmuştur.

Kaynakça

  • [1] A. Coburn & R Spence, "Earthquake protection", John Wiley & Sons, 2002.
  • [2] B. Behnam, "Post-earthquake fire analysis in urban structures: Risk management strategies", CRC Press, 2017.
  • [3] N. Lotfi, B. Behnam & F. Peyman, "A BIM-based framework for evacuation assessment of high-rise buildings under post-earthquake fires", Journal of Building Engineering, 43, 102559, 2021. DOI: 10.1016/j.jobe.2021.102559
  • [4] N. Elhami Khorasani & M. E. Garlock, "Overview of fire following earthquake: Historical events and community responses", International Journal of Disaster Resilience in the Built Environment, 8(02), 158-174, 2017. DOI: 10.1108/IJDRBE-02-2015-0005
  • [5] C. Scawthorn, J. M. Eidinger & A. Schiff, (Eds.), "Fire following earthquake", Vol. 26, ASCE Publications, 2005.
  • [6] M. Aria & C. Cuccurullo, "bibliometrix: An R-tool for comprehensive science mapping analysis", Journal of Informetrics, 11(4), 959-975, 2017.
  • [7] N. Van Eck & L. Waltman, "Software survey: VOSviewer, a computer program for bibliometric mapping", scientometrics, 84(2), 523-538, 2010.
  • [8] A. Z. Ren & X. Y. Xie, "The simulation of post-earthquake fire-prone area based on GIS", Journal of fire sciences, 22(5), 421-439, 2004. DOI: 10.1177/0734904104042440
  • [9] S. J. Zhao, L. Y. Xiong & A. Z. Ren, "A spatial–temporal stochastic simulation of fire outbreaks following earthquake based on GIS", Journal of Fire Sciences, 24(4), 313-339, 2006. DOI: 10.1177/0734904106060786
  • [10] S. Lee, R. Davidson, N. Ohnishi & C. Scawthorn, "Fire following earthquake—Reviewing the state-of-the-art of modeling", Earthquake spectra, 24(4), 933-967, 2008. DOI: 10.1193/1.2977493
  • [11] C. J. Huang, Y. S. Wu, K. Y. Chang & C. H. Chang, "Reliability analysis of rescue capabilities of fire-fighting units after earthquake", Journal of Applied Fire Science, 18(2), 143-154, 2008. DOI: 10.2190/AF.18.2.c
  • [12] S. Zhao, "GisFFE—an integrated software system for the dynamic simulation of fires following an earthquake based on GIS", Fire Safety Journal, 45(2), 83-97, 2010. DOI: 10.1016/j.firesaf.2009.11.001
  • [13] S. W. Lee & R. A. Davidson, "Physics-based simulation model of post-earthquake fire spread", Journal of Earthquake Engineering, 14(5), 670-687, 2010. DOI: 10.1080/13632460903336928
  • [14] S. W. Lee & R. A. Davidson, "Application of a physics-based simulation model to examine post-earthquake fire spread", Journal of Earthquake Engineering, 14(5), 688-705, 2010. DOI: 10.1080/13632460903336936
  • [15] T. Nishino, T. Tanaka & A. Hokugo, "An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation", Fire safety journal, 54, 167-180, 2012. DOI: 10.1016/j.firesaf.2012.06.002
  • [16] K. Himoto, K. Mukaibo, Y. Akimoto, R. Kuroda, A. Hokugo & T. Tanaka, "A physics-based model for post-earthquake fire spread considering damage to building components caused by seismic motion and heating by fire", Earthquake spectra, 29(3), 793-816, 2013. DOI: 10.1193/1.4000154
  • [17] B. Omidvar, M. Eskandari & E. Peyghaleh, "Seismic damage to urban areas due to failed buried fuel pipelines case study: fire following earthquake in the city of Kermanshah, Iran", Natural hazards, 67, 169-192, 2013. DOI: 10.1007/s11069-013-0554-9
  • [18] K. Himoto & T. Nakamura, "An Analysis of the post-earthquake fire safety of historic buildings in Kyoto, Japan", Fire Technology, 50, 1107-1125, 2014. DOI: 10.1007/s10694-013-0330-0
  • [19] S. Shang, C. Su, C. Huang, S. Kao, Y. Wu & C. Lin, "The evaluation of fire rescue capability from post-earthquake fires in Taipei, Taiwan", Journal of Earthquake and Tsunami, 8(05), 1450014, 2014. DOI: 10.1142/S1793431114500146
