Araştırma Makalesi
BibTex RIS Kaynak Göster

Fs−contractive mappings in controlled metric type spaces

Yıl 2021, , 149 - 158, 30.09.2021
https://doi.org/10.53006/rna.928319

Öz

We investigate in this manuscript, we study a new type of mappings so called F_s −contractive, in addition
to we establish some fixed point results related to F_s −contractive type mappings in controlled type metric
spaces. Also, examples are provided to illustrate our results.

Destekleyen Kurum

none

Proje Numarası

none

Teşekkür

It is my pleasure to publish your journal

Kaynakça

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund Math. 3, 133-181 (1922).
  • [2] J. Jachymski, I. Jówik, On Kirk's asymptotic contractions. J Math Anal Appl. 300, 147-159 (2004). doi:10.1016/j. jmaa.2004.06.037.
  • [3] T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Non-linear Anal. 64, 971-978 (2006).
  • [4] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6, 194, 2018.
  • [5] A. Meir, E. Keeler, A theorem on contraction mappings. J Math Anal Appl. 28, 326-329 (1969). doi:10.1016/0022-247X (69)90031-6.
  • [6] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces. Math Comput Mod- elling. 54, 2923-2927 (2011). doi:10.1016/j.mcm.2011.07.013.
  • [7] Choudhury, Binayak, S, Konar, P, Rhoades, BE, Metiya, N: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116-2126 (2011). doi:10.1016/j.na.2010.11.017.
  • [8] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012) https://doi.org/10.1186/1687-1812-2012-94.
  • [9] A. Lukács, S. Kajántó, Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 19(1), 321-334 (2018). https://doi.org/10.24193/fpt-ro.2018.1.25. [10] S. Cobzas, Fixed points and completeness in metric and in generalized metric spaces (2016). arXiv:1508.05173v4 [math.FA] [11] T.K. Hu, On a fixed-point theorem for metric spaces. Am. Math. Mon. 74, 436-437 (1967).
  • [12] H. Garai, T. Senapati, L.K. Dey, A study on Kannan type contractive mappings (2017). arXiv:1707.06383v1 [math.FA].
  • [13] F.E. Browder, W.V. Petryshyn, The solution by iteration of non-linear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571-575 (1966).
  • [14] J.B. Baillon, R.E. Bruck, S. Reich, On the asymptotic behaviour of non-expansive mappings and semi-groups in Banach spaces. Houst. J. Math. 4, 1-9 (1978).
  • [15] R.E. Bruck, S. Reich, Non-expansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459-470 (1977).
  • [16] J. Górnicki, Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl. 2017, 9 (2017). https://doi.org/10.1186/s13663-017-0602-3.
  • [17] T. Abdeljawad, N. Mlaiki, H. Aydi, and N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 2018, 6, 320; doi:10.3390/math6120320
  • [18] E. Karapinar, S. Czerwik, H. Aydi, (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, Journal of Function spaces, Volume 2018 (2018), Article ID 3264620, 4 pages.
  • [19] H. Afshari, H. Aydi, E. Karapinar, On generalized α − ψ-Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), 9-21
  • [20] E. Karapinar, A. Petrusel, and G.Petrusel, On admissible hybrid Geraghty contractions, Carpathian J. Math. 36 (2020), No. 3, 433 - 442.
  • [21] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012 :88.
  • [22] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory, 13 (2) (2012), 337-346.
  • [23] M.A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapinar, A Note on Extended Z−Contraction, Mathematics, Volume 8 Issue 2 Article Number 195 (2020).
Yıl 2021, , 149 - 158, 30.09.2021
https://doi.org/10.53006/rna.928319

