Araştırma Makalesi
BibTex RIS Kaynak Göster

Deniz Seviyesi Yükselmesi ve Aşırı Yağış Tehditlerine Karşı Mekânsal Kırılganlık Değerlendirmesi: Küçük Menderes Alt Havzaları

Yıl 2024, , 235 - 248, 31.12.2024
https://doi.org/10.32569/resilience.1466863

Öz

Havzaların iklim değişikliğine karşı kırılganlık düzeyleri coğrafi konumu, hidrolojik yapısı, fiziksel yapısı, toprak yapısı, jeolojik yapısı, iklim koşulları, kentleşme düzeyi, arazi kullanımı gibi pek çok faktöre dayalı olarak farklılık göstermektedir. Havza temelli kırılganlık değerlendirmeleri iklim değişikliğine uyum politikalarında su ile ilgili konuların da gözetilebilmesi açısından önem taşımaktadır. Bu noktada alt havzalar ise aynı zamanda yerele özgü stratejilerin belirlenmesinde uygun bir ölçek oluşturmaktadır. Bu çalışmada, Küçük Menderes Nehir Havzası’nda yer alan, kentleşmiş havza niteliği gösteren ve aralarında farklı özellikleriyle öne çıkan İzmir-Körfez, Çeşme-Karaburun ve Tahtalı-Seferihisar alt havzalarının deniz seviyesi yükselmesi ve aşırı yağış tehlikelerine karşı mekânsal kırılganlık düzeylerinin tespit edilmesi amaçlanmaktadır. Bu doğrultuda, alt havzalardaki mikro havza sınırları eşik alınarak, maruz kalma, hassasiyet ve dirençlilik olmak üzere üç tipte belirlenen göstergelerden faydalanılarak mekânsal kırılganlık analizi gerçekleştirilmiştir. Elde edilen sonuçlar, alt havzaların değişen kırılganlık düzeylerine sahip olduğunu ve göreli daha kentleşmiş nitelikteki İzmir-Körfez alt havzasının diğerlerine kıyasla daha kırılgan bir yapı sergilediğini ortaya koymuştur. Orman ve yarı doğal alanlarıyla öne çıkan Çeşme-Karaburun alt havzasının daha düşük kırılganlık gösterdiği tespit edilmiştir.

Teşekkür

Bu çalışma, Gökçe Demircan’ın Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Şehir ve Bölge Planlama Programında sürdürülen “Kıyı Kentlerinde İklim Değişikliğine Uyumun Mekânsal Planlama ile Bütünleştirilmesi: İzmir Örneği” başlıklı doktora tezi kapsamında üretilmiştir.

