Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces

Yıl 2018, Cilt: 1 Sayı: 2, 49 - 57, 31.08.2018

Öz

In this paper, a new modified proximal point algorithm is proposed for finding a common element of the set of fixed points of a single-valued nonexpansive mapping, and the set of fixed points of a multivalued nonexpansive mapping, and the set of minimizers of convex and lower semicontinuous functions. We obtain convergence of the proposed algorithm to a common element of three sets in CAT(0) spaces.

Kaynakça

  • [1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Etudes Sci. Publ. Math. 41(1972), 5-251.
  • [2] S. Dhompongsa, B. Panyanak, On ∆−convergence theorems in CAT(0) spaces.Comput. Math. Appl.56(2008), 2572-2579.
  • [3] M. Ba˘ cák, The proximal point algorithm in metric spaces. Isr. J. Math. 194(2013),689-701.
  • [4] O. Guler, On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim.29(1991), 403-419.
  • [5] D. Ariza-Ruiz, L. Leustean, G. Lopez, Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc.366 (2014), 4299-4322.
  • [6] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70(1995), 659-673.
  • [7] S. Suantai, W. Phuengrattana, Proximal Point Algorithms for a Hybrid Pair of Nonexpansive Single-Valued and MultiValued Mappings in Geodesic Metric Spaces. (2017).
  • [8] T. Rockafellar, R.J. Wets, Variational Analysis. Springer, Berlin(2005)
  • [9] S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal.65 (2006), 762-772.
  • [10] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. 68 (2008), 3689-3696.
  • [11] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal.8(2007), 35-45.
  • [12] L. Ambrosio, N. Gigli, G. Savare, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zrich, 2nd edn. Birkhuser, Basel (2008).
Yıl 2018, Cilt: 1 Sayı: 2, 49 - 57, 31.08.2018

Öz

Kaynakça

  • [1] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Etudes Sci. Publ. Math. 41(1972), 5-251.
  • [2] S. Dhompongsa, B. Panyanak, On ∆−convergence theorems in CAT(0) spaces.Comput. Math. Appl.56(2008), 2572-2579.
  • [3] M. Ba˘ cák, The proximal point algorithm in metric spaces. Isr. J. Math. 194(2013),689-701.
  • [4] O. Guler, On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim.29(1991), 403-419.
  • [5] D. Ariza-Ruiz, L. Leustean, G. Lopez, Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc.366 (2014), 4299-4322.
  • [6] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70(1995), 659-673.
  • [7] S. Suantai, W. Phuengrattana, Proximal Point Algorithms for a Hybrid Pair of Nonexpansive Single-Valued and MultiValued Mappings in Geodesic Metric Spaces. (2017).
  • [8] T. Rockafellar, R.J. Wets, Variational Analysis. Springer, Berlin(2005)
  • [9] S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal.65 (2006), 762-772.
  • [10] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces. Nonlinear Anal. 68 (2008), 3689-3696.
  • [11] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal.8(2007), 35-45.
  • [12] L. Ambrosio, N. Gigli, G. Savare, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zrich, 2nd edn. Birkhuser, Basel (2008).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Articles
Yazarlar

Shengquan Weng Bu kişi benim

Dingping Wu Bu kişi benim

Yayımlanma Tarihi 31 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Weng, S., & Wu, D. (2018). Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces. Results in Nonlinear Analysis, 1(2), 49-57.
AMA Weng S, Wu D. Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces. RNA. Ağustos 2018;1(2):49-57.
Chicago Weng, Shengquan, ve Dingping Wu. “Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces”. Results in Nonlinear Analysis 1, sy. 2 (Ağustos 2018): 49-57.
EndNote Weng S, Wu D (01 Ağustos 2018) Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces. Results in Nonlinear Analysis 1 2 49–57.
IEEE S. Weng ve D. Wu, “Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces”, RNA, c. 1, sy. 2, ss. 49–57, 2018.
ISNAD Weng, Shengquan - Wu, Dingping. “Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces”. Results in Nonlinear Analysis 1/2 (Ağustos 2018), 49-57.
JAMA Weng S, Wu D. Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces. RNA. 2018;1:49–57.
MLA Weng, Shengquan ve Dingping Wu. “Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces”. Results in Nonlinear Analysis, c. 1, sy. 2, 2018, ss. 49-57.
Vancouver Weng S, Wu D. Some Convergence Theorems of Modified Proximal Point Algorithms for Nonexpansive Mappings in CAT(0) Spaces. RNA. 2018;1(2):49-57.