Araştırma Makalesi
BibTex RIS Kaynak Göster

Sosyo-Ekonomik ve Biyofiziksel Bileşenlerine Dayalı Geliştirilen Dirençlilik İndeksi ile Türkiye'de Kuraklığın İncelenmesi

Yıl 2023, , 73 - 91, 30.06.2023
https://doi.org/10.32569/resilience.1196557

Öz

Dirençlilik kavramı ekolojik sistemlere olduğu gibi insan-çevre ve sosyo-ekolojik ekosistemlere de uygulanabilir. Bu çalışma, bir insan–çevre sistemi olan, kuraklık tehlikesinin dirençliliğini anlama ve değerlendirmek amacıyla geliştirilen bir kavramsal çerçeve önermektedir. Bu bağlamda, geliştirilen kavramsal çerçeve sosyo-ekonomik göstergelere dayalı olarak operasyonel hale getirilmiş ve Türkiye’deki tüm illere uygulanmıştır. Çalışmada, ilk adımda Türkiye’nin kuraklık tehlikesine "maruz kalma" örüntüsünü ortaya çıkarmak için Standartlaştırılmış Yağış ve Evapotranspirasyon (SPEI) ve Gidiş Teorisi (Run) yaklaşımlarına dayalı kuraklık yoğunluğu hesaplanmıştır. Tanımlanan gösterge ve değişkenlerin göreceli ağırlık değerlerini bulmak için ise Analitik Hiyerarşi Süreci yöntemi kullanılmıştır. Ardından, alt-değişkenler ilgili göstergeler altında birleştirilerek, "Ekonomik, Sosyal ve Yapısal Dirençlilik İndeksi" olarak isimlendirilen üç indeks geliştirilmiştir. Sonuncu adımda, kuraklık yoğunluğu ve alt indekslerin birleşiminden ise "Kuraklık Dirençliliği İndeksi" elde edilmiştir. Çalışmanın bulguları "kuraklık dirençliliğin" en düşük olduğu illerin ülkenin Doğu Akdeniz Bölümü, Güneydoğu ve Doğu Anadolu Bölgelerinde üzerinde dağılış göstermektedir. Kuraklık dirençliliğin en düşük olduğu iller ise sırasıyla Adana, Adıyaman, Mersin, Osmaniye, Kahramanmaraş ve Diyarbakır olarak tespit edilmiştir. Diğer taraftan, dirençliliği en yüksek yerler Karadeniz ve Marmara Bölgelerindeki illerde olduğu tespit edilmiştir. Ayrıca, dirençliliği en yüksek iller sırasıyla Bartın, Rize, Artvin, Ardahan, Bursa ve Sinop olarak bulunmuştur. Elde edilen sonuçlar Doğu Akdeniz ve Güneydoğu Anadolu'nun "kuraklık dirençliliğinin" çarpıcı bir şekilde düşük olduğunu göstermektedir. Bu sonucun muhtemel bir nedeni söz konusu bölgelerin kuraklığa eğilimli iklimi olduğu söylenebilir. Ancak, sosyo-ekonomik bileşeninde kuraklık dirençliliğini etkileyen önemli bir faktör olduğu düşünülmektedir.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Proje Numarası

123O348

Teşekkür

Yazarlar desteklerinden dolayı TÜBİTAK'a teşekkür eder.