Kaynakça

  • Apreda C., D’Ambrosioa V., Di Martino F. 2019. A climate vulnerability and impact assessment model for complex urban systems. Environmental Science and Policy, 93, 11–26
  • Aydın M.B.S. ve Kahraman E. D. 2016. Determining the Spatial Vulnerability Levels and Typologies of Coastal Cities to Climate Change: Case of Turkey. World Academy of Science, Engineering and Technology, International Journal of Geological and Environmental Engineering, 10 (11), 1058- 1062.
  • Aydın M.B.S. ve Kahraman E. D. 2022. Mitigation or adaptation, the determination of which strategy should be given priority for urban spatial development: the case study of central cities in Turkey. Mitigation and Adaptation Strategies for Global Change. https://doi.org/10.1007/s11027-021-09985-y
  • Aytekin M. ve Serengil Y. 2022. Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin. Kastamonu Uni., Orman Fakültesi Dergisi, 22(2): 112-124. DOI:10.17475/kastorman.1179037
  • Balica S. F., Douben N., Wright N. G. 2009. Flood vulnerability indices at varying spatial scales. Water Science & Technology-WST, 60 (10). DOI: 10.2166/wst.2009.183
  • Balica S.F., Wright N. G., van der Meulen F. 2012. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazards, 64:73–105. DOI: 10.1007/s11069-012-0234-1
  • Bhave A. G., Mishra A., Groot A. 2013. Sub-basin scale characterization of climate change vulnerability, impacts and adaptation in an Indian River basin. Reg Environ Change 13:1087–1098. DOI 10.1007/s10113-013-0416-8
  • Chan C. 2013. Property rights and climate change vulnerability in Turkish forest communities: a case study from Seyhan River Basin, Turkey. Climate and Development, 5:1, 1-13, DOI: 10.1080/17565529.2012.762335 Chang S. E., Yip J.Z.K., Conger T., Oulahen G., Marteleira M. 2018. Community vulnerability to coastal hazards: Developing a typology for disaster risk reduction, Applied Geography 91, 81–88
  • Chen Y., Feng Y., Zhang F., Yang F. and Wang L. 2020. Assessing and Predicting theWater Resources Vulnerability under Various Climate-Change Scenarios: A case Study of Huang-Huai-Hai River Basin, China. Entropy, 22, 333. DOI:10.3390/e22030333
  • Copernicus Land Monitoring Service. Corine Land Cover 2018 (vector), Europe. https://land.copernicus.eu/pan-european/corine-land-cover (Erişim tarihi: 21.12.2022)
  • Copernicus Land Monitoring Service. EU-Hydro River Network Database 2006-2012 (vector), Europe. https://land.copernicus.eu/imagery-in-situ/eu-hydro/eu-hydro-river-network-database (Erişim tarihi: 21.12.2022)
  • De León J. C. V. 2006. Vulnerability: A Conceptual and Methodological Review. ‘Studies of the University: Research,Counsel,Education’, Publication Series of UNU-EHS, No. 4
  • Ertürk A., Ekdal A., Karakaya N., Cüceloğlu G., Gürel M., İ. Gönenç E. 2015. Yeraltı Suyuna Bağlı Ekosistemler: Köyceğiz – Dalyan Örnek Çalışması. Konferans Bildirisi.
  • Gama L., Ortiz-Pérez M. A., Moguel-Ordoñez E., Collado-Torres R., Diaz-López H., Villanueva-García C. and Macías-Valadez M. E. 2011. Flood risk assessment in Tabasco, Mexico. WIT Transactions on Ecology and the Environment, Vol 145. DOI:10.2495/WRM110561
  • He C., Zhou L., Ma W., Wang Y. 2019. Spatial Assessment of Urban Climate Change Vulnerability during Different Urbanization Phases. Sustainability, 11, 2406. DOI:10.3390/su11082406.
  • Hounkpè J., Badou D. F., Ahouansou D. M. M., Totin E., Sintondji L. O. C. 2022. Assessing observed and projected flood vulnerability under climate change using multi‑modeling statistical approaches in the Ouémé River Basin, Benin (West Africa). Regional Environmental Change, 22:112. https://doi.org/10.1007/s10113-022-01957-5
  • Huynh H. L. T., Do A. T., Dao T. M. 2020. Climate change vulnerability assessment for Can Tho city by a set of indicators, International Journal of Climate Change Strategies and Management, 12, 1, 147-158. DOI 10.1108/IJCCSM-01-2018-0003
  • IPCC, 2001: Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. [McCarthy J. J., Canziani O. F., Leary N. A., Dokken D. J., White K. S. (eds.)]. Cambridge University Press.
  • IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.
  • Islam A. ve Ghosh S. 2022. Community‑Based Riverine Flood Risk Assessment and Evaluating Its Drivers: Evidence from Rarh Plains of India. Applied Spatial Analysis and Policy, 15:1–47. https://doi.org/10.1007/s12061-021-09384-5 Jiang L., Huang X., Wang F., Liu Y., An P. 2018. Method for evaluating ecological vulnerability under climate change based on remote sensing: A case study, Ecological Indicators, 85, 479–486