  • [20] K. Himoto & K. Suzuki, "Probabilistic fire risk assessment of a mid-rise or high-rise building with fire safety equipment systems damaged by seismic shaking", Journal of Environmental Engineering (Japan), 81(728), 855-863, 2016. DOI: 10.3130/aije.81.855
  • [21] X. Liu, W. Wang, T. Dong & Z. Yang, "Dynamic evaluation on road's evacuation capability under the influence of post-earthquake fire in urban seismic weak area", Disaster Advances, 11 (1), 57-65, 2018.
  • [22] Z. Xu, Z. Zhang, X. Lu, X. Zeng & H. Guan, "Post-earthquake fire simulation considering overall seismic damage of sprinkler systems based on BIM and FEMA P-58", Automation in Construction, 90, 9-22, 2018. DOI: 10.1016/j.autcon.2018.02.015
  • [23] X. Lu, X. Zeng, Z. Xu & H. Guan, "Physics-based simulation and high-fidelity visualization of fire following earthquake considering building seismic damage", Journal of earthquake Engineering, 23(7), 1173-1193, 2019. DOI: 10.1080/13632469.2017.1351409
  • [24] Y. Li, J. Gao, H. Zhang, L. Deng & P. Xin, "Reliability assessment model of water distribution networks against fire following earthquake (FFE)", Water, 11(12), 2536, 2019. DOI: 10.3390/w11122536
  • [25] T. Nishino & A. Hokugo, "A stochastic model for time series prediction of the number of post-earthquake fire ignitions in buildings based on the ignition record for the 2011 Tohoku Earthquake", Earthquake spectra, 36(1), 232-249, 2020. DOI: 10.1177/8755293019878184
  • [26] M. M. Rafi, T. Aziz & S. H. Lodi, "A suggested model for mass fire spread", Sustainable and Resilient Infrastructure, 5(4), 214-231, 2020. DOI: 10.1080/23789689.2018.1519308
  • [27] M. Coar, M. Garlock & N. Elhami Khorasani, "Effects of water network dependency on the electric network for post-earthquake fire suppression", Sustainable and Resilient Infrastructure, 5(5), 269-288, 2020. DOI: 10.1080/23789689.2018.1563408
  • [28] K. Himoto, "Hierarchical Bayesian modeling of post‐earthquake ignition probabilities considering inter‐earthquake heterogeneity", Risk Analysis, 40(6), 1124-1138, 2020. DOI: 10.1111/risa.13455
  • [29] X. Lu, Z. Yang, Z. Xu & C. Xiong, "Scenario simulation of indoor post-earthquake fire rescue based on building information model and virtual reality", Advances in Engineering Software, 143, 102792, 2020. DOI: 10.1016/j.advengsoft.2020.102792
  • [30] A. Sarreshtehdari & N. E. Khorasani, "Integrating the fire department response within a fire following earthquake framework for application in urban areas", Fire safety journal, 124, 103397, 2021. DOI: 10.1016/j.firesaf.2021.103397
  • [31] M. Coar, A. Sarreshtehdari, M. Garlock & N. Elhami Khorasani, "Methodology and challenges of fire following earthquake analysis: an urban community study considering water and transportation networks", Natural hazards, 109(1), 1-31, 2021. DOI: 10.1007/s11069-021-04795-6
  • [32] G. Hou & Q. Li, "Firefighting capacity evaluation of water distribution system subjected to multi-ignitions of post-earthquake fires", Structural safety, 88, 102035, 2021. DOI: 10.1016/j.strusafe.2020.102035
  • [33] F. Scheele, B. Lukovic, J. Moratalla, A. Dunant & N. Horspool, "Estimating fire following earthquake risk for Wellington City, New Zealand", Bulletin of the New Zealand Society for Earthquake Engineering, 55(4), 241-256, 2022. DOI: 10.5459/BNZSEE.55.4.241-256
  • [34] Q. Tong & T. Gernay, "A hierarchical Bayesian model for predicting fire ignitions after an earthquake with application to California", Natural Hazards, 1-24, 2022. DOI: 10.1007/s11069-021-05109-6
  • [35] Y. Wu, Z. Xu, C. Liang & R. Song, "Post-earthquake traffic simulation considering road traversability", Sustainability, 14(18), 11145, 2022. DOI: 10.3390/su141811145
  • [36] T. Nishino, "Probabilistic urban cascading multi-hazard risk assessment methodology for ground shaking and post-earthquake fires", Natural Hazards, 116(3), 3165-3200, 2023. DOI: 10.1007/s11069-022-05802-0