Kaynakça

  • Adger, W. N. (2000). Social and ecological resilience: are they related? Progress in Human Geography, 24(3), 347–364.
  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockström, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036–1039.
  • Adger, W. N., & Kelly, P. M. (1999). Social Vulnerability to Climate Change and the Architecture of Entitlements. Mitigation and Adaptation Strategies for Global Change, 4(3/4), 253–266.
  • Anderson, M. B. (1993). Disaster Vulnerability And Sustainable Development: A General Framework for Assessing Vulnerability.
  • Birkmann, J. (2013a). Data, indicators and criteria for measuring vulnerability: Theoretical bases and requirements. In J. Birkmann (Ed.), Measuring vulnerability to natural hazards: Towards disaster resilient societies (pp. 80–106). Tokyo, New York: United Nations University Press.
  • Birkmann, J. (2013b). Measuring vulnerability to promote disaster-resilient societies and to enhance adaptation: Discussion of conceptual frameworks and definitions. In J. Birkmann (Ed.), Measuring vulnerability to natural hazards: Towards disaster resilient societies (pp. 9–79). Tokyo, New York: United Nations University Press.
  • Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., & Vogt, J. (2016). Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrology and Earth System Sciences, 20(7), 2779–2800.
  • Bordi, I., Frigio, S., Parenti, P., Speranza, A., & Sutera, A. (2009). The analysis of the Standardized Precipitation Index in the Mediterranean area: large-scale patterns. Annals of Geophysics, 44(5-6). https://doi.org/10.4401/ag-3549
  • Brooks, N., Adger, W. N., & Kelly, P. M. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change, 15(2), 151–163.
  • Brunelli, M. (2015). Introduction to the Analytic Hierarchy Process. Cham Heidelberg New York Dordrecht London: Springer International Publishing.
  • Bryant, E. (2006). Natural hazards (2nd ed.). Cambridge: Cambridge University Press.
  • Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From Metaphor to Measurement: Resilience of What to What? Ecosystems, 4(8), 765–781.
  • Carrão, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108–124.
  • Chen, W., Cutter, S. L., Emrich, C. T., & Shi, P. (2013). Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China. International Journal of Disaster Risk Science, 4(4), 169–181. https://doi.org/10.1007/s13753-013-0018-6
  • Cheng, E. W., & Li, H. (2001). Analytic hierarchy process: an approach to determine measures for business performance. Measuring Business Excellence, 5(3), 30–37.
  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008a). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606.
  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008b). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606.
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2), 242–261.
  • Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster Resilience Indicators for Benchmarking Baseline Conditions. Journal of Homeland Security and Emergency Management, 7(1). https://doi.org/10.2202/1547-7355.1732
  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737.
  • Dabanlı, İ. (2018). Drought hazard, vulnerability, and risk assessment in Turkey. Arabian Journal of Geosciences 11, 1-12.
  • De Stefano, L., Tánago, I. G., Ballesteros, M., Urquijo, J., Blauhut, V., Stagge, J. H., & Stahl, K. (2015). Methodological approach considering different factors influencing vulnerability - pan-European scale. Technical Report.
  • Deressa, T., Hassan, M. R., & Ringler, C. (2008). Measuring Ethiopian Farmers’ Vulnerability to Climate Change Across Regional States (IFPRI Discussion Paper No. 806). Washington, D.C. Retrieved from International Food Policy Research Institute (IFPRI) website: https://www.ifpri.org/publication/measuring-ethiopian-farmers-vulnerability-climate-change-across-regional-states
  • Eriyagama, N., Smakhtin, V., Chandrapala, L., & Fernando, K. (2010). Impacts of Climate Change on Water Resources and Agriculture in Sri Lanka: A Review and Preliminary Vulnerability Mapping (IWMI Research Report No. 135). Colombo, Sri Lanka: International Water Management Institute (IWMI). Retrieved from International Water Management Institute (IWMI) website: https://www.iwmi.cgiar.org/publications/iwmi-research-reports/iwmi-research-report-135/ https://doi.org/10.5337/2010.211