  • Jung Y. ve Choi M. 2012. Survey-Based Approach For Hydrologıcal Vulnerabılıty Indıcators Due To Clımate Change: Case Study of Small-Scale Rıvers. Journal of The Amerıcan Water Resources Assocıatıon, 48, 2, 256-265. DOI: 10.1111 ⁄ j.1752-1688.2011.00608.x
  • Kefi M., Kumar Mishra B., Kumar P., Masago Y. Fukushi K. 2018. Assessment of Tangible Direct Flood Damage Using a Spatial Analysis Approach under the Effects of Climate Change: Case Study in an Urban Watershed in Hanoi, Vietnam. ISPRS Int. J. Geo-Inf. 7, 29. DOI:10.3390/ijgi7010029
  • Kim Y. ve Chung E-S. 2014. An index-based robust decision making framework for watershed management in a changing climate. Science of the Total Environment 473–474, 88–102. Lehmann M., Major D. C., Fitton J. M., Doust K., O’Donoghue S. 2021. Towards a typology for coastal towns and small cities for climate change adaptation planning. Ocean and Coastal Management, 212, 105784
  • Macharia D., Kaijage E., Kindberg L., Koech G., Ndungu L., Wahome A., Mugo R. 2020. Mapping Climate Vulnerability of River Basin Communities in Tanzania to Inform Resilience Interventions. Sustainability, 12, 4102. DOI:10.3390/su12104102
  • Mukherjee ve Takara. 2018. Urban green space as a countermeasure to increasing urban risk and the UGS-3CC resilience framework. International Journal of Disaster Risk Reduction, 28, 854-861. https://doi.org/10.1016/j.ijdrr.2018.01.027
  • Nasiri H., Yusof M. J. M, Ali T. A. M., Hussein M. K. B. 2018. District flood vulnerability index: urban decision‑making tool. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1797-5
  • Nguyen H. D., Fox D., Dang D. K., Pham L. T., Du Q. V. V., Nguyen T. H. T., Dang T. N., Tran V. T., Vu P. L., Nguyen Q.-H., Nguyen T. G., Bui Q.-T. and Petrisor A.-I. 2021. Predicting Future Urban Flood Risk Using Land Change and Hydraulic Modeling in a RiverWatershed in the Central Province of Vietnam. Remote Sensing, 13, 262. https://doi.org/10.3390/rs13020262
  • Orozco I., Martínez A., Ortega V. 2020. Assessment of the Water, Environmental, Economic and Social Vulnerability of aWatershed to the Potential Effects of Climate Change and Land Use Change. Water, 12, 1682. DOI:10.3390/w12061682
  • Roy A. ve Inamdar A. B. 2014. A framework for clımate change and vulnerabılıty assessment ın an urbanızed rıver basın through geospatıal technologıes and hydrologıcal modelıng. IGARSS.
  • Scholze N., Riach N., Glaser R. 2020. Assessing Climate Change in the Trinational Upper Rhine Region: How Can We Operationalize Vulnerability Using an Indicator-Based, Meso-Scale Approach? Sustainability, 12, 6323. DOI:10.3390/su12166323
  • Tang J., Li Y., Cui S., Xu L., Hu Y., Ding S., Nitivattananon V. 2021. Analyzing the spatiotemporal dynamics of flood risk and its driving factors in a coastal watershed of southeastern China. Ecological Indicators 121, 107134.
  • T.C. Tarım ve Orman Bakanlığı (TCTOB), Su Yönetimi Genel Müdürlüğü. 2019. Küçük Menderes Havzası Nehir Havza Yönetim Planı Hazırlanması Projesi Nehir Havza Yönetim Planı Nihai Raporu.
  • T.C. Çevre ve Sehircilik Bakanlığı (TCÇŞB). 2012. İklim Değişikliği Ulusal Eylem Planı 2011-2023.
  • T.C. Orman ve Su İşleri Bakanlığı (TCOSB). 2014. Ulusal Havza Yönetim Stratejisi 2014-2023.
  • T.C. Çevre ve Orman Bakanlığı (TCÇOB). 2007. Türkiye İklim Değişikliği 1. Ulusal Bildirimi.
  • TÜİK. 2022. Adrese Dayalı Nüfus Kayıt Sistemi. İzmir ili, ilçe nüfusları. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr Williams D. S., Máñez Costa M., Sutherland C., Celliers L., Scheffran J. 2019. Vulnerability of informal settlements in the context of rapid urbanization and climate change. International Institute for Environment and Development (IIED), 31(1): 157–176. 10.1177/0956247818819694
  • Yang X.-H., Di C.-L., He J., Zhang J. and Li Y.-Q. 2015. Integrated assessment of water resources vulnerability under climate change in Haihe River Basin. International Journal of Numerical Methods for Heat & Fluid Flow, 25, 8,1834-1844 Zahmatkesh Z. ve Karamouz M. 2017. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: case study of New York City, Environ Monit Assess, 189: 567. https://doi.org/10.1007/s10661-017-6282-y
  • Zhang X., Tian Y., Dong N., Wu H., Li S. 2023. The projected futures of water resources vulnerability under climate and socioeconomic change in the Yangtze River Basin, China. Ecological Indicators 147, 109933.
  • Zope P. E., Eldho T. I., Jothiprakash V. 2017. Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: a case study of Poisar River basin, Mumbai, India. Nat Hazards, 87:1267–1283. DOI 10.1007/s11069-017-2816-4