Öz

Proje Numarası

none

Kaynakça

  • [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund Math. 3, 133-181 (1922).
  • [2] J. Jachymski, I. Jówik, On Kirk's asymptotic contractions. J Math Anal Appl. 300, 147-159 (2004). doi:10.1016/j. jmaa.2004.06.037.
  • [3] T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Non-linear Anal. 64, 971-978 (2006).
  • [4] N. Mlaiki, H. Aydi, N. Souayah and T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6, 194, 2018.
  • [5] A. Meir, E. Keeler, A theorem on contraction mappings. J Math Anal Appl. 28, 326-329 (1969). doi:10.1016/0022-247X (69)90031-6.
  • [6] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces. Math Comput Mod- elling. 54, 2923-2927 (2011). doi:10.1016/j.mcm.2011.07.013.
  • [7] Choudhury, Binayak, S, Konar, P, Rhoades, BE, Metiya, N: Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. 74, 2116-2126 (2011). doi:10.1016/j.na.2010.11.017.
  • [8] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012) https://doi.org/10.1186/1687-1812-2012-94.
  • [9] A. Lukács, S. Kajántó, Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 19(1), 321-334 (2018). https://doi.org/10.24193/fpt-ro.2018.1.25. [10] S. Cobzas, Fixed points and completeness in metric and in generalized metric spaces (2016). arXiv:1508.05173v4 [math.FA] [11] T.K. Hu, On a fixed-point theorem for metric spaces. Am. Math. Mon. 74, 436-437 (1967).
  • [12] H. Garai, T. Senapati, L.K. Dey, A study on Kannan type contractive mappings (2017). arXiv:1707.06383v1 [math.FA].
  • [13] F.E. Browder, W.V. Petryshyn, The solution by iteration of non-linear functional equations in Banach spaces. Bull. Am. Math. Soc. 72, 571-575 (1966).
  • [14] J.B. Baillon, R.E. Bruck, S. Reich, On the asymptotic behaviour of non-expansive mappings and semi-groups in Banach spaces. Houst. J. Math. 4, 1-9 (1978).
  • [15] R.E. Bruck, S. Reich, Non-expansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459-470 (1977).
  • [16] J. Górnicki, Fixed point theorems for F-expanding mappings. Fixed Point Theory Appl. 2017, 9 (2017). https://doi.org/10.1186/s13663-017-0602-3.
  • [17] T. Abdeljawad, N. Mlaiki, H. Aydi, and N. Souayah, Double Controlled Metric Type Spaces and Some Fixed Point Results, Mathematics 2018, 6, 320; doi:10.3390/math6120320
  • [18] E. Karapinar, S. Czerwik, H. Aydi, (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces, Journal of Function spaces, Volume 2018 (2018), Article ID 3264620, 4 pages.
  • [19] H. Afshari, H. Aydi, E. Karapinar, On generalized α − ψ-Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), 9-21
  • [20] E. Karapinar, A. Petrusel, and G.Petrusel, On admissible hybrid Geraghty contractions, Carpathian J. Math. 36 (2020), No. 3, 433 - 442.
  • [21] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012 :88.
  • [22] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak phi-contractions on b-metric spaces, Fixed Point Theory, 13 (2) (2012), 337-346.
  • [23] M.A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapinar, A Note on Extended Z−Contraction, Mathematics, Volume 8 Issue 2 Article Number 195 (2020).
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Muhib Abuloha Bu kişi benim

Doaa Rizk 0000-0002-4547-3165

Kamaleldin Abodayeh

Aiman Mukheimer Bu kişi benim

Nizar Souayah

Proje Numarası none
Yayımlanma Tarihi 30 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Abuloha, M., Rizk, D., Abodayeh, K., Mukheimer, A., vd. (2021). Fs−contractive mappings in controlled metric type spaces. Results in Nonlinear Analysis, 4(3), 149-158. https://doi.org/10.53006/rna.928319
AMA Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N. Fs−contractive mappings in controlled metric type spaces. RNA. Eylül 2021;4(3):149-158. doi:10.53006/rna.928319
Chicago Abuloha, Muhib, Doaa Rizk, Kamaleldin Abodayeh, Aiman Mukheimer, ve Nizar Souayah. “Fs−contractive Mappings in Controlled Metric Type Spaces”. Results in Nonlinear Analysis 4, sy. 3 (Eylül 2021): 149-58. https://doi.org/10.53006/rna.928319.
EndNote Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N (01 Eylül 2021) Fs−contractive mappings in controlled metric type spaces. Results in Nonlinear Analysis 4 3 149–158.
IEEE M. Abuloha, D. Rizk, K. Abodayeh, A. Mukheimer, ve N. Souayah, “Fs−contractive mappings in controlled metric type spaces”, RNA, c. 4, sy. 3, ss. 149–158, 2021, doi: 10.53006/rna.928319.
ISNAD Abuloha, Muhib vd. “Fs−contractive Mappings in Controlled Metric Type Spaces”. Results in Nonlinear Analysis 4/3 (Eylül 2021), 149-158. https://doi.org/10.53006/rna.928319.
JAMA Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N. Fs−contractive mappings in controlled metric type spaces. RNA. 2021;4:149–158.
MLA Abuloha, Muhib vd. “Fs−contractive Mappings in Controlled Metric Type Spaces”. Results in Nonlinear Analysis, c. 4, sy. 3, 2021, ss. 149-58, doi:10.53006/rna.928319.
Vancouver Abuloha M, Rizk D, Abodayeh K, Mukheimer A, Souayah N. Fs−contractive mappings in controlled metric type spaces. RNA. 2021;4(3):149-58.