  • Field, C. B., Barros, V., Stocker, Thomas F.: Dahe, Qin, & Dokken (Eds.) (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change / edited by Christopher B. Field … [et al.]. Cambridge: Cambridge University Press.
  • Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16(3), 253–267.
  • Gbetibouo, G. A., & Ringler, C. (2009). Mapping South African Farming Sector Vulnerability (IFPRI Discussion Paper No. 26199). Washington, D.C. Retrieved from International Food Policy Research Institute (IFPRI) website: http://ifpri.org/publication/mapping-south-african-farming-sector-vulnerability-climate-change-and-variability
  • Guttman, N. B. (1999). Accepting The Standardized Precipitation Index: A Calculation Algorithm. JAWRA Journal of the American Water Resources Association, 35(2), 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  • Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1), 1–23.
  • IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge, UK and New York, NY, USA: Cambridge University Press.
  • IPCC (2021). Summary for Policymakers: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. In Press.
  • Kasperson, J. X., & Kasperson, R. E. (Eds.) (2005). Risk, society, and policy series. The social contours of risk. London: Earthscan.
  • Kasperson, R. E., Kasperson, J. X., Dow, K., Ezcurra, E., Liverman, D. M., Mitchell, J. K., . . . Timmerman, P. (2001). Introduction: Global environmental risk and society. In J. X. Kasperson & R. E. Kasperson (Eds.), Global environmental risk. Tokyo, New York: University Press.
  • Kim, H., Park, J., Yoo, J., & Kim, T.‑W. (2013). Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea. Journal of Hydro-Environment Research, 9(1), 28–35.
  • Kotzee, I., & Reyers, B. (2016). Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecological Indicators, 60, 45–53. https://doi.org/10.1016/j.ecolind.2015.06.018
  • Lindoso, D. P., Rocha, J. D., Debortoli, N., Parente, I. I., Eiró, F., Bursztyn, M., & Rodrigues-Filho, S. (2014). Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: a case study in Ceará. Climatic Change, 127(1), 93–105. https://doi.org/10.1007/s10584-014-1116-1
  • Liu, C., Yang, C., Yang, Q., & Wang, J. (2021). Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Scientific Reports, 11(1), 1–24. https://doi.org/10.1038/s41598-020-80527-3
  • Lorenz, D. F. (2013). The diversity of resilience: contributions from a social science perspective. Natural Hazards, 67(1), 7–24. https://doi.org/10.1007/s11069-010-9654-y
  • Mishra, A. K., Singh, V. P., & Desai, V. R. (2009). Drought characterization: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41–55. https://doi.org/10.1007/s00477-007-0194-2
  • Moss, R. H., Brenkert, A. L., & Malone, E. L. (2001). Vulnerability to Climate Change: A Quantitative Approach (No. Report No. PNNL-SA-33642). Washington DC.
  • O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., . . . West, J. (2004). Mapping vulnerability to multiple stressors: climate change and globalization in India. Global Environmental Change, 14(4), 303–313.
  • Parry, M., Canziani, O. F., Palitukof, J., van der Linden, P., & Hanson, C. (Eds.) (2007). Climate change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to The Fourth Assessment Report of The Intergovernmental Panel on Climate Change. Cambridge U.K., New York: Cambridge University Press.
  • Patt, A. G., Schröter, D., Klein, R. J. T., & La Vega-Leinert, A. C. de (2011). Vulnerability Research and Assessment to Support Adaptation and Mitigation: Common Themes from the Diversity of Approaches. In A. G. Patt, D. Schröter, R. J. T. Klein, & A. C. de La Vega-Leinert (Eds.), Assessing vulnerability to global environmental change: Making research useful for adaptation decision making and policy. London: Earthscan.
  • Peacock, W. G., Brody, S. D., Seitz, W. A., Merrell, W. J., Vedlitz, A., Zahran, S., . . . Stickney, R. R. (Eds.) (2010). Advancing the Resilience of Coastal Localities: Developing, Implementing and Sustaining the Use of Coastal Resilience Indicators: A Final Report. Texas: Texas A&M University. https://doi.org/10.13140/RG.2.2.35146.80324