Spatial Vulnerability Assessment to Sea Level Rise and Excessive Precipitation Hazards: Sub-catchments in the Küçük Menderes River Basin

Yıl 2024, , 235 - 248, 31.12.2024
https://doi.org/10.32569/resilience.1466863

Öz

The vulnerability levels of river basins to climate change vary depending on many factors such as geographical location, hydrological structure, physical structure, soil structure, geological structure, climatic conditions, urbanization level and land use. Vulnerability assessments at the basin level are crucial for addressing water-related issues in climate change adaptation policies. At this point, sub-catchments are also an appropriate scale for determining local-specific strategies. The objective of this study is to assess the level of spatial vulnerability to sea level rise and excessive precipitation hazards in the İzmir-Körfez, Çeşme-Karaburun, and Tahtalı-Seferihisar sub-catchments located in the Küçük Menderes River Basin, which have urbanized basin characteristics and distinct features. In this regard, spatial vulnerability analysis was conducted by using micro-basin borders in the sub-catchments as thresholds and using three types of indicators: exposure, sensitivity, and resilience. The findings revealed that the sub-catchments have different levels of vulnerability and that the Izmir-Körfez sub-catchment, which is relatively more urbanized, has a more vulnerable structure compared to the others. The study found that the Çeşme-Karaburun sub-catchment, which is characterized by its forest and semi-natural areas, has a lower level of vulnerability.