Simulation Methodologies for Post Earthquake Fire as a Secondary Disaster: A Conceptual Framework

Yıl 2024, Cilt: 04 Sayı: 01, 79 - 93, 31.07.2024

Öz

As a major secondary disaster, post earthquake fires have the potential to significantly enhance the extent of seismic damage caused by earthquakes in terms of fatalities, structural damage and financial loss. Due to possible damage to firefighting equipment, road blockages that restrict the requirement for emergency response and firefighting operations, potential damage to gas and electricity lines that could result in fires and potential disruptions to communication lines, there is a significant risk of post earthquake fire that should be assessed in densely populated urban areas. Simulation methodologies are one of the most widely used techniques in the literature in assessing post earthquake fire risk and determining actions that may improve community resilience against existing risks. This study examines articles published after 2000 that use simulation methodologies to address post earthquake fire risk and evaluate preventative actions that can be taken against these disasters. A conceptual framework is provided to the studies that address post earthquake fire in a simulation focus by displaying the bibliographic features of the studies that are accessed using the relevant keywords.

Kaynakça

  • [1] A. Coburn & R Spence, "Earthquake protection", John Wiley & Sons, 2002.
  • [2] B. Behnam, "Post-earthquake fire analysis in urban structures: Risk management strategies", CRC Press, 2017.
  • [3] N. Lotfi, B. Behnam & F. Peyman, "A BIM-based framework for evacuation assessment of high-rise buildings under post-earthquake fires", Journal of Building Engineering, 43, 102559, 2021. DOI: 10.1016/j.jobe.2021.102559
  • [4] N. Elhami Khorasani & M. E. Garlock, "Overview of fire following earthquake: Historical events and community responses", International Journal of Disaster Resilience in the Built Environment, 8(02), 158-174, 2017. DOI: 10.1108/IJDRBE-02-2015-0005
  • [5] C. Scawthorn, J. M. Eidinger & A. Schiff, (Eds.), "Fire following earthquake", Vol. 26, ASCE Publications, 2005.
  • [6] M. Aria & C. Cuccurullo, "bibliometrix: An R-tool for comprehensive science mapping analysis", Journal of Informetrics, 11(4), 959-975, 2017.
  • [7] N. Van Eck & L. Waltman, "Software survey: VOSviewer, a computer program for bibliometric mapping", scientometrics, 84(2), 523-538, 2010.
  • [8] A. Z. Ren & X. Y. Xie, "The simulation of post-earthquake fire-prone area based on GIS", Journal of fire sciences, 22(5), 421-439, 2004. DOI: 10.1177/0734904104042440
  • [9] S. J. Zhao, L. Y. Xiong & A. Z. Ren, "A spatial–temporal stochastic simulation of fire outbreaks following earthquake based on GIS", Journal of Fire Sciences, 24(4), 313-339, 2006. DOI: 10.1177/0734904106060786
  • [10] S. Lee, R. Davidson, N. Ohnishi & C. Scawthorn, "Fire following earthquake—Reviewing the state-of-the-art of modeling", Earthquake spectra, 24(4), 933-967, 2008. DOI: 10.1193/1.2977493
  • [11] C. J. Huang, Y. S. Wu, K. Y. Chang & C. H. Chang, "Reliability analysis of rescue capabilities of fire-fighting units after earthquake", Journal of Applied Fire Science, 18(2), 143-154, 2008. DOI: 10.2190/AF.18.2.c
  • [12] S. Zhao, "GisFFE—an integrated software system for the dynamic simulation of fires following an earthquake based on GIS", Fire Safety Journal, 45(2), 83-97, 2010. DOI: 10.1016/j.firesaf.2009.11.001
  • [13] S. W. Lee & R. A. Davidson, "Physics-based simulation model of post-earthquake fire spread", Journal of Earthquake Engineering, 14(5), 670-687, 2010. DOI: 10.1080/13632460903336928
  • [14] S. W. Lee & R. A. Davidson, "Application of a physics-based simulation model to examine post-earthquake fire spread", Journal of Earthquake Engineering, 14(5), 688-705, 2010. DOI: 10.1080/13632460903336936
  • [15] T. Nishino, T. Tanaka & A. Hokugo, "An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation", Fire safety journal, 54, 167-180, 2012. DOI: 10.1016/j.firesaf.2012.06.002
  • [16] K. Himoto, K. Mukaibo, Y. Akimoto, R. Kuroda, A. Hokugo & T. Tanaka, "A physics-based model for post-earthquake fire spread considering damage to building components caused by seismic motion and heating by fire", Earthquake spectra, 29(3), 793-816, 2013. DOI: 10.1193/1.4000154
  • [17] B. Omidvar, M. Eskandari & E. Peyghaleh, "Seismic damage to urban areas due to failed buried fuel pipelines case study: fire following earthquake in the city of Kermanshah, Iran", Natural hazards, 67, 169-192, 2013. DOI: 10.1007/s11069-013-0554-9