  • Pelling, M. (2001). Natural Disasters? In N. Castree & B. Braun (Eds.), Social nature: Theory, practice, and politics (pp. 170–188). Malden, Mass., Oxford: Blackwell.
  • Pelling, M. (2003). The vulnerability of cities: Natural disasters and social resilience. London: Earthscan Publications.
  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.
  • Saaty, T. L., & Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process (Vol. 175). Boston, MA: Springer US.
  • Schilling, J., Freier, K. P., Hertig, E., & Scheffran, J. (2012). Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosystems & Environment, 156, 12–26. https://doi.org/10.1016/j.agee.2012.04.021
  • Sen, B., Topcu, S., Türkeş, M., & Warner, J. F. (2012). Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52, 175–191. https://doi.org/10.3354/cr01074
  • Serkendiz, H., & Tatlı, H. (2021). Türkiye’nin Kuraklık Dirençliğinin Muhtemel Göstergeleri Üzerine Teorik Bir Bakış. 3. Uluslararası Afet ve Dirençlilik Kongresi. Symposium conducted at the meeting of AFAD, Ankara.
  • Sherrieb, K., Norris, F. H., & Galea, S. (2010). Measuring Capacities for Community Resilience. Social Indicators Research, 99(2), 227–247. https://doi.org/10.1007/s11205-010-9576-9
  • Tatli, H., & Türkeş, M. (2011). Empirical Orthogonal Function analysis of the palmer drought indices. Agricultural and Forest Meteorology, 151(7), 981–991. https://doi.org/10.1016/j.agrformet.2011.03.004
  • Tatli, H. (2021). Multivariate-drought indices—case studies with observations and outputs of NCAR CCSM-4 ensemble models. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-021-03736-4
  • Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38 (1), 55–94.
  • Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., . . . Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079.
  • Turp, M. T., Öztürk, T., Türkeş, M., & Kurnaz, M. L. (2014). Regcm4.3.5 Bölgesel İklim Modelini Kullanarak Türkiye ve Çevresi Bölgelerin Yakın Gelecekteki Hava Sıcaklığı ve Yağış Klimatolojileri İçin Öngörülen Değişikliklerin İncelenmesi. Ege Coğrafya Dergisi, 23(1), 1–24. Retrieved from https://dergipark.org.tr/tr/download/article-file/56732
  • Türkeş, M. (2012). Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi Çevrebilimleri Dergisi, 4(2), 1–32. https://doi.org/10.1501/Csaum_0000000063
  • Türkeş, M., & Tatli, H. (2009). Use of the standardized precipitation index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. International Journal of Climatology, 29, 2270–2282. https://doi.org/10.1002/joc.1862
  • UNISDR (2004). Living with risk: A global review of disaster reduction initiatives. New York: United Nations.
  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
  • Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. P. (2004). Resilience, Adaptability and Transformability in Social-ecological Systems. Ecology and Society, 9(2).
  • White, P., Pelling, M., Sen, K., Seddon, D., Russel, S., & Few, R. (2005). Disaster risk reduction: A development concern. London: Department for International Development.
  • Wilhelmi, O. V., & Wilhite, D. A. (2002). Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study. Natural Hazards, 25(1), 37–58.
  • Wilhite, D. A. (2000). Chapter 1 Drought as a Natural Hazard: Concepts and Definitions. In D. A. Wilhite (Ed.), Routledge hazards and disasters series. Drought: A global assessment (pp. 1–21). London: Routledge.
  • Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2004). At risk: Natural hazards, people’s vulnerability, and disasters (2nd ed.). London, New York: Routledge.
  • Yevjevich, V. (1967). An Objective Approach to Definitions And Investigations of Continental Hydrologic Droughts. Hydrology Papers: Vol. 23. Fort Collinsi Colorado: Colorada State University.
  • Yohe, G., & Tol, R. S. (2002). Indicators for social and economic coping capacity—moving toward a working definition of adaptive capacity. Global Environmental Change, 12(1), 25–40.
  • Yoon, D. K., Kang, J. E., & Brody, S. D. (2016). A measurement of community disaster resilience in Korea. Journal of Environmental Planning and Management, 59(3), 436–460. https://doi.org/10.1080/09640568.2015.1016142
  • Zarafshani, K., Sharafi, L., Azadi, H., & van Passel, S. (2016). Vulnerability Assessment Models to Drought: Toward a Conceptual Framework. Sustainability, 8(6), 1–21.