Kaynakça

  • Apreda C., D’Ambrosioa V., Di Martino F. 2019. A climate vulnerability and impact assessment model for complex urban systems. Environmental Science and Policy, 93, 11–26
  • Aydın M.B.S. ve Kahraman E. D. 2016. Determining the Spatial Vulnerability Levels and Typologies of Coastal Cities to Climate Change: Case of Turkey. World Academy of Science, Engineering and Technology, International Journal of Geological and Environmental Engineering, 10 (11), 1058- 1062.
  • Aydın M.B.S. ve Kahraman E. D. 2022. Mitigation or adaptation, the determination of which strategy should be given priority for urban spatial development: the case study of central cities in Turkey. Mitigation and Adaptation Strategies for Global Change. https://doi.org/10.1007/s11027-021-09985-y
  • Aytekin M. ve Serengil Y. 2022. Assessment of Vulnerability, Resilience Capacity and Land Use Within the Scope of Climate Change Adaptation: The Case of Balıkesir-Susurluk Basin. Kastamonu Uni., Orman Fakültesi Dergisi, 22(2): 112-124. DOI:10.17475/kastorman.1179037
  • Balica S. F., Douben N., Wright N. G. 2009. Flood vulnerability indices at varying spatial scales. Water Science & Technology-WST, 60 (10). DOI: 10.2166/wst.2009.183
  • Balica S.F., Wright N. G., van der Meulen F. 2012. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazards, 64:73–105. DOI: 10.1007/s11069-012-0234-1
  • Bhave A. G., Mishra A., Groot A. 2013. Sub-basin scale characterization of climate change vulnerability, impacts and adaptation in an Indian River basin. Reg Environ Change 13:1087–1098. DOI 10.1007/s10113-013-0416-8
  • Chan C. 2013. Property rights and climate change vulnerability in Turkish forest communities: a case study from Seyhan River Basin, Turkey. Climate and Development, 5:1, 1-13, DOI: 10.1080/17565529.2012.762335 Chang S. E., Yip J.Z.K., Conger T., Oulahen G., Marteleira M. 2018. Community vulnerability to coastal hazards: Developing a typology for disaster risk reduction, Applied Geography 91, 81–88
  • Chen Y., Feng Y., Zhang F., Yang F. and Wang L. 2020. Assessing and Predicting theWater Resources Vulnerability under Various Climate-Change Scenarios: A case Study of Huang-Huai-Hai River Basin, China. Entropy, 22, 333. DOI:10.3390/e22030333
  • Copernicus Land Monitoring Service. Corine Land Cover 2018 (vector), Europe. https://land.copernicus.eu/pan-european/corine-land-cover (Erişim tarihi: 21.12.2022)
  • Copernicus Land Monitoring Service. EU-Hydro River Network Database 2006-2012 (vector), Europe. https://land.copernicus.eu/imagery-in-situ/eu-hydro/eu-hydro-river-network-database (Erişim tarihi: 21.12.2022)
  • De León J. C. V. 2006. Vulnerability: A Conceptual and Methodological Review. ‘Studies of the University: Research,Counsel,Education’, Publication Series of UNU-EHS, No. 4
  • Ertürk A., Ekdal A., Karakaya N., Cüceloğlu G., Gürel M., İ. Gönenç E. 2015. Yeraltı Suyuna Bağlı Ekosistemler: Köyceğiz – Dalyan Örnek Çalışması. Konferans Bildirisi.
  • Gama L., Ortiz-Pérez M. A., Moguel-Ordoñez E., Collado-Torres R., Diaz-López H., Villanueva-García C. and Macías-Valadez M. E. 2011. Flood risk assessment in Tabasco, Mexico. WIT Transactions on Ecology and the Environment, Vol 145. DOI:10.2495/WRM110561
  • He C., Zhou L., Ma W., Wang Y. 2019. Spatial Assessment of Urban Climate Change Vulnerability during Different Urbanization Phases. Sustainability, 11, 2406. DOI:10.3390/su11082406.
  • Hounkpè J., Badou D. F., Ahouansou D. M. M., Totin E., Sintondji L. O. C. 2022. Assessing observed and projected flood vulnerability under climate change using multi‑modeling statistical approaches in the Ouémé River Basin, Benin (West Africa). Regional Environmental Change, 22:112. https://doi.org/10.1007/s10113-022-01957-5
  • Huynh H. L. T., Do A. T., Dao T. M. 2020. Climate change vulnerability assessment for Can Tho city by a set of indicators, International Journal of Climate Change Strategies and Management, 12, 1, 147-158. DOI 10.1108/IJCCSM-01-2018-0003
  • IPCC, 2001: Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. [McCarthy J. J., Canziani O. F., Leary N. A., Dokken D. J., White K. S. (eds.)]. Cambridge University Press.
  • IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
  • IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.
  • Islam A. ve Ghosh S. 2022. Community‑Based Riverine Flood Risk Assessment and Evaluating Its Drivers: Evidence from Rarh Plains of India. Applied Spatial Analysis and Policy, 15:1–47. https://doi.org/10.1007/s12061-021-09384-5 Jiang L., Huang X., Wang F., Liu Y., An P. 2018. Method for evaluating ecological vulnerability under climate change based on remote sensing: A case study, Ecological Indicators, 85, 479–486
  • Jung Y. ve Choi M. 2012. Survey-Based Approach For Hydrologıcal Vulnerabılıty Indıcators Due To Clımate Change: Case Study of Small-Scale Rıvers. Journal of The Amerıcan Water Resources Assocıatıon, 48, 2, 256-265. DOI: 10.1111 ⁄ j.1752-1688.2011.00608.x