  • [18] K. Himoto & T. Nakamura, "An Analysis of the post-earthquake fire safety of historic buildings in Kyoto, Japan", Fire Technology, 50, 1107-1125, 2014. DOI: 10.1007/s10694-013-0330-0
  • [19] S. Shang, C. Su, C. Huang, S. Kao, Y. Wu & C. Lin, "The evaluation of fire rescue capability from post-earthquake fires in Taipei, Taiwan", Journal of Earthquake and Tsunami, 8(05), 1450014, 2014. DOI: 10.1142/S1793431114500146
  • [20] K. Himoto & K. Suzuki, "Probabilistic fire risk assessment of a mid-rise or high-rise building with fire safety equipment systems damaged by seismic shaking", Journal of Environmental Engineering (Japan), 81(728), 855-863, 2016. DOI: 10.3130/aije.81.855
  • [21] X. Liu, W. Wang, T. Dong & Z. Yang, "Dynamic evaluation on road's evacuation capability under the influence of post-earthquake fire in urban seismic weak area", Disaster Advances, 11 (1), 57-65, 2018.
  • [22] Z. Xu, Z. Zhang, X. Lu, X. Zeng & H. Guan, "Post-earthquake fire simulation considering overall seismic damage of sprinkler systems based on BIM and FEMA P-58", Automation in Construction, 90, 9-22, 2018. DOI: 10.1016/j.autcon.2018.02.015
  • [23] X. Lu, X. Zeng, Z. Xu & H. Guan, "Physics-based simulation and high-fidelity visualization of fire following earthquake considering building seismic damage", Journal of earthquake Engineering, 23(7), 1173-1193, 2019. DOI: 10.1080/13632469.2017.1351409
  • [24] Y. Li, J. Gao, H. Zhang, L. Deng & P. Xin, "Reliability assessment model of water distribution networks against fire following earthquake (FFE)", Water, 11(12), 2536, 2019. DOI: 10.3390/w11122536
  • [25] T. Nishino & A. Hokugo, "A stochastic model for time series prediction of the number of post-earthquake fire ignitions in buildings based on the ignition record for the 2011 Tohoku Earthquake", Earthquake spectra, 36(1), 232-249, 2020. DOI: 10.1177/8755293019878184
  • [26] M. M. Rafi, T. Aziz & S. H. Lodi, "A suggested model for mass fire spread", Sustainable and Resilient Infrastructure, 5(4), 214-231, 2020. DOI: 10.1080/23789689.2018.1519308
  • [27] M. Coar, M. Garlock & N. Elhami Khorasani, "Effects of water network dependency on the electric network for post-earthquake fire suppression", Sustainable and Resilient Infrastructure, 5(5), 269-288, 2020. DOI: 10.1080/23789689.2018.1563408
  • [28] K. Himoto, "Hierarchical Bayesian modeling of post‐earthquake ignition probabilities considering inter‐earthquake heterogeneity", Risk Analysis, 40(6), 1124-1138, 2020. DOI: 10.1111/risa.13455
  • [29] X. Lu, Z. Yang, Z. Xu & C. Xiong, "Scenario simulation of indoor post-earthquake fire rescue based on building information model and virtual reality", Advances in Engineering Software, 143, 102792, 2020. DOI: 10.1016/j.advengsoft.2020.102792
  • [30] A. Sarreshtehdari & N. E. Khorasani, "Integrating the fire department response within a fire following earthquake framework for application in urban areas", Fire safety journal, 124, 103397, 2021. DOI: 10.1016/j.firesaf.2021.103397
  • [31] M. Coar, A. Sarreshtehdari, M. Garlock & N. Elhami Khorasani, "Methodology and challenges of fire following earthquake analysis: an urban community study considering water and transportation networks", Natural hazards, 109(1), 1-31, 2021. DOI: 10.1007/s11069-021-04795-6
  • [32] G. Hou & Q. Li, "Firefighting capacity evaluation of water distribution system subjected to multi-ignitions of post-earthquake fires", Structural safety, 88, 102035, 2021. DOI: 10.1016/j.strusafe.2020.102035
  • [33] F. Scheele, B. Lukovic, J. Moratalla, A. Dunant & N. Horspool, "Estimating fire following earthquake risk for Wellington City, New Zealand", Bulletin of the New Zealand Society for Earthquake Engineering, 55(4), 241-256, 2022. DOI: 10.5459/BNZSEE.55.4.241-256
  • [34] Q. Tong & T. Gernay, "A hierarchical Bayesian model for predicting fire ignitions after an earthquake with application to California", Natural Hazards, 1-24, 2022. DOI: 10.1007/s11069-021-05109-6
  • [35] Y. Wu, Z. Xu, C. Liang & R. Song, "Post-earthquake traffic simulation considering road traversability", Sustainability, 14(18), 11145, 2022. DOI: 10.3390/su141811145
  • [36] T. Nishino, "Probabilistic urban cascading multi-hazard risk assessment methodology for ground shaking and post-earthquake fires", Natural Hazards, 116(3), 3165-3200, 2023. DOI: 10.1007/s11069-022-05802-0
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Kerem Can Bulut 0009-0006-9396-6286