Investigation of Drought in Turkey with the Resilience Index Developed Based on Socio-Economic and Biophysical Components

Yıl 2023, , 73 - 91, 30.06.2023
https://doi.org/10.32569/resilience.1196557

Öz

The concept of resilience can be applied to ecological systems as well as human-environment and socio-ecological ecosystems. This paper presents a conceptual framework for understanding and evaluating the resilience of a human-environmental system to drought hazard. In this context, the proposed conceptual framework has been operationalized based on socioeconomic data and applied to all provinces in Turkey. In the first part of the study, drought intensity was computed using Standardized Precipitation and Evapotranspiration (SPEI) and Run Theory techniques to identify the "exposure" pattern of Turkey's drought vulnerability. To determine the relative weight values of the stated indicators and variables, the Analytical Hierarchy Process method was employed. Then, by integrating the sub-variables under the relevant indicators, three indices known as the "Economic, Social, and Structural Resilience Index" were established. The "Socio-Economic Resilience Index" was created in the last step by combining drought intensity and sub-indices. According to the study's findings, the provinces with the lowest "drought resilience" are spread across the country's Eastern Mediterranean Region, Southeast, and Eastern Anatolia Regions. According to the results, Adana, Adıyaman, Mersin, Osmaniye, Kahramanmaraş, and Diyarbakır have the lowest levels of drought resistance. On the other hand, the provinces of the Black Sea and Marmara Regions have been found to have the highest resilience. Additionally, Bartın, Rize, Artvin, Ardahan, Bursa, and Sinop were shown to have the highest levels of resilience. The findings demonstrate that the Eastern Mediterranean and Southeastern Anatolia have a startlingly low "drought resilience." The climate of the concerned regions, which is prone to drought, can be cited as a potential explanation for this outcome. Thought to play a significant role in drought resilience is its socio-economic component.