  • Kefi M., Kumar Mishra B., Kumar P., Masago Y. Fukushi K. 2018. Assessment of Tangible Direct Flood Damage Using a Spatial Analysis Approach under the Effects of Climate Change: Case Study in an Urban Watershed in Hanoi, Vietnam. ISPRS Int. J. Geo-Inf. 7, 29. DOI:10.3390/ijgi7010029
  • Kim Y. ve Chung E-S. 2014. An index-based robust decision making framework for watershed management in a changing climate. Science of the Total Environment 473–474, 88–102. Lehmann M., Major D. C., Fitton J. M., Doust K., O’Donoghue S. 2021. Towards a typology for coastal towns and small cities for climate change adaptation planning. Ocean and Coastal Management, 212, 105784
  • Macharia D., Kaijage E., Kindberg L., Koech G., Ndungu L., Wahome A., Mugo R. 2020. Mapping Climate Vulnerability of River Basin Communities in Tanzania to Inform Resilience Interventions. Sustainability, 12, 4102. DOI:10.3390/su12104102
  • Mukherjee ve Takara. 2018. Urban green space as a countermeasure to increasing urban risk and the UGS-3CC resilience framework. International Journal of Disaster Risk Reduction, 28, 854-861. https://doi.org/10.1016/j.ijdrr.2018.01.027
  • Nasiri H., Yusof M. J. M, Ali T. A. M., Hussein M. K. B. 2018. District flood vulnerability index: urban decision‑making tool. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1797-5
  • Nguyen H. D., Fox D., Dang D. K., Pham L. T., Du Q. V. V., Nguyen T. H. T., Dang T. N., Tran V. T., Vu P. L., Nguyen Q.-H., Nguyen T. G., Bui Q.-T. and Petrisor A.-I. 2021. Predicting Future Urban Flood Risk Using Land Change and Hydraulic Modeling in a RiverWatershed in the Central Province of Vietnam. Remote Sensing, 13, 262. https://doi.org/10.3390/rs13020262
  • Orozco I., Martínez A., Ortega V. 2020. Assessment of the Water, Environmental, Economic and Social Vulnerability of aWatershed to the Potential Effects of Climate Change and Land Use Change. Water, 12, 1682. DOI:10.3390/w12061682
  • Roy A. ve Inamdar A. B. 2014. A framework for clımate change and vulnerabılıty assessment ın an urbanızed rıver basın through geospatıal technologıes and hydrologıcal modelıng. IGARSS.
  • Scholze N., Riach N., Glaser R. 2020. Assessing Climate Change in the Trinational Upper Rhine Region: How Can We Operationalize Vulnerability Using an Indicator-Based, Meso-Scale Approach? Sustainability, 12, 6323. DOI:10.3390/su12166323
  • Tang J., Li Y., Cui S., Xu L., Hu Y., Ding S., Nitivattananon V. 2021. Analyzing the spatiotemporal dynamics of flood risk and its driving factors in a coastal watershed of southeastern China. Ecological Indicators 121, 107134.
  • T.C. Tarım ve Orman Bakanlığı (TCTOB), Su Yönetimi Genel Müdürlüğü. 2019. Küçük Menderes Havzası Nehir Havza Yönetim Planı Hazırlanması Projesi Nehir Havza Yönetim Planı Nihai Raporu.
  • T.C. Çevre ve Sehircilik Bakanlığı (TCÇŞB). 2012. İklim Değişikliği Ulusal Eylem Planı 2011-2023.
  • T.C. Orman ve Su İşleri Bakanlığı (TCOSB). 2014. Ulusal Havza Yönetim Stratejisi 2014-2023.
  • T.C. Çevre ve Orman Bakanlığı (TCÇOB). 2007. Türkiye İklim Değişikliği 1. Ulusal Bildirimi.
  • TÜİK. 2022. Adrese Dayalı Nüfus Kayıt Sistemi. İzmir ili, ilçe nüfusları. https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr Williams D. S., Máñez Costa M., Sutherland C., Celliers L., Scheffran J. 2019. Vulnerability of informal settlements in the context of rapid urbanization and climate change. International Institute for Environment and Development (IIED), 31(1): 157–176. 10.1177/0956247818819694
  • Yang X.-H., Di C.-L., He J., Zhang J. and Li Y.-Q. 2015. Integrated assessment of water resources vulnerability under climate change in Haihe River Basin. International Journal of Numerical Methods for Heat & Fluid Flow, 25, 8,1834-1844 Zahmatkesh Z. ve Karamouz M. 2017. An uncertainty-based framework to quantifying climate change impacts on coastal flood vulnerability: case study of New York City, Environ Monit Assess, 189: 567. https://doi.org/10.1007/s10661-017-6282-y
  • Zhang X., Tian Y., Dong N., Wu H., Li S. 2023. The projected futures of water resources vulnerability under climate and socioeconomic change in the Yangtze River Basin, China. Ecological Indicators 147, 109933.
  • Zope P. E., Eldho T. I., Jothiprakash V. 2017. Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: a case study of Poisar River basin, Mumbai, India. Nat Hazards, 87:1267–1283. DOI 10.1007/s11069-017-2816-4
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Şehir ve Bölge Planlama
Bölüm Makaleler
Yazarlar

Gökçe Demircan 0000-0003-4828-6143

Mediha Burcu Sılaydın 0000-0001-9843-3370

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Nisan 2024
Kabul Tarihi 12 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Demircan, G., & Sılaydın, M. B. (2024). Deniz Seviyesi Yükselmesi ve Aşırı Yağış Tehditlerine Karşı Mekânsal Kırılganlık Değerlendirmesi: Küçük Menderes Alt Havzaları. Resilience, 8(2), 235-248. https://doi.org/10.32569/resilience.1466863