Alev Taşkın 0000-0003-1803-9408

Yayımlanma Tarihi 31 Temmuz 2024
Gönderilme Tarihi 1 Mart 2024
Kabul Tarihi 17 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 04 Sayı: 01

Kaynak Göster

IEEE K. C. Bulut ve A. Taşkın, “İkincil Afetlerden Deprem Sonrası Yangına Yönelik Simülasyon Metodolojileri: Kavramsal Bir Bakış Açısı”, Researcher, c. 04, sy. 01, ss. 79–93, 2024.
  • Yayın hayatına 2013 yılında başlamış olan "Researcher: Social Sciences Studies" (RSSS) dergisi, 2020 Ağustos ayı itibariyle "Researcher" ismiyle Ankara Bilim Üniversitesi bünyesinde faaliyetlerini sürdürmektedir.
  • 2021 yılı ve sonrasında Mühendislik ve Fen Bilimleri alanlarında katkıda bulunmayı hedefleyen özgün araştırma makalelerinin yayımlandığı uluslararası indeksli, ulusal hakemli, bilimsel ve elektronik bir dergidir.
  • Dergi özel sayılar dışında yılda iki kez yayımlanmaktadır. Amaçları doğrultusunda dergimizin yayın odağında; Endüstri Mühendisliği, Yazılım Mühendisliği, Bilgisayar Mühendisliği ve Elektrik Elektronik Mühendisliği alanları bulunmaktadır.
  • Dergide yayımlanmak üzere gönderilen aday makaleler Türkçe ve İngilizce dillerinde yazılabilir. Dergiye gönderilen makalelerin daha önce başka bir dergide yayımlanmamış veya yayımlanmak üzere başka bir dergiye gönderilmemiş olması gerekmektedir.