Proje Numarası

123O348

Kaynakça

  • Adger, W. N. (2000). Social and ecological resilience: are they related? Progress in Human Geography, 24(3), 347–364.
  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockström, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036–1039.
  • Adger, W. N., & Kelly, P. M. (1999). Social Vulnerability to Climate Change and the Architecture of Entitlements. Mitigation and Adaptation Strategies for Global Change, 4(3/4), 253–266.
  • Anderson, M. B. (1993). Disaster Vulnerability And Sustainable Development: A General Framework for Assessing Vulnerability.
  • Birkmann, J. (2013a). Data, indicators and criteria for measuring vulnerability: Theoretical bases and requirements. In J. Birkmann (Ed.), Measuring vulnerability to natural hazards: Towards disaster resilient societies (pp. 80–106). Tokyo, New York: United Nations University Press.
  • Birkmann, J. (2013b). Measuring vulnerability to promote disaster-resilient societies and to enhance adaptation: Discussion of conceptual frameworks and definitions. In J. Birkmann (Ed.), Measuring vulnerability to natural hazards: Towards disaster resilient societies (pp. 9–79). Tokyo, New York: United Nations University Press.
  • Blauhut, V., Stahl, K., Stagge, J. H., Tallaksen, L. M., De Stefano, L., & Vogt, J. (2016). Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrology and Earth System Sciences, 20(7), 2779–2800.
  • Bordi, I., Frigio, S., Parenti, P., Speranza, A., & Sutera, A. (2009). The analysis of the Standardized Precipitation Index in the Mediterranean area: large-scale patterns. Annals of Geophysics, 44(5-6). https://doi.org/10.4401/ag-3549
  • Brooks, N., Adger, W. N., & Kelly, P. M. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change, 15(2), 151–163.
  • Brunelli, M. (2015). Introduction to the Analytic Hierarchy Process. Cham Heidelberg New York Dordrecht London: Springer International Publishing.
  • Bryant, E. (2006). Natural hazards (2nd ed.). Cambridge: Cambridge University Press.
  • Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From Metaphor to Measurement: Resilience of What to What? Ecosystems, 4(8), 765–781.
  • Carrão, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108–124.
  • Chen, W., Cutter, S. L., Emrich, C. T., & Shi, P. (2013). Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China. International Journal of Disaster Risk Science, 4(4), 169–181. https://doi.org/10.1007/s13753-013-0018-6
  • Cheng, E. W., & Li, H. (2001). Analytic hierarchy process: an approach to determine measures for business performance. Measuring Business Excellence, 5(3), 30–37.
  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008a). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606.
  • Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008b). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598–606.
  • Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(2), 242–261.
  • Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster Resilience Indicators for Benchmarking Baseline Conditions. Journal of Homeland Security and Emergency Management, 7(1). https://doi.org/10.2202/1547-7355.1732
  • Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737.
  • Dabanlı, İ. (2018). Drought hazard, vulnerability, and risk assessment in Turkey. Arabian Journal of Geosciences 11, 1-12.
  • De Stefano, L., Tánago, I. G., Ballesteros, M., Urquijo, J., Blauhut, V., Stagge, J. H., & Stahl, K. (2015). Methodological approach considering different factors influencing vulnerability - pan-European scale. Technical Report.
  • Deressa, T., Hassan, M. R., & Ringler, C. (2008). Measuring Ethiopian Farmers’ Vulnerability to Climate Change Across Regional States (IFPRI Discussion Paper No. 806). Washington, D.C. Retrieved from International Food Policy Research Institute (IFPRI) website: https://www.ifpri.org/publication/measuring-ethiopian-farmers-vulnerability-climate-change-across-regional-states
  • Eriyagama, N., Smakhtin, V., Chandrapala, L., & Fernando, K. (2010). Impacts of Climate Change on Water Resources and Agriculture in Sri Lanka: A Review and Preliminary Vulnerability Mapping (IWMI Research Report No. 135). Colombo, Sri Lanka: International Water Management Institute (IWMI). Retrieved from International Water Management Institute (IWMI) website: https://www.iwmi.cgiar.org/publications/iwmi-research-reports/iwmi-research-report-135/ https://doi.org/10.5337/2010.211
  • Field, C. B., Barros, V., Stocker, Thomas F.: Dahe, Qin, & Dokken (Eds.) (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change / edited by Christopher B. Field … [et al.]. Cambridge: Cambridge University Press.
  • Folke, C. (2006). Resilience: The emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16(3), 253–267.
  • Gbetibouo, G. A., & Ringler, C. (2009). Mapping South African Farming Sector Vulnerability (IFPRI Discussion Paper No. 26199). Washington, D.C. Retrieved from International Food Policy Research Institute (IFPRI) website: http://ifpri.org/publication/mapping-south-african-farming-sector-vulnerability-climate-change-and-variability
  • Guttman, N. B. (1999). Accepting The Standardized Precipitation Index: A Calculation Algorithm. JAWRA Journal of the American Water Resources Association, 35(2), 311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  • Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1), 1–23.
  • IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge, UK and New York, NY, USA: Cambridge University Press.
  • IPCC (2021). Summary for Policymakers: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. In Press.
  • Kasperson, J. X., & Kasperson, R. E. (Eds.) (2005). Risk, society, and policy series. The social contours of risk. London: Earthscan.
  • Kasperson, R. E., Kasperson, J. X., Dow, K., Ezcurra, E., Liverman, D. M., Mitchell, J. K., . . . Timmerman, P. (2001). Introduction: Global environmental risk and society. In J. X. Kasperson & R. E. Kasperson (Eds.), Global environmental risk. Tokyo, New York: University Press.
  • Kim, H., Park, J., Yoo, J., & Kim, T.‑W. (2013). Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea. Journal of Hydro-Environment Research, 9(1), 28–35.
  • Kotzee, I., & Reyers, B. (2016). Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecological Indicators, 60, 45–53. https://doi.org/10.1016/j.ecolind.2015.06.018
  • Lindoso, D. P., Rocha, J. D., Debortoli, N., Parente, I. I., Eiró, F., Bursztyn, M., & Rodrigues-Filho, S. (2014). Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: a case study in Ceará. Climatic Change, 127(1), 93–105. https://doi.org/10.1007/s10584-014-1116-1
  • Liu, C., Yang, C., Yang, Q., & Wang, J. (2021). Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Scientific Reports, 11(1), 1–24. https://doi.org/10.1038/s41598-020-80527-3
  • Lorenz, D. F. (2013). The diversity of resilience: contributions from a social science perspective. Natural Hazards, 67(1), 7–24. https://doi.org/10.1007/s11069-010-9654-y
  • Mishra, A. K., Singh, V. P., & Desai, V. R. (2009). Drought characterization: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41–55. https://doi.org/10.1007/s00477-007-0194-2
  • Moss, R. H., Brenkert, A. L., & Malone, E. L. (2001). Vulnerability to Climate Change: A Quantitative Approach (No. Report No. PNNL-SA-33642). Washington DC.
  • O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., . . . West, J. (2004). Mapping vulnerability to multiple stressors: climate change and globalization in India. Global Environmental Change, 14(4), 303–313.
  • Parry, M., Canziani, O. F., Palitukof, J., van der Linden, P., & Hanson, C. (Eds.) (2007). Climate change 2007: Impacts, Adaptation and Vulnerability Contribution of Working Group II to The Fourth Assessment Report of The Intergovernmental Panel on Climate Change. Cambridge U.K., New York: Cambridge University Press.
  • Patt, A. G., Schröter, D., Klein, R. J. T., & La Vega-Leinert, A. C. de (2011). Vulnerability Research and Assessment to Support Adaptation and Mitigation: Common Themes from the Diversity of Approaches. In A. G. Patt, D. Schröter, R. J. T. Klein, & A. C. de La Vega-Leinert (Eds.), Assessing vulnerability to global environmental change: Making research useful for adaptation decision making and policy. London: Earthscan.
  • Peacock, W. G., Brody, S. D., Seitz, W. A., Merrell, W. J., Vedlitz, A., Zahran, S., . . . Stickney, R. R. (Eds.) (2010). Advancing the Resilience of Coastal Localities: Developing, Implementing and Sustaining the Use of Coastal Resilience Indicators: A Final Report. Texas: Texas A&M University. https://doi.org/10.13140/RG.2.2.35146.80324
  • Pelling, M. (2001). Natural Disasters? In N. Castree & B. Braun (Eds.), Social nature: Theory, practice, and politics (pp. 170–188). Malden, Mass., Oxford: Blackwell.
  • Pelling, M. (2003). The vulnerability of cities: Natural disasters and social resilience. London: Earthscan Publications.
  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98.
  • Saaty, T. L., & Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process (Vol. 175). Boston, MA: Springer US.
  • Schilling, J., Freier, K. P., Hertig, E., & Scheffran, J. (2012). Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agriculture, Ecosystems & Environment, 156, 12–26. https://doi.org/10.1016/j.agee.2012.04.021
  • Sen, B., Topcu, S., Türkeş, M., & Warner, J. F. (2012). Projecting climate change, drought conditions and crop productivity in Turkey. Climate Research, 52, 175–191. https://doi.org/10.3354/cr01074
  • Serkendiz, H., & Tatlı, H. (2021). Türkiye’nin Kuraklık Dirençliğinin Muhtemel Göstergeleri Üzerine Teorik Bir Bakış. 3. Uluslararası Afet ve Dirençlilik Kongresi. Symposium conducted at the meeting of AFAD, Ankara.
  • Sherrieb, K., Norris, F. H., & Galea, S. (2010). Measuring Capacities for Community Resilience. Social Indicators Research, 99(2), 227–247. https://doi.org/10.1007/s11205-010-9576-9
  • Tatli, H., & Türkeş, M. (2011). Empirical Orthogonal Function analysis of the palmer drought indices. Agricultural and Forest Meteorology, 151(7), 981–991. https://doi.org/10.1016/j.agrformet.2011.03.004
  • Tatli, H. (2021). Multivariate-drought indices—case studies with observations and outputs of NCAR CCSM-4 ensemble models. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-021-03736-4
  • Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38 (1), 55–94.
  • Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J. J., Corell, R. W., Christensen, L., . . . Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079.
  • Turp, M. T., Öztürk, T., Türkeş, M., & Kurnaz, M. L. (2014). Regcm4.3.5 Bölgesel İklim Modelini Kullanarak Türkiye ve Çevresi Bölgelerin Yakın Gelecekteki Hava Sıcaklığı ve Yağış Klimatolojileri İçin Öngörülen Değişikliklerin İncelenmesi. Ege Coğrafya Dergisi, 23(1), 1–24. Retrieved from https://dergipark.org.tr/tr/download/article-file/56732
  • Türkeş, M. (2012). Türkiye’de gözlenen ve öngörülen iklim değişikliği, kuraklık ve çölleşme. Ankara Üniversitesi Çevrebilimleri Dergisi, 4(2), 1–32. https://doi.org/10.1501/Csaum_0000000063
  • Türkeş, M., & Tatli, H. (2009). Use of the standardized precipitation index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. International Journal of Climatology, 29, 2270–2282. https://doi.org/10.1002/joc.1862
  • UNISDR (2004). Living with risk: A global review of disaster reduction initiatives. New York: United Nations.
  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
  • Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. P. (2004). Resilience, Adaptability and Transformability in Social-ecological Systems. Ecology and Society, 9(2).
  • White, P., Pelling, M., Sen, K., Seddon, D., Russel, S., & Few, R. (2005). Disaster risk reduction: A development concern. London: Department for International Development.
  • Wilhelmi, O. V., & Wilhite, D. A. (2002). Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study. Natural Hazards, 25(1), 37–58.
  • Wilhite, D. A. (2000). Chapter 1 Drought as a Natural Hazard: Concepts and Definitions. In D. A. Wilhite (Ed.), Routledge hazards and disasters series. Drought: A global assessment (pp. 1–21). London: Routledge.
  • Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2004). At risk: Natural hazards, people’s vulnerability, and disasters (2nd ed.). London, New York: Routledge.
  • Yevjevich, V. (1967). An Objective Approach to Definitions And Investigations of Continental Hydrologic Droughts. Hydrology Papers: Vol. 23. Fort Collinsi Colorado: Colorada State University.
  • Yohe, G., & Tol, R. S. (2002). Indicators for social and economic coping capacity—moving toward a working definition of adaptive capacity. Global Environmental Change, 12(1), 25–40.
  • Yoon, D. K., Kang, J. E., & Brody, S. D. (2016). A measurement of community disaster resilience in Korea. Journal of Environmental Planning and Management, 59(3), 436–460. https://doi.org/10.1080/09640568.2015.1016142
  • Zarafshani, K., Sharafi, L., Azadi, H., & van Passel, S. (2016). Vulnerability Assessment Models to Drought: Toward a Conceptual Framework. Sustainability, 8(6), 1–21.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beşeri Coğrafya
Bölüm Makaleler
Yazarlar

Hıdır Serkendiz 0000-0002-9827-766X

Hasan Tatlı 0000-0002-1960-0618

Proje Numarası 123O348
Yayımlanma Tarihi 30 Haziran 2023
Kabul Tarihi 30 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Serkendiz, H., & Tatlı, H. (2023). Sosyo-Ekonomik ve Biyofiziksel Bileşenlerine Dayalı Geliştirilen Dirençlilik İndeksi ile Türkiye’de Kuraklığın İncelenmesi. Resilience, 7(1), 73-91. https://doi.org/10.32569/resilience.1196557